hexapodes

Les étranges mathématiques des insectes sociaux

Cette semaine, alors que vous profitez d'un pique-nique de  juillet, pensez aux fourmis, aux abeilles et aux guêpes qui font de leur mieux pour atteindre votre salade de pommes de terre. Les insectes sociaux ont commencé à vivre ensemble dans des sociétés complexes des millions d'années avant nous.

L’admiration pour les fourmis et autres insectes sociaux, qui sont des modèles d’altruisme et de travail acharné, remonte au moins à Ésope, et les écologistes modernes ont fait le bilan de notre dette collective envers eux pour leur rôle dans la pollinisation, l’aération du sol, la distribution des graines, la lutte contre les nuisibles, l’alimentation d’autres formes de vie et d’innombrables autres services écosystémiques. Mais ce qui rend les insectes sociaux fascinants pour les biologistes évolutionnistes, c’est qu’ils vivent dans des nids coopératifs où les adultes partagent la charge d’élever et de protéger la progéniture. Souvent, une seule reine pond des œufs et se reproduit avec son escouade de faux-bourdons mâles, tandis que les autres femelles consacrent leur vie au bien commun. À première vue, un tel arrangement " eusocial " semble totalement contraire à l’éthique du " moi d’abord " de la sélection naturelle.

Pendant des années, les scientifiques ont cru avoir trouvé la solution à ce paradoxe de l’évolution grâce aux travaux de référence publiés par William D. Hamilton en 1964, qui ont formalisé les spéculations antérieures de JBS Haldane. Les fourmis, les abeilles et les guêpes ont la particularité génétique de l’haplodiploïdie : les femelles se développent à partir d’œufs fécondés, tandis que les mâles se développent à partir d’œufs non fécondés, avec deux fois moins de chromosomes. Par conséquent, les femelles ont en moyenne plus de gènes en commun avec leurs sœurs qu’avec leurs filles. Hamilton a montré que, selon les principes de la sélection de parenté et de la " théorie de l'aptitude inclusive", les fourmis femelles peuvent transmettre davantage de leur ADN à la génération suivante en aidant à élever leurs sœurs qu’en s’accouplant et en ayant leurs propres bébés. 

La sélection de parentèle n'a cependant pas permis de résoudre complètement le mystère des insectes sociaux. Elle n'explique rien sur les termites, par exemple, qui ne sont pas haplodiploïdes. Elle n'explique pas pourquoi plus de 90 % des abeilles haplodiploïdes ne vivent pas en colonies. Pire encore, les travaux de Robert Trivers et Hope Hare dans les années 1970 ont montré que la parenté génétique des mâles avec les ouvrières pouvait compenser le biais en faveur des frères et sœurs au détriment de la progéniture. 

En été 2010, trois chercheurs, dont Edward O. Wilson, peut-être le plus éminent spécialiste des fourmis au monde, ont déclenché un véritable feu d'artifice en publiant un article qui rejetait le modèle de sélection de parenté : il est plus probable, ont-ils avancé, que d'autres traits prédisposent certains insectes à développer des comportements de plus en plus coopératifs, et que l'haplodiploïdie, au mieux, permet cette stratégie. Plus de 100 biologistes ont rapidement répondu par des réfutations virulentes, et la plupart des biologistes évolutionnistes qui étudient l'eusocialité sont probablement encore fidèles à la sélection de parenté comme explication.

Au-delà de ce débat, il reste encore beaucoup à apprendre sur les origines de l'eusocialité des insectes. La capacité des communautés d'insectes sociaux à agir avec une ingéniosité collective étonnante ne cesse d'étonner tant les biologistes que les pique-niqueurs frustrés.

Quoi de neuf et d'intéressant

Certains des travaux les plus fascinants sur les insectes sociaux se sont attachés à comprendre ce qui pousse les reines, les ouvrières et d’autres à se comporter de manière aussi communautaire. Étonnamment, les voies métaboliques impliquant l’hormone insuline semblent être la clé. 

Il y a quelques années, Daniel Kronauer et d’autres chercheurs ont découvert que les larves de certaines espèces de fourmis, d’abeilles et de guêpes émettaient des signaux chimiques manipulateurs qui diminuaient la production d’insuline chez les ouvrières adultes à proximité, les obligeant à abandonner d’autres tâches pour s’occuper des larves. L’évolution a peut-être contribué à verrouiller ce mécanisme comportemental en position " active ", créant ainsi des fourmis ouvrières nourrices permanentes. Lorsque les chercheurs ont augmenté expérimentalement les niveaux d’insuline des ouvrières, ces dernières, habituellement non reproductrices ont commencé à pondre des œufs. Une différence dans la réponse à l’insuline semble également être ce qui permet aux reines des fourmis de vivre 10 fois plus longtemps que leurs filles ouvrières. (Un type de ténia qui infeste les fourmis exploite naturellement ce mécanisme de prolongation de la vie chez ses hôtes à ses propres fins.)

On pourrait penser que ce sont ces centaines de millions d’années d’évolution qui auraient définitivement engagé les fourmis dans un mode de vie communautaire, mais l’évolution n’est jamais un projet fermé, c’est pourquoi certaines espèces de fourmis parasites ont évolué pour tromper le système. Au lieu de produire toutes les ouvrières dont elles ont besoin, par exemple, certaines espèces de fourmis pillent les colonies d’autres espèces, volent leurs larves et les lient chimiquement pour servir leur nouvelle reine-marâtre. 

Un autre type de fourmi parasite se camoufle chimiquement pour se faufiler dans un nid et se faire passer pour une reine. Récemment, des chercheurs ont découvert que si les comportements qui rendent possible ce type de parasitisme sont élaborés, les changements génétiques qui les rendent possibles peuvent survenir à une vitesse surprenante. 

Les fourmis étonnent également par leur capacité à entrelacer leur corps en masse pour créer des ponts, des radeaux et d’autres structures permettant de combler les lacunes de leur environnement, sans aucun partage central d’informations ou de prise de décision. " Il n’y a pas de chef, pas de fourmi architecte qui dise : - Nous devons construire tel truc ici " a déclaré Simon Garnier, chercheur au New Jersey Institute of Technology, à Kevin Hartnett dans un article de Quanta de 2018. Les travaux de Garnier ont cependant montré que bon nombre de ces prouesses de construction découlent d’un algorithme comportemental étonnamment simple.

Auteur: Internet

Info: Quanta magazine, 2 juillet 2024, John Rennie

[ grégaires ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

Commentaires

No comments