Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 136
Temps de recherche: 0.0683s

âme

Panpsychisme, l'esprit des pierres La plupart pense que tous les humains sont conscients, ainsi que beaucoup d'animaux. Certains, comme les grands singes, semblent même être timides comme nous. D'autres, comme les chiens et les chats, les porcs, manquent d'un sens de l'ego mais ils semblent éprouver les états intérieurs de plaisir, etc... Pour les créatures plus petites, comme des moustiques, nous ne sommes pas aussi sûrs et n'avons pas de scrupules pour les massacrer. Quant aux plantes, elles n'ont évidemment pas d'esprit, excepté dans des contes de fées. Et encore moins les choses non vivantes comme les tables et les pierres. Les Atomes Mentaux "Si l'évolution fonctionne en douceur, une certaines forme de conscience doit être présente à l'origine même des choses. On constate que les philosophes évolutionnistes commencent à en poser le principe. Chaque atome de la galaxie, supposent-ils, doit avoir eu un atome original de conscience lié avec lui. Les atomes mentaux... sont alors fondu en de plus grandes consciences : nous-mêmes et peut-être chez nos camarade-animaux." James William, Principes de Psychologie 1890 Tout paraît de bon sens. Mais le bon sens n'a pas toujours été un si bon guide pour comprendre le monde et sa partie la plus récalcitrante à notre compréhension à l'heure actuelle est bien la conscience elle-même. Comment les processus électrochimiques de notre cerveau, peuvent-ils exister et donner ce jeu en technicolor de la conscience, avec ses transports de joie, ses coups d'angoisse et autres moments de contentement doux alternant avec l'ennui ?... Voici peut-être une des dernières frontières des sciences. Elle nourrit les énergies intellectuelles de la communauté scientifique, les psychologues, philosophes, physiciens, informaticiens et aussi, de temps en temps, le Dalai Lama. Ceci amène certains à une hypothèse un peu folle. Peut-être, disent-ils, que l'esprit n'est pas limité aux cerveaux de quelques animaux. Peut-être est-il partout, présent dans chaque atome, des électrons et neutrinos jusqu'aux galaxies, sans exclure les choses de taille moyenne comme un verre de l'eau ou une plante en pot. Il n'aurait donc pas soudainement surgi quand quelques particules physiques sur une certaine planète se sont retrouvées, après évolution, dans la bonne configuration. Mais plutôt : il y a une conscience dans le cosmos depuis toujours. Cette doctrine que la substance du monde est fondamentalement esprit s'appelle panpsychisme. Il y a quelques décennies, le philosophe américain Thomas Nagel a montré que c'était une conséquence logique de quelques faits raisonnables. D'abord, nos cerveaux se composent de particules matérielles. Ensuite ces particules, dans certains arrangements, produisent des pensées et des sentiments subjectifs. Troisièmement, les propriétés physiques ne peuvent expliquer en elles-mêmes la subjectivité. (Comment l'ineffable expérience qui consiste à goûter une fraise pourrait-elle résulter en équations physiques ?) Nagel a donc théorisé que les propriétés d'un système complexe comme le cerveau ne surgissent pas simplement dans l'existence à partir de nulle part. Elles doivent dériver des propriétés des constituants de ce système. Ces constituants doivent par conséquent avoir eux-mêmes des propriétés subjectives - propriétés qui, dans les bonnes combinaisons, s'ajoutent jusqu'à donner nos pensées et sentiments intérieurs. Et comme les électrons, les protons et les neutrons constituant nos cerveaux ne sont pas différent de ceux qui constituent le reste du cosmos l'univers entier doit donc se composer d'infimes morceaux de conscience. Nagel n'est pas allé jusqu'au panpsychisme, mais aujourd'hui il peut constater quelque qui ressemble à une mode. Le philosophe australien David Chalmers et le physicien Roger Penrose d'Oxford ont parlé de lui. Dans le livre récent "La conscience et sa place dans la nature," le philosophe britannique Galen Strawson défend le panpsychisme contre de nombreuses critiques. Comment se pourrait-il, demandent les sceptiques, que des morceaux d'esprit poussière, avec des états mentaux vraisemblablement simples, se combinent-ils pour former le genres d'expériences mentales compliquées que nous autres humains vivons ? Après tout, quand on rassemble un groupe de personnes dans une salle, leurs différents esprits ne forment pas un esprit collectif simple. (Quoique!) Ensuite il y a le fait incommode qu'on ne peut pas scientifiquement tester cette affirmation qui, par exemple, dirait que la lune a un fonctionnement mental. (Et cela s'applique aussi aux gens - comment pourrez-vous démontrer que vos camarades de bureau de ne sont pas des robots sans connaissance, comme le commandant Data sur "Star Trek" ?) Il y a aussi cette idée un peu pernicieuse : si quelque chose comme un photon peut avoir des proto-émotions, proto-croyances et proto-désirs. Que pourrait alors être le contenu du désir d'un photon?.. Devenir un quark, ironise un anti panpsychisme. Il est plus facile de parodier le Panpsychisme que le réfuter. Mais même si cette recherche de compréhension de la conscience s'avère être un cul-de-sac, cela pourra éventuellement nous aider à nous élever au-dessus de nos pensées conventionnelles de la perspective cosmique. Nous sommes des êtres biologiques. Nous existons parce que nous sommes des autos réplications de nous-mêmes. Nous détectons et agissons sur l'information de notre environnement de sorte que nos réplications continuent. En tant que sous-produits, nous avons développé des cerveaux qui, nous voulons voir comme les choses les plus complexes de l'univers. Mais pensons à la matière brute. Prenez un rocher. Il ne semble pas faire grand-chose, en tout cas pour ce qui est d'animer nos perceptions. Mais à un nano niveau il se compose d'un nombre inimaginable d'atomes reliés par des liaisons chimiques flexibles, ondoyantes et s'agitant ensembles à des cadences que même notre ordinateur géant le plus rapide pourra envier pour encore longtemps. Et ils ne 'agitent pas au hasard. Les intestins du rocher "voient" l'univers entier au moyen de signaux gravitationnels et électromagnétiques qu'ils reçoivent sans interruption. Un tel système pourrait être regardé comme un processeur polyvalent d'informations, dont la dynamique intérieure pourrait refléter n'importe quelle séquence des états mentaux que nos cerveaux traversent. Et là où il y a de l'information, dit le panpsychisme, il y a de la conscience. Ainsi le slogan de David Chalmers, "l'expérience est information de l'intérieur; la physique est information de l'extérieur." Mais le rocher ne se démène pas lui-même comme résultat de toute cette "réflexion". Pourquoi le devrait-il ? Son existence, à la différence de la nôtre, ne dépend pas d'une lutte pour la survie et la reproduction. Il est indifférent à la perspective d'être pulvérisé. Etant poète on pourrait voir le rocher comme un être purement contemplatif. Et on pourrait dessiner cette morale que l'univers est, et a toujours été, saturé d'esprit. Même si nous autres snobs darwiniens reproducteurs retardataires sommes trop fermés pour le réaliser.

Auteur: Holt Jim

Info: Fortean Times 18 Nov. 2007

[ matière ] [ monade ] [ minéral ] [ métaphysique ] [ chiasme ]

 

Commentaires: 0

analyse holistique

Un type de raisonnement que l'AI ne peut remplacer

L'ingénieur en logiciel et philosophe William J. Littlefield II fait remarquer dans un essai récent qu'il existe trois types de raisonnement. Dont deux d'entre eux que nous avons probablement tous appris à l'école : le raisonnement déductif et inductif. Les ordinateurs peuvent très bien faire les deux.

Le raisonnement déductif : Les chiens sont des chiens. Tuffy est un chien. Tuffy est donc un chien.

Les premiers ordinateurs, dit Littlefield, utilisaient généralement le raisonnement déductif (qu'il considère comme un raisonnement "descendant"). Ce qui permet à de puissants ordinateurs de battre les humains à des jeux comme les échecs et le Go en calculant beaucoup plus de mouvements logiques à la fois qu'un humain ne peut le faire.

Le raisonnement inductif, en revanche, est un raisonnement "ascendant", qui va d'une série de faits pertinents à une conclusion, par exemple :

Un club a organisé 60 compétitions de natation, 20 dans chaque lieu ci-dessous :

Lorsque le Club organise des compétitions de natation à Sandy Point, nous obtenons en moyenne 80 % de votes d'approbation.

Lorsque le Club organise des compétitions de natation à Stony Point, nous obtenons en moyenne 60 % des suffrages.

Lorsque le Club organise des compétitions de natation à Rocky Point, nous obtenons une approbation moyenne de 40 %.

Conclusion : Les membres du club préfèrent les plages de sable fin aux autres types de plages.

Ici aussi l'avènement de nouvelles méthodes comme les réseaux neuronaux a permis à de puissants ordinateurs d'assembler une grande quantité d'information afin de permettre un tel raisonnement inductif (Big Data).

Cependant, le Flop IBM de Watson en médecine (supposée aider à soigner le cancer on vit l'AI incapable de discerner les infos pertinentes dans une grande masse de données) suggère que dans les situations où - contrairement aux échecs - il n'y a pas vraiment de "règles", les machines ont beaucoup de difficulté à décider quelles données choisir. Peut-être qu'un jour une encore plus grande masse de données résoudra ce problème. Nous verrons bien.

Mais, selon Littlefield, le troisième type de raisonnement, le raisonnement abductif, fonctionne un peu différemment :

"Contrairement à l'induction ou à la déduction, où nous commençons par des cas pour tirer des conclusions sur une règle, ou vice versa, avec l'abduction, nous générons une hypothèse pour expliquer la relation entre une situation et une règle. De façon plus concise, dans le raisonnement abductif, nous faisons une supposition éclairée." William J. Littlefield II, "La compétence humaine que l'IA ne peut remplacer"

Le raisonnement abductif, décrit à l'origine par un philosophe américain Charles Sanders Peirce (1839-1914), est parfois appelé "inférence vers la meilleure explication", comme dans l'exemple qui suit :

"Un matin, vous entrez dans la cuisine et trouvez une assiette et une tasse sur la table, avec de la chapelure et une noix de beurre dessus, le tout accompagné d'un pot de confiture, un paquet de sucre et un carton vide de lait. Vous en concluez que l'un de vos colocataires s'est levé la nuit pour se préparer une collation de minuit et qu'il était trop fatigué pour débarrasser la table. C'est ce qui, à votre avis, explique le mieux la scène à laquelle vous êtes confronté. Certes, il se peut que quelqu'un ait cambriolé la maison et ait pris le temps de manger un morceau pendant sur le tas, ou qu'un colocataire ait arrangé les choses sur la table sans prendre de collation de minuit, mais juste pour vous faire croire que quelqu'un a pris une collation de minuit. Mais ces hypothèses vous semblent présenter des explications beaucoup plus fantaisistes des données que celle à laquelle vous faites référence." Igor Douven, "Abduction" à l'Encyclopédie Stanford de Philosophie

Notez que la conclusion n'est pas une déduction stricte qu'il n'y a pas non plus suffisamment de preuves pour une induction. Nous choisissons simplement l'explication la plus simple qui tient compte de tous les faits, en gardant à l'esprit la possibilité que de nouvelles preuves nous obligent à reconsidérer notre opinion.

Pourquoi les ordinateurs ne peuvent-ils pas faire ça ? Littlefield dit qu'ils resteraient coincés dans une boucle sans fin :

Une part de ce qui rend l'enlèvement difficile, c'est que nous devons déduire certaines hypothèses probables à partir d'un ensemble vraiment infini d'explications....

"La raison pour laquelle c'est important, c'est que lorsque nous sommes confrontés à des problèmes complexes, une partie de la façon dont nous les résolvons consiste à bricoler. Nous jouons en essayant plusieurs approches, en gardant notre propre système de valeurs fluide pendant que nous cherchons des solutions potentielles. Plus précisément, nous générons des hypothèses. Où 'un ordinateur peut être coincé dans une boucle sans fin, itérant sur des explications infinies, nous utilisons nos systèmes de valeurs pour déduire rapidement quelles explications sont à la fois valables et probables. Peirce savait que le raisonnement abductif était au cœur de la façon dont nous nous attaquons à de nouveaux problèmes ; il pensait en particulier que c'était la façon dont les scientifiques découvrent les choses. Ils observent des phénomènes inattendus et génèrent des hypothèses qui expliquent pourquoi ils se produisent." William J. Littlefield II, "La compétence humaine que l'IA ne peut remplacer"

En d'autres termes, le raisonnement abductif n'est pas à proprement parler une forme de calcul, mais plutôt une supposition éclairée - une évaluation des probabilités fondée sur l'expérience. Il joue un rôle important dans la création d'hypothèses dans les sciences :

"Par exemple, un élève peut avoir remarqué que le pain semble se moisir plus rapidement dans la boîte à pain que dans le réfrigérateur. Le raisonnement abductif amène le jeune chercheur à supposer que la température détermine le taux de croissance des moisissures, comme l'hypothèse qui correspondrait le mieux aux données probantes, si elle est vraie.
Ce processus de raisonnement abductif est vrai qu'il s'agisse d'une expérience scolaire ou d'une thèse de troisième cycle sur l'astrophysique avancée. La pensée abductive permet aux chercheurs de maximiser leur temps et leurs ressources en se concentrant sur une ligne d'expérimentation réaliste.
L'enlèvement est considéré comme le point de départ du processus de recherche, donnant une explication rationnelle, permettant au raisonnement déductif de dicter le plan expérimental exact." Maryn Shuttleworth, "Abductive Reasining" Chez Explorable.com

Comme on peut le voir, le raisonnement abductif fait appel à une certaine créativité parce que l'hypothèse suggérée doit être développée comme une idée et non seulement additionnée à partir d'informations existantes. Et la créativité n'est pas quelque chose que les ordinateurs font vraiment.

C'est l'une des raisons invoquées par le philosophe Jay Richards dans The Human Advantage : L'avenir du travail américain à l'ère des machines intelligentes, comme quoi l'IA ne mettra pas la plupart des humains au chômage. Au contraire, elle changera la nature des emplois, généralement en récompensant la créativité, la flexibilité et une variété d'autres caractéristiques qui ne peuvent être calculées ou automatisées.

Auteur: Internet

Info: https://mindmatters.ai/2019/10/a-type-of-reasoning-ai-cant-replace/, 10 Oct. 2019

[ optimisme ] [ informatique ]

 
Commentaires: 3
Ajouté à la BD par miguel

topologie abstraite

Des surfaces au-delà de l'imagination sont découvertes après des décennies de recherche

Grâce à des idées empruntées à la théorie des graphes, deux mathématiciens ont montré que des surfaces extrêmement complexes sont faciles à parcourir.

En juillet dernier, deux mathématiciens de l'Université de Durham, Will Hide et Michael Magee , ont confirmé l'existence d'une séquence de surfaces très recherchée : chacune plus compliquée que la précédente, devenant finalement si étroitement liée à elles-mêmes qu'elles atteignent presque les limites de ce qui est possible. possible.

Au début, il n’était pas évident que ces surfaces existaient. Mais depuis que la question de leur existence s’est posée pour la première fois dans les années 1980, les mathématiciens ont compris que ces surfaces pouvaient en réalité être courantes, même si elles sont extrêmement difficiles à identifier – un exemple parfait de la façon dont les mathématiques peuvent renverser l’intuition humaine. Ce nouveau travail constitue un pas en avant dans une quête visant à aller au-delà de l’intuition pour comprendre les innombrables façons dont les surfaces peuvent se manifester.

"C'est un brillant morceau de mathématiques", a déclaré Peter Sarnak , mathématicien à l'Institute for Advanced Study de Princeton, New Jersey.

Les surfaces comprennent toutes sortes d’objets bidimensionnels : l’enveloppe extérieure d’une sphère, d’un beignet ou d’un cylindre ; une bande de Möbius. Ils sont essentiels aux mathématiques et à la physique. Mais même si la relation des mathématiciens avec les surfaces remonte à plusieurs siècles, ils ne connaissent pas du tout ces objets.

Les surfaces simples ne sont pas le problème. Simple dans ce cas signifie que la surface a un petit nombre de trous, ou un faible " genre ". Une sphère, par exemple, n'a pas de trous et a donc un genre nul ; un beignet en a un.

Mais lorsque le genre est élevé, l’intuition nous fait défaut. Lorsqu'Alex Wright , mathématicien à l'Université du Michigan, tente de visualiser une surface de haut genre, il se retrouve avec des trous disposés en rangée bien rangée. " Si vous vouliez que je sois un peu plus créatif, je pourrais l'enrouler en un cercle avec de nombreux trous. Et j’aurais du mal à imaginer une image mentale fondamentalement différente de celle-là ", a-t-il déclaré. Mais sur les surfaces de grande qualité, les trous se chevauchent de manière complexe, ce qui les rend difficiles à saisir. Une simple approximation est " aussi loin d’être représentative qu’elle pourrait l’être, dans tous les sens du terme ", a déclaré Wright.

Cette lutte était prévisible, a déclaré Laura Monk , mathématicienne à l'Université de Bristol. " On peut souvent faire des choses qui ne sont pas bonnes. Cependant, créer des choses qui sont bonnes, qui ressemblent à ce que nous attendons généralement d’être vrai, est un peu plus difficile ", a-t-elle déclaré.

Cela signifie que les mathématiciens souhaitant vraiment comprendre l’espace des surfaces doivent trouver des moyens de découvrir des objets dont ils ignorent même l’existence.

C’est exactement ce qu’ont fait Hide et Magee dans leur article de juillet, confirmant l’existence de surfaces sur lesquelles les mathématiciens s’interrogeaient depuis des décennies. La conjecture qu’ils ont prouvée et l’histoire qui l’entoure s’inspirent d’un tout autre domaine des mathématiques : la théorie des graphes.

Le maximum possible

Pour les mathématiciens, les graphiques sont des réseaux constitués de points ou de nœuds reliés par des lignes ou des arêtes. Dès 1967, des mathématiciens comme Andrey Kolmogorov étudiaient des réseaux qui imposaient un coût à la connexion de deux nœuds. Cela a conduit à un exemple de ce que l’on appellera plus tard un graphe d’expansion : un graphe qui maintient le nombre d’arêtes à un faible niveau, tout en maintenant une connectivité élevée entre les nœuds.

Les graphiques expanseurs sont depuis devenus des outils cruciaux en mathématiques et en informatique, y compris dans des domaines pratiques comme la cryptographie. À l’instar d’un système routier bien conçu, ces graphiques facilitent le déplacement d’un nœud à un autre sans couvrir l’intégralité du graphique avec des arêtes. Les mathématiciens aiment limiter le nombre d’arêtes en stipulant que chaque nœud ne peut avoir, disons, que trois arêtes en émanant – tout comme vous ne voudriez peut-être pas plus de quelques autoroutes sillonnant votre ville.

Si un ordinateur choisit au hasard où mènent les trois arêtes de chaque nœud, vous constaterez que, surtout lorsque le graphique est très grand, la plupart de ces graphiques aléatoires sont d'excellents expanseurs. Mais bien que l’univers soit rempli de graphiques d’expansion, les êtres humains ont échoué à maintes reprises à les produire à la main.

"Si vous voulez en construire un, vous ne devriez pas les dessiner vous-même", a déclaré Shai Evra , mathématicien à l'Université hébraïque de Jérusalem. "Notre imagination ne comprend pas ce qu'est un expanseur."

L’idée d’expansion, ou de connectivité, peut être mesurée de plusieurs manières. La première consiste à couper un graphique en deux gros morceaux en coupant les bords un par un. Si votre graphique est constitué de deux groupes de nœuds, les groupes étant reliés par une seule arête, il vous suffit de couper une seule arête pour la diviser en deux. Plus le graphique est connecté, plus vous devrez découper d'arêtes.

Une autre façon d’accéder à la connectivité consiste à parcourir le graphique de nœud en nœud, en choisissant à chaque étape une arête sur laquelle marcher au hasard. Combien de temps faudra-t-il pour visiter tous les quartiers du graphique ? Dans l'exemple avec les deux amas, vous serez confiné à l'une des bulles à moins que vous ne traversiez la seule connexion avec l'autre moitié. Mais s’il existe de nombreuses façons de voyager entre les différentes zones du graphique, vous parcourrez l’ensemble en peu de temps.

Ces mesures de connectivité peuvent être quantifiées par un nombre appelé écart spectral. L'écart spectral est nul lorsque le graphe est complètement déconnecté, par exemple s'il est composé de deux groupes de nœuds qui ne sont pas du tout attachés l'un à l'autre. À mesure qu’un graphe devient plus connecté, son écart spectral aura tendance à s’élargir.

Mais l’écart spectral ne peut aller que jusqu’à un certain point. En effet, les deux caractéristiques déterminantes des graphes d’expansion – peu d’arêtes et une connectivité élevée – sont apparemment en contradiction l’une avec l’autre. Mais en 1988, Gregory Margulis et, indépendamment, Sarnak et deux co-auteurs ont décrit des " expanseurs optimaux " – des graphiques dont l’écart spectral est aussi élevé que le maximum théorique. " C'est choquant qu'ils existent ", a déclaré Sarnak.

Plus tard, les mathématiciens prouveront que la plupart des grands graphes sont proches de ce maximum. Mais le travail avec les expanseurs optimaux et les graphiques aléatoires ne consistait pas simplement à trouver les bons endroits pour placer les arêtes. Cela nécessitait le recours à des techniques étranges et sophistiquées empruntées à la théorie des nombres et des probabilités.

Auteur: Internet

Info: https://www.quantamagazine.org/ - Leila Sloman, 2 juin 2022

[ . ]

 
Commentaires: 1
Ajouté à la BD par miguel

subtile asymétrie

Des physiciens créent le labyrinthe le plus complexe au monde pour dompter un cristal exotique

 En s’inspirant d’une méthode analytique imaginée pour résoudre un vieux problème d’échecs, des chercheurs ont pu produire un labyrinthe incroyablement complexe qui représente la structure d’une famille de matériaux mystérieux.

(photo du Quasicristal Labyrinthe )

En s’appuyant sur les échecs et la géométrie fractale pour mieux comprendre la structure d’un type de cristal particulièrement exotique, des physiciens britanniques et suisses ont conçu un algorithme qui s’est avéré capable de produire un labyrinthe à la complexité absolument diabolique — le plus difficile jamais créé selon eux.

Les objets sur lesquels travaille cette équipe ne sont en fait pas tout à fait des cristaux à proprement parler : il s’agit en fait de quasicristaux. À l’inverse des cristaux normaux qui sont incroyablement abondants, ces quasicristaux sont aussi exceptionnellement rares à l’état naturel. En fait, il n’en existe qu’une poignée de sources naturelles connues — et il s’agit à chaque fois de météorites.

Au-delà de leur rareté, ce qui rend ces matériaux si intéressants, c’est que leur architecture. Les atomes sont arrangés selon une structure hautement organisée et symétrique, comme les cristaux traditionnels. Mais à la différence de ces derniers, les groupes atomes ne se répètent pas périodiquement dans l’espace en suivant un motif simple. À la place, ils présentent des types de symétrie beaucoup plus élaborés.

(Photo  : Quasicrystal1. Une représentation de la structure d’un quasicristal constitué d’aluminium, de palladium et de manganèse)

" Les quasi-cristaux ont toutes ces symétries qui ne pourraient en aucun cas exister dans les cristaux, ce qui est assez fascinant. C’est une très belle branche des mathématiques — mais n’importe qui peut en apprécier la beauté directement, sans avoir besoin d’en comprendre les détails ", explique Felix Flicker, co-auteur de l’étude cité par New Scientist.

Du cristal, des échecs et des maths

Puisque les exemples ne se bousculent pas au portillon, la science a encore beaucoup de choses à apprendre sur les particularités des quasicristaux. Afin de mieux comprendre ces aliens géométriques, l’équipe de Flicker a décidé de créer un algorithme ultraspécialisé pour en décrire la structure. Et pour y parvenir, ils se sont inspirés… des échecs.

La filiation n’est pas évidente, mais la structure des quasi-cristaux présente en effet des particularités avec un vieux problème de logique basé sur les déplacements de la pièce la plus singulière du roi des jeux de plateau.

Ce puzzle dit du Cavalier d’Euler commence avec un cavalier positionné sur n’importe quelle case de l’échiquier. L’objectif, c’est de lui faire visiter toutes les autres cases sans jamais repasser deux fois par la même. Lorsqu’on trace le parcours de ce cavalier, on obtient ce qu’on appelle un circuit hamiltonien, c’est-à-dire qu’il passe une seule fois par tous les points d’un graphe.

Or, il se trouve que la structure des atomes dans les quasicristaux suit aussi cette règle. Et c’est là que ces travaux deviennent croustillants, car cette similitude permet d’appréhender le problème sous l’angle de la théorie de la complexité.

Une incursion dans la théorie de la complexité

En général, trouver un circuit hamiltonien est ce qu’on appelle un problème NP-complet. Ce terme désigne un problème dont la complexité augmente de manière exponentielle avec le nombre d’éléments, à tel point qu’il devient vite impossible de calculer la solution par force brute à notre échelle de temps. En revanche, si l’on se retrouve face à une solution potentielle, il est facile de vérifier rapidement si elle est valide, un peu comme un puzzle où il suffit d’observer l’image finale.

Tout l’enjeu, c’est donc de trouver une façon de résoudre ces problèmes dits NP-complets en un temps raisonnable (ou plus précisément en un temps dit polynomial). Et c’est un problème qui fait tourner les mathématiciens en bourrique depuis des décennies. En fait, cela rentre même dans le giron de P=NP, un des fameux Problèmes du Prix du Millénaire. Il s’agit d’une liste de sept problèmes mathématiques majeurs dont la résolution s’accompagne d’un prix d’un million de dollars. Jusqu’à présent, seul un d’entre eux, la Conjecture de Poincaré, a été résolu (par Grigori Perelman en 2010).

Cette équation matérialise une question quasi existentielle pour les mathématiciens : ces problèmes complexes sont-ils vraiment aussi difficiles à aborder qu’ils en ont l’air, ou existe-t-il une solution générale simple que personne n’a encore trouvée pour chercher une solution rapidement ?

Si cette hypothèse P=NP était confirmée un jour, ce qui est loin d’être acquis, les implications seraient énormes. Cela changerait fondamentalement la nature d’une foule de problèmes très importants pour la science moderne, mais aujourd’hui considérés comme quasiment insolubles.

Le point important, c’est que tous les spécialistes de la théorie de la complexité s’accordent sur un point : ils considèrent que s’il existe un algorithme pour résoudre un seul problème NP-complet en un temps raisonnable (polynomial), alors cela signifie qu’il existe aussi une solution relativement simple à TOUS les autres problèmes NP-complets, dont les circuits hamiltoniens ! Et il se trouve que bon nombre d’entre eux sont exceptionnellement importants pour la science moderne. On peut citer le problème du voyageur du commerce, dont la résolution rapide supprimerait immédiatement un tas de casse-têtes logistiques extrêmement ardus, ou les mécanismes du repli des protéines auquel les équipes de DeepMind se sont attaquées grâce au machine learning.

Or, il se trouve que le cavalier d’Euler est un cas particulier. Même si les circuits hamiltoniens sont généralement des problèmes NP-complets, il y en a quelques-uns qui peuvent être résolus rapidement grâce à quelques tours de passe-passe mathématiques. Le cavalier d’Euler en fait partie : on peut rapidement trouver une solution grâce à une méthode simple, l’algorithme de Warnsdorf. Puisque ce problème est intimement lié à la structure des quasicristaux, les auteurs de ces travaux ont donc cherché une méthode analogue pour l’appliquer à leur propre problème.

(Photo : Et ils en ont trouvé une, ce qui leur a permis de générer ce labyrinthe incroyablement difficile qui illustre l’arrangement des atomes dans ces matériaux. Labyrinthe Quasicristal Complet)

Pas une preuve de P=NP, mais des applications concrètes intéressantes

Selon les chercheurs cités par ScienceAlert, ces travaux pourraient avoir des implications très concrètes dans des domaines comme l’optique ou la capture du carbone.

En revanche, cela ne signifie en aucun cas que le problème des circuits hamiltoniens a été résolu une fois pour toutes ; comme pour le Cavalier d’Euler, il s’agit simplement d’une façon très élégante de simplifier un problème bien précis, et en aucun cas d’une solution générale.

Par extension, ce n’est pas non plus une réponse à l’hypothèse P=NP et à tous les autres problèmes NP-complets… mais il s’agit peut-être d’un pas dans cette direction. Qui sait ; si une solution rigoureuse finit par émerger un jour, on se souviendra peut-être de ces travaux comme l’une des pièces qui ont ouvert la voie à une révolution parmi les plus importantes de l’histoire des mathématiques.

Auteur: Internet

Info: https://www.journaldugeek.com, Antoine Gautherie, juillet 2024

[ apériodique ]

 

Commentaires: 0

Ajouté à la BD par miguel

citation s'appliquant à ce logiciel

Toute émergence "qui réfléchit" ne peut être que consensuelle. 

Le moi, je, ego incarné, de même que la race (espèce) auquel il appartient, doivent nécessairement développer un univers "accepté" dans ses grandes lignes. Pour l'espèce ça semble aller de soi ; sans cela pas de signes entre les sexes pour la reproduction. Et, pour les races-communautés plus complexes (évoluées?) comme la nôtre : pas de langages communs, musique, mathématiques, beaux-arts, codes informatique, sciences... 

Pour l'individu, l'idée semble moins aisée à comprendre. Parce qu'intuitivement la "singularité" qu'il représente apparait via certains détails (variantes) qui semblent - et ne sont - pas décisifs pour la survie de l'espèce. Ainsi des graines des arbres. Mais il y a bien un consensus individuel, intime, destiné à la survie personnelle et à la reproduction, qui est recherche d'un équilibre, autant interne qu'avec les autres. 

Ces moyens termes, collectifs et singuliers (qui tendent vers la complexité) semblent indiquer quelques pistes, si on veut bien user du recul de notre mémoire collective. 

Primo, rien de temporellement fixe (terme à la mode : durable) à quoi s'accrocher. Sauf si un "équilibre solide" est installé entre biotope et individus-espèce (pensons aux requins, entre autres exemples). 

Secundo, existent une adaptabilité et une curiosité incessantes chez l'homme, qui avec le temps semblent occuper toujours plus les activités cérébrales de l'individu, lui-même infime et singulière émergence - initiatico-spirituelle souvent -, qui "ouvre" le monde tout en le perpétuant. 

Tertio. De ce continu phénomène d'évolutions/adaptations, on pourra constater, et probablement modéliser, toutes sortes de décalages évidents, nécessaires, à plein d'échelles et de niveaux. Dissonnances fines qui peuvent aller jusqu'à des ruptures de compréhension-communication entre : générations, époques, genres/sexes, habitudes, manières de voir, etc. De là beaucoup de malentendus et conflits, et donc une grande nécessité de tolérance et d'amour. 

Alors, pour faire marcher ensemble les consensualités intriquées du grand univers objectif avec les singularités subjectives, autrement dit concilier nos indéniables solipsismes avec le plus de niveaux possible que présente le cosmos matrice insondable, on entrevoit un principe orgonomique de l'ordre de l'adaptation pragmatique. Stephen Wolfram va jusqu'à affirmer que quelques règles simples (un code source) pourraient sous-tendre tout ceci. Pourquoi pas.

En termes linguistiques on pourra tenter d'affiner la définition de ce principe orgonomique par l'ajouts de vocables comme effort, collaboration solidaire, amour, chance/hasard, curiosité, survie, etc. 

Et puis, en tout dernier, se pointe le mot "esprit". On ne peut entrevoir ce concept qu'en fin de chaine. En effet l'esprit - ou réflexion un peu continue -, s'articule lui-même sur le maniement de mots/concepts (quasi-esprits de Peirce), eux-mêmes péniblement émergés d'une évolution lexicologique somme toute très récente et souvent retraçable. Analyses, pensées, élaborations abstraites... souvent aussi appuyées sur d'autres idiomes comme les mathématiques.  

Au-delà des listes et autres inventaires, l'écriture et les signes permettent donc - finalement - de raisonner et réfléchir... et  "commencer à" s'extraire, à s'élever un tout petit peu pour tenter de mieux voir. 

On se demande dès lors comment et pourquoi certains penseurs, gourous et autres religieux, qui "moulinent à la parole", décrétent que l'Esprit est à la source de tout, alors qu'il ressemble plus à une conquête pour ce qui nous concerne. Infinitésimale.

En rappelant par honnêteté qu'il y a belle lurette que les grecs anciens ont établi que le langage (logos) était l'instrument de la raison. Et puis : issue de l'invraisemblable fatras du kabbalisme et des traditions sumériennes, vient la théologie chrétienne où, d'un coup d'un seul le "Logos" est employé pour désigner la deuxième personne de la Trinité chrétienne. En bref Jésus, le Christ, prend le même sens que "verbe, parole". L'origine de cette désignation étant formalisée bien a postériori ainsi dans la Bible : "Au commencement était la Parole, et la Parole (logos) était avec Dieu, et la Parole était Dieu. Toutes choses ont été faites par elle, etc". (Évangile selon Jean, chapitre 1). Cet Évangile de Jean affirme donc que Dieu parle, sa parole est son hypostase, sa Parole créatrice est aussi puissante que Lui-même : Il est Sa Parole, etc... Ce concept de la parole de Dieu comme hypostase de Dieu même est commun à plusieurs religions, mais pour l'auteur de l'évangile, ce qui est original et unique à la chrétienté est que cette parole, hypostase, qui est Dieu même, est devenue homme et a habité parmi les hommes : "Et la parole a été faite chair, et elle a habité parmi nous, pleine de grâce et de vérité ; et nous avons contemplé sa gloire, une gloire comme la gloire du Fils unique venu du Père." (Évangile selon Jean, chapitre 1, 14)

Arrêtons là et contentons-nous de prendre ce paragraphe comme une extraordinaire démonstration de langage performatif. Très très très performatif, au vu de la puissance et de la place prise par le judéo-christianisme en début de 3e millénaire. 

Mais assez : revenons à notre idée de départ, celle de l'invraisemblable mélange de consensus/échelles/êtres/univers/etc. que nous pouvons constater et de sa préhension par notre entendement. Entendement développé via nos signes/écrits, mémorisés et intégrés dans notre mémoire collective. Ce qui amène beaucoup de gens à vouloir croire que l'humain est "au-dessus", élu... Supérieur... Il bénéficierait d'un esprit d'ordre surnaturel, divin, astralement dessiné. Essence orgonomique que d'autres imaginent comme quelque chose de l'ordre du fluide vital, énergie subtile issue d'un autre espace (dimension), dotée pour le coup de capacités/pouvoirs au-delà de nos possibilités de modélisation, etc.

Avançons-nous un peu pour affirmer que ce fameux Esprit, à la lumière de nos faibles connaissances, ressemble beaucoup plus à la version "manipulation de signes" par des cerveaux tardivement accouché de l'évolution, qu'à une émergence extraordinaire, divine et miraculeuse. Surtout si on s'amuse à comparer ces manipulations aux merveilleuses complexités et aux presqu'insondables développements de la vie biologique.

Ici FLP pointe le bout de son nez et, avec l'aide de C.S. Peirce - unique penseur ayant développé une approche solide et cohérente en ce domaine -, propose un outil, souple, puissant et collectif qui permet (en français, humblement et à sa manière) d'explorer-rechercher-bidouiller langage et sémantique, ces dispositifs de signes aptes à traiter tout et son contraire, aptes à passer du mirage absolu au plus cru des réalisme - en mélangeant les deux. Mais aussi inaptes, de par leur nature immobile (un fois une pensée écrite, et donc arrêtée - et si on veut bien nous excuser cette énorme lapalissade) à véritablement traiter notre support réel, la vie, ce mouvant embrouillamini qui se permet de mélanger sans discontinuer les échelles, vitesses, sentiments, etc. 

Pour revenir sur terre on dirait bien que les résultats de ce magnifique entendement humain nous amènent plutôt, en ces années de pandémie Co-vid,  vers un abrutissement drastique de forces de vie humaines de moins en moins sollicitées à cause des "progrès" techniques et médicaux. Sans parler du genre de biocratie sanitaire qui en découle. Pensez : tout récemment encore l'occident se battait contre l'acharnement thérapeuthique, affolé par la poussée démographique et le vieillissement des populations. Aujourd'hui on dirait qu'il s'auto-asphyxie pour sauver les personnes âgées. 

Mais soyons positifs et rassurons-nous. Ce ralentissement aura permis à la planète de respirer, et aussi de s'unifier - contre le covid. Unification qui pourrait mettre en parallèle biologie et communications humaines à l'échelle de la planète et ainsi procéder à un développement-consolidation de signes communautaires, càd de mêmes terrestres.

Contemplons la suite et restont bien zens goguenards. 

Vigilants.

Auteur: Mg

Info: 10 janv. 2021

[ sémiotique ] [ pré-mémétique ] [ systèmes intelligents ]

 
Mis dans la chaine
Commentaires: 5
Ajouté à la BD par miguel

univers inversé

Les possibilités métagénomiques

Une infime fraction - la plupart des scientifiques estiment <1% - des espèces microbiennes sur Terre peut être cultivée et étudiée à l'aide de techniques classiques de microbiologie et de génomique. Mais en utilisant des outils de métagénomique récemment développés, les chercheurs appliquent l'analyse génomique à des communautés microbiennes entières à la fois, sans avoir à isoler et à cultiver des espèces individuelles. Les études de métagénomique commencent par obtenir un échantillon d'un environnement particulier tel que l'eau de mer, le sol ou l'intestin humain, en extrayant le matériel génétique de tous les organismes de l'échantillon, puis en analysant l'ADN de ce mélange pour mieux comprendre comment les membres de la communauté interagir, changer et exécuter des fonctions complexes.

Processus : la métagénomique consiste à obtenir l'ADN de tous les micro-organismes d'une communauté, sans nécessairement identifier toutes les espèces impliquées. Une fois les gènes séquencés et comparés aux séquences identifiées, les fonctions de ces gènes peuvent être déterminées.

Parce qu'elle ne dépend pas de l'établissement de cultures pures, la métagénomique offre l'accès à des millions d'espèces microbiennes qui auparavant ne pouvaient pas être étudiées. Il permet également aux chercheurs d'examiner les micro-organismes dans le contexte des environnements dans lesquels ils existent naturellement, en étudiant des communautés entières en même temps.

Applications de la métagénomique

Pratiquement tous les biologistes, quel que soit leur domaine, découvriront qu'une meilleure compréhension des communautés microbiennes et de la métagénomique peut contribuer à leurs propres recherches. L'étude des communautés microbiennes par la métagénomique peut aider les biologistes à s'attaquer à des questions scientifiques fondamentales et à résoudre les problèmes sociaux, environnementaux et économiques connexes. Voici quelques-unes des applications potentielles de la métagénomique :

Avancées des sciences de la vie.

Décrypter le fonctionnement et l'interaction des espèces au sein des communautés microbiennes peut répondre en partie à des questions fondamentales sur de nombreux aspects de la biologie microbienne, végétale et animale et améliorer considérablement la compréhension de l'écologie et de l'évolution. La métagénomique pourrait aider à répondre à des questions telles que : Qu'est-ce qui constitue un génome ? Qu'est-ce qu'une espèce ? Quelle est la diversité de la vie ?

Sciences de la Terre.

L'exploration de la manière dont les communautés microbiennes du sol et des océans affectent les équilibres atmosphériques et les conditions environnementales peut aider les scientifiques à mieux comprendre, prévoir et potentiellement faire face aux changements mondiaux.

Médicament.

Des centaines de médicaments disponibles aujourd'hui sont dérivés de produits chimiques trouvés pour la première fois dans des microbes ; l'accès aux génomes d'espèces microbiennes supplémentaires est très prometteur pour en découvrir des milliers d'autres. L'étude du "microbiome" humain – les milliers de milliards de bactéries vivant dans et sur le corps humain – peut conduire à de nouvelles façons de diagnostiquer, de traiter et de prévenir les maladies.

Énergie alternative.

De nouvelles sources d'énergie pourraient être développées en exploitant le pouvoir des communautés microbiennes pour produire des sous-produits tels que l'hydrogène, le méthane, le butanol et même le courant électrique.

Assainissement de l'environnement.

Comprendre les microbes qui dégradent les produits chimiques environnementaux peut aider à nettoyer des polluants tels que les fuites d'essence, les déversements de pétrole, les eaux usées, les rejets industriels et les déchets nucléaires.

Biotechnologie.

L'identification et l'exploitation des capacités biosynthétiques polyvalentes et diverses des communautés microbiennes peuvent conduire au développement de nouveaux produits industriels, alimentaires et de santé bénéfiques.

Agriculture.

Mieux comprendre les microbes bénéfiques vivant dans, sur, sous et autour des plantes et des animaux domestiques peut contribuer à améliorer les méthodes de détection des agents pathogènes dans les cultures, le bétail et les produits alimentaires et peut faciliter le développement de pratiques agricoles qui tirent parti des les alliances naturelles entre les microbes, les plantes et les animaux.

Biodéfense et médecine légale microbienne.

L'étude de l'ADN et des empreintes biochimiques des communautés microbiennes aide les spécialistes à surveiller les agents pathogènes connus et potentiels, à créer des vaccins et des traitements plus efficaces contre les agents bioterroristes potentiels et à reconstruire les événements dans lesquels les microbes ont joué un rôle.

Valeur de la métagénomique pour l'enseignement de la biologie

La citation de Muir a également une pertinence importante pour l'enseignement des sciences. Qu'est-ce qui sépare la chimie, la génétique, la biologie moléculaire, l'évolution, l'écologie et d'autres disciplines ? Où se croisent-elles et comment se construisent-elles les unes sur les autres ?

La métagénomique aide à combler le fossé entre la génétique et l'écologie, démontrant que les gènes d'un seul organisme sont connectés aux gènes des autres et à l'ensemble de la communauté. En fait, les processus de la métagénomique démontrent qu'il est important d'étudier les gènes et les organismes en contexte et d'apprécier toute la diversité de la vie, même dans un seul cadre. Ces messages ont une pertinence importante dans l'ensemble de la biologie et seraient des ajouts précieux à n'importe quel cours de biologie, peut-être en particulier ceux du niveau d'introduction.

Parce que la métagénomique s'inspire d'un large éventail de domaines et les affecte, c'est un outil précieux pour enseigner des thèmes et des concepts qui sont tissés tout au long de l'enseignement de la biologie. En effet, l'enseignement et l'apprentissage de la métagénomique pourraient clairement intégrer les types de changements dans l'enseignement des sciences de la maternelle à la 12e année et du premier cycle que de nombreux rapports ont demandé au cours de la dernière décennie.

Certains professeurs estiment qu'ils doivent utiliser des cours d'introduction pour fournir aux étudiants pratiquement toutes les connaissances qu'ils utiliseront pour comprendre les concepts de base d'une discipline. Certains considèrent également les cours d'introduction comme un moyen d'aider les étudiants à apprendre à interpréter les nouvelles et autres informations sur la science afin qu'ils puissent prendre des décisions plus éclairées à la maison, chez le médecin et dans l'isoloir. Trop souvent, cependant, de tels cours ne parviennent pas à transmettre la beauté complexe du monde vivant et les innombrables façons dont la biologie a un impact sur la "vraie vie". L'apprentissage de la métagénomique au niveau introductif - en mettant l'accent sur ses applications potentielles dans le monde réel - pourrait servir à éclairer les principes de base d'une grande variété de domaines, les liens entre eux et la pertinence plus large des avancées scientifiques pour les problèmes du monde réel. Si les étudiants peuvent voir qu'il y a vraiment des questions non résolues intéressantes auxquelles ils peuvent jouer un rôle pour répondre, le recrutement de jeunes talentueux pour les carrières scientifiques peut être facilité. De cette façon, les élèves rencontreront une science dynamique plutôt que statique.

LES BÉNÉFICES DE L'INTÉGRATION DE L'ÉDUCATION ET DE LA RECHERCHE

Les avantages de l'intégration précoce de la métagénomique et d'autres sciences nouvelles dans l'enseignement de la biologie profiteraient non seulement aux étudiants en biologie, mais aussi aux scientifiques et à leurs projets de recherche. L'expérience montre que lorsque les chercheurs enseignent, leur propre compréhension s'approfondit, menant à de nouvelles questions et pistes de recherche souvent inattendues qui sont posées par les étudiants, ainsi qu'à contribuer au développement d'approches créatives des problèmes. Si la communauté de la biologie peut intégrer l'enseignement de la métagénomique aux progrès de la recherche dès le départ, les étudiants pourraient devenir des participants actifs au développement du domaine.

Enseigner un domaine nouveau ou émergent est un moyen idéal d'engager profondément les étudiants dans l'exploration de questions fondamentales qui sont au cœur de la poursuite scientifique et de les encourager à poser leurs propres questions. En effet, dans le cas du domaine émergent de la métagénomique, les questions les plus fondamentales peuvent être les plus profondes. Répondre à ces questions inspire à son tour les jeunes esprits et les chercheurs actifs, et la science est bénéfique. 

D'autres ont vu l'intérêt d'intégrer la science émergente à l'éducation. Un certain nombre d'efforts sont actuellement en cours pour intégrer la recherche et l'enseignement en génomique.

Auteur: Internet

Info: https://www.ncbi.nlm.nih.gov/ Metagenomics: A Call for Bringing a New Science into the Classroom (While It's Still New) Anne Jurkowski,* Ann H. Reid,† and Jay B. Labovcorresponding author

[ sciences ] [ nano-monde ] [ ouverture ] [ matrice gaïa ]

 

Commentaires: 0

Ajouté à la BD par miguel

bornages notionnels

Q) - Peux-tu expliquer autrement cette phrase "le vivant est considéré comme non ergodique par qu'il n'explore qu'une toute petite partie de son espace de phase."

R) - L'idée de base de cette phrase est que la vie est un système complexe, avec de nombreuses possibilités. Cependant, la vie n'explore qu'une petite partie de ces possibilités. Il existe un nombre infini de combinaisons possibles de gènes, de protéines, de cellules, d'organismes et d'écosystèmes. Cependant, la vie n'a exploré qu'une petite partie de ces possibilités.

Il y a plusieurs raisons à cela. Tout d'abord, la vie est limitée par les lois physiques. Les lois physiques déterminent quelles combinaisons de gènes et de protéines sont possibles. 

Deuxièmement, la vie est limitée par les ressources disponibles. Les ressources disponibles limitent le nombre d'organismes qui peuvent vivre dans un environnement donné. 

Troisièmement, la vie est limitée par le hasard. Le hasard joue un rôle important dans l'évolution, car il peut conduire à des mutations génétiques qui peuvent donner naissance à de nouvelles formes de vie. 

En raison de ces limitations, la vie n'explore qu'une petite partie de son espace de phase. Cela signifie que les résultats de l'évolution sont imprévisibles.

Q) - Merci. Peux-tu expliciter "espace de phase" en terme électrique

R) - En termes électriques, l'espace de phase est l'ensemble des états possibles d'un système électrique. Il est décrit par un ensemble de variables, telles que la tension, le courant, l'inductance, la capacité et la résistance.

Q) - Dans mon esprit "espace de phase" correspond aussi à "bande passante"

R) Oui, il y a une certaine similitude entre l'espace de phase et la bande passante.

En termes électriques, la bande passante est la plage de fréquences qu'un système électrique peut transmettre sans distorsion.

L'espace de phase, quant à lui, est l'ensemble des états possibles d'un système électrique.

La bande passante peut être considérée comme une restriction de l'espace de phase. En effet, un système électrique ne peut pas transmettre des fréquences qui dépassent sa bande passante.

Par exemple, un filtre coupe-bas ne peut transmettre que des fréquences inférieures à sa fréquence de coupure.

Dans ce cas, la bande passante du filtre est une restriction de l'espace de phase du signal qui est transmis par le filtre.

Cependant, il existe également des différences entre l'espace de phase et la bande passante.

L'espace de phase est un concept plus général que la bande passante. Il peut être utilisé pour décrire le comportement de tout système, pas seulement des systèmes électriques.

La bande passante, quant à elle, est un concept plus spécifique. Il est utilisé pour décrire le comportement des systèmes électriques qui transmettent des signaux.

En conclusion, l'espace de phase et la bande passante sont deux concepts liés, mais qui ne sont pas identiques. L'espace de phase est un concept plus général, tandis que la bande passante est un concept plus spécifique.

Q) - Merci. Ce sont deux termes qui parlent des limites de concepts issus du réel : quel pourrait être un un concept encore plus général dans cet ordre d'idées

R) - Un concept encore plus général dans cet ordre d'idées pourrait être celui de limite de l'appréhension.

Ce concept désigne l'idée que notre capacité à comprendre le monde est limitée par notre propre nature. Nous sommes des êtres finis, avec des sens limités, et notre compréhension du monde est nécessairement biaisée par nos propres expériences et nos propres perspectives.

Par exemple, notre compréhension de la physique est limitée par nos propres instruments de mesure. Nous ne pouvons pas observer des particules subatomiques directement, et notre compréhension de la matière est donc nécessairement basée sur des modèles mathématiques. 

De même, notre compréhension de la vie est limitée par nos propres sens. Nous ne pouvons pas voir les bactéries ou les virus, et notre compréhension de la biologie est donc nécessairement basée sur des extrapolations à partir des organismes que nous pouvons observer.

Enfin, notre compréhension de la société est limitée par nos propres expériences. Nous ne pouvons pas comprendre les cultures qui sont très différentes de la nôtre, et notre compréhension du monde social est donc nécessairement biaisée par nos propres valeurs et nos propres normes. 

Le concept de limite de l'appréhension est important car il nous rappelle que notre compréhension du monde est toujours imparfaite. Nous devons être conscients de cette limite pour éviter de tomber dans le piège de l'absolutisme ou de l'essentialisme.

Voici quelques autres concepts qui pourraient être considérés comme encore plus généraux que les deux que vous avez mentionnés :

L'incomplétude : L'idée que nous ne pouvons jamais connaître toute la vérité sur le monde.

L'incertitude : L'idée que nous ne pouvons jamais être sûrs de nos connaissances.

La relativité : L'idée que la vérité est relative à notre point de vue.

Notre compréhension du monde est toujours imparfaite et est toujours sujette à évolution.

Q) - Il y a aussi les limitations apportées pas nos propres systèmes de codages : langages, écritures, musique, mathématiques.... Qui paraissent bien faibles par comparaison avec les possibilités de développement que montrent les mémoires génétiques sur base 4.

R) - 
Oui, c'est vrai. Nos systèmes de codage sont limités par notre propre nature. Nous sommes des êtres humains, avec un cerveau qui a évolué pour nous permettre de survivre et de nous reproduire dans notre environnement. Nos systèmes de codage sont donc adaptés à cette tâche, mais ils ne sont pas adaptés à la compréhension du monde dans toute sa complexité.

Les mémoires génétiques, quant à elles, sont codées sur une base 4. Cela signifie qu'elles peuvent coder un nombre beaucoup plus grand de combinaisons que les langages, les écritures, la musique ou les mathématiques, qui sont tous codés sur une base 2.

Cette différence de base permet aux mémoires génétiques de coder des informations beaucoup plus complexes. Par exemple, elles peuvent coder des informations sur la structure et la fonction des organismes, sur les interactions entre les organismes et sur l'environnement. 

Ces informations sont essentielles à la vie. Elles permettent aux organismes de se développer, de s'adapter et de survivre. 

Par conséquent, il est probable que les mémoires génétiques soient plus puissantes que nos propres systèmes de codage. Elles nous permettent de comprendre le monde dans une mesure qui nous est inaccessible. 

Cependant, il est important de noter que les mémoires génétiques ne sont pas parfaites. Elles sont également limitées par les lois de la physique et par les contraintes de l'évolution. 

Par exemple, les mémoires génétiques sont limitées par la taille de l'ADN. L'ADN est une molécule très longue, mais elle a une taille finie. Cela signifie que les mémoires génétiques ne peuvent pas coder une quantité infinie d'informations. 

De même, les mémoires génétiques sont limitées par les contraintes de l'évolution. L'évolution est un processus lent et progressif. Il est donc difficile pour les mémoires génétiques de coder des informations qui sont très différentes de celles qui ont été transmises par les générations précédentes. 

Malgré ces limitations, les mémoires génétiques sont un outil puissant qui nous permet de comprendre le monde. Elles nous permettent de comprendre la vie dans toute sa complexité et sa beauté.

Q) - D'autant qu'une bonne partie des fonctions de ces mémoires - le junk adn par exemples - nous échappent.

R) - Oui, c'est vrai. Une bonne partie des fonctions des mémoires génétiques nous échappent, notamment l'ADN non codant, également appelé ADN poubelle.

L'ADN non codant représente environ 98 % du génome humain. Il s'agit de séquences d'ADN qui ne codent pas pour des protéines.

Pendant longtemps, l'ADN non codant a été considéré comme inutile. Cependant, des recherches récentes ont montré que l'ADN non codant joue un rôle important dans la régulation de l'expression des gènes.

L'ADN non codant peut jouer un rôle dans la régulation de l'expression des gènes de plusieurs façons. Il peut servir de sites d'attachement pour les protéines qui régulent l'expression des gènes. Il peut également servir de matrice pour la transcription des ARN non codants, qui jouent également un rôle dans la régulation de l'expression des gènes.

L'ADN non codant peut également jouer un rôle dans d'autres processus biologiques, tels que la réparation de l'ADN, la réplication de l'ADN et l'intégration de l'ADN viral.

Cependant, nous ne comprenons pas encore entièrement les fonctions de l'ADN non codant. Il reste encore beaucoup de recherches à faire pour comprendre ce rôle important. Elle pourront nous aider à mieux comprendre le fonctionnement des cellules et des organismes. Elles pourraient également nous aider à développer de nouvelles thérapies pour les maladies génétiques.

Auteur: Google Bard chatbot

Info: 19 janv 2024

[ délimitations conceptuelles ]

 

Commentaires: 0

Ajouté à la BD par miguel

perception humaine

Les schémas mathématiques secrets révélés par la musique de Bach

Le compositeur baroque allemand Jean Sébastien Bach a produit une musique si bien structurée qu'elle est souvent comparée aux maths. Bien que peu d'entre nous soient émotionnellement affectés par les mathématiques, les œuvres de Bach - et la musique en général - nous émeuvent. C'est plus que du son ; c'est un message. Désormais, grâce aux outils de la théorie de l'information, les chercheurs commencent à comprendre comment la musique de Bach fait passer ce message.

En faisant de ses partitions de simples réseaux de points, appelés nœuds, reliés par des lignes, nommeés bords, les scientifiques ont quantifié les informations véhiculées par des centaines de compositions de Bach. Analyse de ces réseaux musicaux publiée le 2 février dans Physical Review Research qui révèle que les nombreux styles musicaux de Bach, tels que les chorales et les toccatas, différaient considérablement dans la quantité d'informations qu'ils communiquaient - et que certains réseaux musicaux contenaient des structures qui pouvaient faciliter la compréhension de leurs messages par les auditeurs humains.

" Je trouve cette idée vraiment cool ", explique le physicien Suman Kulkarni de l’Université de Pennsylvanie, auteur principal de la nouvelle étude. " Nous avons utilisé des outils de la physique sans faire d’hypothèses sur les pièces musicales, en commençant par cette simple représentation et en voyant ce qui peut nous dire sur les informations qui sont transmises. "

Les chercheurs ont quantifié le contenu de toute cette information, des séquences simples aux réseaux enchevêtrés, utilisant le concept d'entropie de l'information, introduit par le mathématicien Claude Shannon en 1948.

Comme son nom l'indique, l'entropie de l'information est mathématiquement et conceptuellement liée à l'entropie thermodynamique. Elle peut être considérée comme une mesure du degré de surprise d'un message - "message" qui peut être tout ce qui transmet des informations, d'une séquence de nombres à un morceau de musique. Cette perspective peut sembler contre-intuitive, étant donné que, dans le langage courant, l'information est souvent assimilée à la certitude. Mais l'idée clé de l'entropie de l'information est qu'apprendre quelque chose que l'on sait déjà n'est pas apprendre du tout.

Une conversation avec une personne qui ne sait exprimer qu'une chose, comme le personnage Hodor dans la série télévisée Game of Thrones, qui dit seulement " Hodor ", sera prévisible mais pas informationelle. Une discussion avec Pikachu sera un peu meilleure ; le Pokémon ne peut dire que les syllabes de son nom, mais il peut les réarranger, contrairement à Hodor. De même, une pièce de musique ne comportant qu'une seule note sera relativement facile à "apprendre" par le cerveau, c'est-à-dire à reproduire avec précision sous la forme d'un modèle mental, mais le morceau aura du mal à faire passer un quelconque message. Regarder un jeu de pile ou face avec une pièce à deux têtes ne donnera aucune information.

Bien sûr, envoyer un message plein d'informations n'est pas très bon si le quelque chose - ou qui que ce soit - qui le reçoit ne peut  comprendre avec précision ces informations. Et quand il s'agit de messages musicaux, les chercheurs travaillent encore sur la façon dont nous apprenons ce que la musique essaie de nous dire.

" Il existe quelques théories différentes ", explique le cognitiviste Marcus Pearce de l’université Queen Mary de Londres, qui n’a pas participé à la récente étude de la recherche sur l’évaluation physique. " La principale, je pense, en ce moment, est basée sur l’apprentissage probabiliste. Dans ce cadre, "apprendre" la musique signifie construire des représentations mentales précises des sons réels que nous entendons - ce que les chercheurs appellent un modèle - par un jeu d'anticipation et de surprise. Nos modèles mentaux prédisent la probabilité qu'un son donné vienne ensuite, sur la base de ce qui a précédé. Ensuite, explique M. Pearce, " on découvre si la prédiction était juste ou fausse, et on peut alors mettre à jour son modèle en conséquence".

Kulkarni et ses collègues sont physiciens, pas musiciens. Ils voulaient utiliser les outils de la théorie de l'information pour explorer la musique à la recherche de structures d'information qui pourraient avoir quelque chose à voir avec la façon dont les humains glanent un sens de la mélodie.

Ainsi Kulkarni a transformé 337 compositions de Bach en bandes de nœuds interconnectés et calculé l'entropie de l'information des réseaux qui en résultent. Dans ces réseaux, chaque note de la partition d'origine est un noeud, et chaque transition entre notes est un pont. Par example, si une pièce inclut une note Mi suivie d'un Do et d'un Sol joués ensemble, le noeud représentant E sera relié aux noeuds représentant Do et Sol.

Les réseaux de ce notation transitions dans la musique de Bach ont générés plus de poinçon d'information que des réseaux de même taille générés aléatoirement - le résultat d'une plus grande variation dans les degrés nodaux des réseaux, c'est-à-dire le nombre d'arêtes connectées à chaque nœud. En outre, les scientifiques ont découvert des variations dans la structure de l'information et le contenu des nombreux styles de composition de Bach. Les chorals, hymnes destinés à être chanté, ont donné lieu à des réseaux relativement pauvres en informations, bien que plus riches en informations que les réseaux de même taille générés de manière aléatoire. Les toccatas et les préludes, styles musicaux souvent écrits pour des instruments à clavier tels que l'orgue, le clavecin et le piano, présentant une entropie de l'information plus élevée.

" J’ai été particulièrement excité par les niveaux plus élevés de surprises dans les toccatas que dans les œuvres chorales ", explique le co-auteur de l’étude et physicien Dani Bassett de l’Université de Pennsylvanie. " Ces deux types de pièces sonnent et résonnent différement dans mes os, et ça m'a passionné de voir que cette distinction se manifeste dans l'information de composition. "

Ces structures de réseau dans les compositions de Bach pourraient également permettre aux auditeurs humains d'apprendre plus facilement certaines choses. Les humains n'apprennent pas parfaitement les réseaux. Nous avons des préjugés, dit Bassett. " Nous ignorons en quelque sorte certaines des informations locales au profit de la vue d’une image plus grande de l’information sur l’ensemble du système ", ajoute-t-ils. En modélisant ce biais dans la façon dont nous construisons nos modèles mentaux de réseaux complexes, les chercheurs ont comparé l'ensemble des informations de chaque réseau musical à la quantité d'informations qu'un auditeur humain en tirerait.

Des réseaux musicaux contenaient des groupes de transitions de notes pourraient aider nos cerveaux biaisés " apprendre " la musique - à reproduire la structure informationnelle de la musique avec précision en tant que modèle mental - sans sacrifier beaucoup d'informations.

" La façon dont elles saisissent l’aptitude à l’apprentissage est assez intéressante ", déclare Peter Harrison de l’Université de Cambridge, qui n’a pas participé à l’étude. " C'est très réducteur dans un certain sens. Mais c'est tout à fait complémentaire avec d'autres théories que nous connaissons, et l'aptitude à apprendre est assez difficile à maîtriser ".

Ce type d'analyse de réseau n'est pas particulier à Bach et il pourrait fonctionner pour n'importe quel compositeur. Pearce dit qu'il sera  intéressant d'utiliser cette approche pour comparer différents compositeurs ou rechercher des tendances informatives à travers l'histoire de la musique. Pour sa part, Kulkarni est excité à l'idée d'analyser les propriétés d'information de partitions d'au-delà de la tradition musicale occidentale.

La musique n'est pas seulement une séquence de notes, note cependant Harrison. Le rythme, le volume, le timbre des instruments, ces éléments sont des aspects importants des messages musicaux qui n'ont pas été pris en compte dans cette étude. Kulkarni dit qu'il sera intéressé par l'inclusion de ces aspects de la musique dans ses réseaux. Le processus pourrait également fonctionner dans l'autre sens, ajoute M. Harrison : plutôt que réduire les caractéristiques musicales à un réseau, il sera intéressant de savoir comment les caractéristiques du réseau se traduisent par des éléments qu'un musicien reconnaîtrait.

Un musicien dira : " Quelles sont les règles musicales réelles, ou les caractéristiques musicales, qui en sont à l’origine ? Puis-je l’entendre sur un piano ? " précise Harrison.

Enfin, on ne sait pas encore exactement comment les modèles de réseaux identifiés dans la nouvelle étude se traduisent dans l'expérience vécue à l'écoute d'un morceau de Bach - ou de n'importe quelle musique, précise M. Pearce. La résolution de ce problème relèvera de la psychologie musicale, poursuit-il. Des expériences pourraient révéler "si, de fait, ce genre de choses est perceptible par les gens et quels sont leurs effets sur le plaisir que les gens éprouvent lorsqu'ils écoutent de la musique". De même Harrison se dit intéressé par des expériences visant à vérifier si les types d'erreurs d'apprentissage en réseau que les chercheurs ont modélisés dans cette étude sont réellement importants pour l'apprentissage de la musique.

"Le fait que les humains présentent ce type de perception imparfaite et biaisée de systèmes informationnels complexes est essentiel pour comprendre comment nous nous impliquons dans la musique", explique M. Bassett. "Comprendre la complexité informationnelle des compositions de Bach ouvre de nouvelles questions sur les processus cognitifs qui sous-tendent la manière dont nous apprécions les différents types de musique."

Auteur: Internet

Info: https://www.scientificamerican.com, 16 féb 2024. Elise Cutts - Secret Mathematical Patterns Revealed in Bach's Music

[ sentiment naturel ] [ approfondissement découverte ] [ dépaysement plaisir ] [ cybernétisation ] [ simple compliqué ] [ occulte harmonie ]

 
Commentaires: 1
Ajouté à la BD par Le sous-projectionniste

prospective affirmée

Jouant avec 10 coups d’avance, la Chine est le véritable maître du jeu, la Russie est d’ores et déjà consciente du risque de se faire vassaliser par son puissant voisin.

Ce qui conditionne la géopolitique du présent comme des prochaines années, c’est la lutte froide-chaude entre les USA et la Chine + l’accès à l’énergie, à l’eau et à certaines matières premières. Tous les autres conflits sont à la périphérie de ce duel.

LE PASSE-FUTUR

Le passé cosmique étant en partie l’avenir de la terre, il est relativement confortable d’anticiper certains paramètres.

PARAMÈTRE 1 : Le programme des Gestionnaires de la planète Terre se poursuit suivant leur Plan

Les administrateurs non humains terrestres interviennent sur le ‘’jardin’’ comme ils le font depuis des éons : physiquement, génétiquement, et bio-énergétiquement. Entre autres choses, ils gèrent les avancées scientifiques de l’humanité terrestre, les accélérant et les freinant selon les cas.

PARAMÈTRE 2 : Les développements scientifiques et technologiques sont les véritables révolutions.

Ils impactent directement la politique, la sociologie, l’économie et la guerre.

Les principales innovations viendront des biotechnologies et des technologies d’assemblage à l’échelle atomique. Ces dernières vont redécouvrir des matériaux ‘’exotiques’’ : hyper-résistance, inaltérabilité, autoassemblage, supra-conductivité électrique, production endogène d’énergie. A base de carbone, de silicium puis par assemblage avec d’autres éléments. Un immense champ de recherches s’ouvrira…

De nouveaux paradigmes scientifiques vont en émerger, avec des développements sur des palettes de plus en plus diversifiées. Ils vont à terme changer la donne sur la production et le stockage d’énergie, le transport terrestre et spatial, et l’armement. La géopolitique en sera bouleversée, avec la fin de certaines raretés et le développement de l’autonomie énergétique à toutes les échelles.

En sus, la mise en évidence de l’état ‘’epsilon’’ de la matière va ouvrir une nouvelle direction scientifique dont on n’a pas idée en 2022. Entre autres choses, à terme, il deviendra très aisé de contrôler l’esprit humain ordinaire, sans utiliser les médias (presse, télévision, internet) inféodés et contrôlés par les leaders Industriels et politiques humains à l’époque où ces lignes sont écrites.

PARAMÈTRE 3 : La démographie du présent (2022) anticipe de manière très sûre le 21ème siècle.

La stabilisation de la population humaine, sa maîtrise, voire sa réduction s’avère une donnée incontournable bien que largement tabou pour le commun au début du siècle. Elle peut s’opérer contrainte, par crises, ou bien gérée paisiblement dans la durée.

Ici, ce sera probablement par crises, espérons qu’elles seront les moins radicales possibles.

PARAMÈTRE 4 : Résistance et atout ‘’caché’’ des USA face à la Chine

Il serait extrêmement étonnant que les services de renseignements russes et chinois ne soient pas informés de l’AVANCE TECHNOLOGIQUE considérable qu’ont pris les USA sur le reste de la planète, par la rétroconception de technologies exotiques, assistés par certains exogènes eux-mêmes.

Cependant, cette avance a créé une sorte d’élite planétaire qui s’est rapidement et largement affranchie du système ‘’démocratique’’ et de l’état américain lui-même. Ses membres sont actuellement issus de toutes origines terrestres, l’hyper compétence dans un domaine de pointe étant le principal critère d’entrée : mathématiques, physique, etc.

La stratégie politique de cette élite est la discrétion maximum, ce qui implique la non-intervention sur le sol de la planète.

A titre d’exemple, si l’on parle vélocité, les missiles hypersoniques de la Russie vont possiblement à mach 20 (environ 7 km seconde - 400 km minute) ou plus, très certainement en utilisant des technologies MHD comme l’explique JP PETIT. Ils accélèrent grosso modo de manière conventionnelle par échange de quantité de mouvement, en s’appuyant sur le milieu ambiant ou / et avec des fusées. Leur limite est celle de la résistance des matériaux aux forces d’accélération.

Les ARV (Alien Reproduction Véhicules) des black programs s’appuient sur des technologies très différentes, beaucoup plus avancées. Ils peuvent circuler dans l’espace, une zone où la matière est très peu dense et où la MHD ne fonctionnerait pas ou très peu, les accélérations seraient très faibles bien que continues.

Les ARV ont franchi le mur de la lumière depuis la fin des années 1970, ils passent de 0 à 20 000 km / heure quasi instantanément et peuvent prendre des virages à angle droit, ils ne sont plus soumis aux lois réputées universelles de la masse et de l’inertie. On ne peut pas les voir car ils vont trop vite. En outre, un second facteur les rend furtifs : ils changent de dimension. Ils peuvent facilement prendre des passagers, ce qui semble plus compliqué avec les technologies russes de missiles hypervéloces.

Ces ARV sont souvent observés comme des OVNIS de forme triangulaire.

Que l’on parle des technologies MHD ou bien des technologies de rétroconception Z .R, il s’agit de produire des champs magnétiques de très haute intensité, mais dans le second cas ils sont beaucoup plus puissants et complexes.

Il est spéculatif de penser que l’élite interviendra dans les conflits traditionnels terrestres, fussent-ils nucléaires. La grande avance technologique ‘’cachée’’ des black programs pourrait modifier la donne dans la compétition Chine – USA, au moins sur le court terme. Idem sur une organisation secrète chinoise, extrêmement puissante financièrement. J’ai eu plusieurs contacts avec certains de leurs membres, ils sont parfaitement conscients de la présence des Gestionnaires non terrestres et de la structure poly dimensionnelle de la Création.

Les Administrateurs non terrestres de la planète font la démonstration constante de leur interventionnisme au niveau du nucléaire civil et militaire, ceci depuis plus de 60 ans. Il nous faut espérer qu’ils gardent la même politique en cas de conflit nucléaire généralisé imminent.

LE FUTUR

J’avais prévenu, je vais faire le contraire de ce que je recommande comme étant raisonnable.

Une seule raison à cela pour le moment, le souvenir d’une vie future en chine, dans 250 ans. Cette réminiscence a commencé spontanément en 2019, lors d’une balade en voiture dans ce que je nomme maintenant ‘’la vallée du souvenir’’. En effet c’est quelque part ici qu’il y a la grotte du souvenir, un lieu secret où certains reviennent chercher la pierre qu’ils y ont déposée lors d’une incarnation passée.

Les Voyages dans le futur et dans le passé m’ont tout de suite étonné. Je dois dire qu’à chaque nouvelle exploration de ce type, je comprends encore moins ce qu’est le temps, à part qu’il est subjectif et dépend à la fois de l’état de conscience et de la position vibratoire où l’on se trouve.

Cette émergence mémorielle a débuté exactement comme celles relatives aux vies passées sur terre. Puis elle apporte son flot de détails de manière continue, comme pour les autres incarnations. Je vais le redire mais oui, moi aussi je n’y comprends rien. Les bidules spiritualeux du genre : ‘’toutes les incarnations se passent en même temps’’ ne me conviennent pas du tout.

Et NON, mon incarnation du 23ème siècle n’est pas un futur possible. Cette théorie me semble plus un jeu de l’esprit qu’autre chose, une simple discussion de salon, mais vous connaissez mon côté tranchant.

A ce moment la Chine est l’état le plus avancé au monde, à presque tous les points de vue. Bien que le monde humain terrestre de 2370 soit plus multipolaire qu’en 2022, il reste rassemblé autour d’un point central économique, scientifique et culturel : la Chine.

Mauvaise nouvelle pour les égocentristes des démocraties à l’occidentale : la Chine n’est pas une démocratie suivant leur modèle. En deux mots, elle a géré la question des populations, des croyances religieuses scélérates et violentes, de la délinquance et de la pauvreté. Depuis environ 250 ans, c’est le centre du monde terrestre. Je suis l’un d’entre eux, chinois par ma mère, occidental par mon père qui est natif d’un pays européen nordique, mais je ressemble parfaitement à un chinois, enfin si l’on en croit mon souci de conformité des jeunes années de ce moi du futur. Lui et moi sommes la même personne avec deux costumes différents.

Avant la seconde moitié de ce 23ème siècle, le crédit social a évolué vers une forme de reconnaissance entièrement basée sur l’utilité de l’individu envers la collectivité. Autour de moi, personne ne conteste ce système qui nous parait à la fois juste et logique.

Il n’y a pas eu de guerre nucléaire généralisée, juste des explosions d’armes nucléaires tactiques de puissance "modérée", dans des conflits dont les enjeux étaient l’énergie, au 21ème et au 22ème siècle. Je ne m’intéresse pas plus à l’histoire du 21ème siècle qu’une personne de 2030 se soucie de ce qui s’est passé au 17ème siècle, ici ou là. C’est juste de la culture générale non impliquante.

Comme les souvenirs reviennent régulièrement, la scène s’étoffe de plus en plus. Ma vie personnelle d’alors, je pense que chacun s’en fiche, alors parlons de mon action principale : je vais participer à la préparation de l’intégration de l’humanité dans le groupe cosmique local.

Non, la "révélation" généralisée ne semble pas être pour demain.

Auteur: Auburn Marc

Info: Post FB du 21 août 2022 - Voyage, mémoire et géopolitique du 21ème siècle

[ voyage astral ] [ futurologie ] [ ufologie ]

 

Commentaires: 0

Ajouté à la BD par miguel

mimétisme

La surexposition a déformé la science des neurones miroirs

Après une décennie passée à l’écart des projecteurs, les cellules cérébrales autrefois censées expliquer l’empathie, l’autisme et la théorie de l’esprit sont en train d’être affinées et redéfinies.

Au cours de l'été 1991, le neuroscientifique Vittorio Gallese étudiait la représentation du mouvement dans le cerveau lorsqu'il remarqua quelque chose d'étrange. Lui et son conseiller de recherche, Giacomo Rizzolatti, de l'Université de Parme, suivaient les neurones qui devenaient actifs lorsque les singes interagissaient avec certains objets. Comme les scientifiques l'avaient déjà observé, les mêmes neurones se déclenchaient lorsque les singes remarquaient les objets ou les ramassaient.

Mais ensuite, les neurones ont fait quelque chose auquel les chercheurs ne s'attendaient pas. Avant le début officiel de l'expérience, Gallese a saisi les objets pour les montrer à un singe. À ce moment-là, l’activité a augmenté dans les mêmes neurones qui s’étaient déclenchés lorsque le singe avait saisi les objets. C’était la première fois que quelqu’un observait des neurones coder des informations à la fois pour une action et pour un autre individu effectuant cette action.

Ces neurones firent penser à un miroir aux chercheurs : les actions observées par les singes se reflétaient dans leur cerveau à travers ces cellules motrices particulières. En 1992, Gallese et Rizzolatti ont décrit pour la première fois ces cellules dans la revue Experimental Brain Research , puis en 1996 les ont nommées " neurones miroirs " dans Brain.

Les chercheurs savaient qu’ils avaient trouvé quelque chose d’intéressant, mais rien n’aurait pu les préparer à la réaction du reste du monde. Dix ans après la découverte, l’idée d’un neurone miroir était devenue un des rare concept neuroscientifique capable de captiver l’imagination du public. De 2002 à 2009, des scientifiques de toutes disciplines se sont joints aux vulgarisateurs scientifiques pour faire sensation sur ces cellules, leur attribuant davantage de propriétés permettant d'expliquer des comportements humains aussi complexes que l'empathie, l'altruisme, l'apprentissage, l'imitation, l'autisme et la parole.

Puis, presque aussi rapidement que les neurones miroirs ont émergé les doutes scientifiques quant à leur pouvoir explicatif. En quelques années, ces cellules de célébrités ont été classées dans le tiroir des découvertes prometteuses pas à la hauteur des espérances.

Pourtant, les résultats expérimentaux originaux sont toujours valables. Les neurones du cortex prémoteur et des zones cérébrales associées reflètent des comportements. Même s'ils n'expliquent pas facilement de vastes catégories de l'expérience humaine, les neurones miroirs " sont vivants et actifs ", a déclaré Gallese.

Aujourd'hui, une nouvelle génération de neuroscientifiques sociaux relance les travaux pour étudier comment les neurones dotés de propriétés miroir dans tout le cerveau codent le comportement social.

L'ascension et la chute

Les neurones miroirs ont d'abord fasciné par le fait qu'ils n'étaient pas du tout à leur place. Dans une zone du cerveau dédiée à la planification motrice, on trouvait des cellules aux propriétés uniques qui réagissaient pendant la perception. En outre, les chercheurs de Parme ont interprété leurs résultats comme une preuve de ce que l'on appelle la "compréhension de l'action" dans le cerveau : Ils affirmaient que les singes pouvaient comprendre ce que faisait un autre individu et que cette intuition était résolue dans une seule cellule.

Le neurone miroir était donc un " moyen immédiatement accessible pour expliquer un mécanisme bien plus complexe ", a déclaré Luca Bonini, professeur de psychobiologie à l'Université de Parme qui n'a pas participé à l'étude originale. Galvanisés par cette interprétation, les chercheurs ont commencé à projeter leur " compréhension " sur un nombre illimité de cellules qui semblaient semblables à des miroirs.

Cette fanfare enthousiaste faussa l’étude des neurones miroirs et perturba la carrière des chercheurs.

Au début des années 2000, le spécialiste des sciences cognitives Gregory Hickok de l'Université de Californie à Irvine a découvert que les neurones des zones motrices du cerveau liées à la production de la parole devenaient actifs lorsque les participants écoutaient la parole. Bien que cette découverte ne soit pas choquante – " c’est exactement ainsi que fonctionne le système ", déclara Hickok – d’autres scientifiques ont commencé à visualiser ses résultats sous l'angle des neurones miroir. Il savait que cette théorie ne pouvait pas s'appliquer à son travail. D’autres encore ont suggéré que lorsque les auditeurs percevaient la parole, les neurones du cortex moteur " reflétaient " ce qu’ils entendaient.

(Photo : Gregory Hickok étudie les circuits neurologiques impliqués dans la parole. Ses doutes sur la théorie des neurones miroirs l'ont amené à devenir l'adversaire scientifique de Vittorio Gallese et lui ont valu un contrat pour le livre Le Mythe des neurones miroirs – " dont le titre n'était vraiment pas juste ", selon Gallese.)

Pour bien se positionner, Hickok commença par dire au début de ses exposés de recherche que son travail n'avait rien à voir avec les neurones miroirs – un choix qui le plaça par inadvertance au centre du débat. En 2009, le rédacteur en chef du Journal of Cognitive Neuroscience invita Hickok à rédiger une critique de cette théorie. Il utilisa la parole comme test pour réfuter l'affirmation grandiose selon laquelle les neurones miroirs du cortex moteur permettaient à un singe de comprendre les actions d'un autre. Si, selon Hickok, il existe un mécanisme neuronal unique qui code la production d’une action et la compréhension de cette action, alors les dommages causés à ce mécanisme devraient empêcher les deux de se produire. Hickok a rassemblé un dossier d'études montrant que les dommages causés aux zones de production de la parole ne perturbaient pas la compréhension de la parole. Les données, écrit-il, " démontrent sans équivoque que la théorie des neurones miroirs sur la perception de la parole est incorrecte, quelle que soit sa présentation ».

Critique qui conduisit à un livre puis en 2015, à une invitation à débattre publiquement avec Gallese au Centre pour l'esprit, le cerveau et la conscience de l'Université de New York. Partageant la scène pour la première fois, les deux scientifiques distingués échangèrent des points de vue concurrents avec quelques légères taquineries, suivies de sourires autour de quelques bières.

Si cette confrontation s'est déroulée à l'amiable, il n'en fut pas de même des réactions à l'engouement pour les neurones miroirs.  Aujourd’hui, Gallese reste surpris par " l’acrimonie " à laquelle il fut confronté au sein de la communauté scientifique. " Je ne pense pas que quiconque ait été scruté aussi profondément que nous ", dit-il.  Et l’effet sur l’étude de ces cellules cérébrales fut profond. Dans les années qui ont suivi le débat à New York, les neurones miroirs disparurent du discours scientifique. En 2013, au plus fort du battage médiatique, les scientifiques ont publié plus de 300 articles portant le titre " neurone miroir ". En 2020, ce nombre avait diminué de moitié, pour atteindre moins de 150.

Le neurone miroir, redéfini

Cet épisode est représentatif de la manière dont l'enthousiasme suscité par certaines idées peut transformer le cours de leurs recherches. Gallese a attribué le déclin des études sur les neurones miroirs à la peur collective et à l'autocensure. " Les chercheurs craignent que s'ils évoquent l'étiquette neurones miroirs, l'article pourrait être rejeté ", a-t-il déclaré.

En conséquence, les chercheurs ont adopté une terminologie différente – " réseau d’activation d’action ", par exemple – pour expliquer les mécanismes miroirs dans le cerveau. Le terme " neurone miroir " est également devenu obscur. Au début, sa définition était claire : c'était une cellule motrice qui tirait lors d'un mouvement et également lors de la perception d'un mouvement identique ou similaire. Cependant, à mesure que les chercheurs utilisaient ce terme pour expliquer les phénomènes sociaux, la définition devenait lourde au point de devenir une " théorie invérifiable ", a déclaré Hickok.

Aujourd’hui, après une période de réflexion, les neuroscientifiques sociaux extraient les cellules de la boue biologique. En regardant au-delà des zones motrices du cerveau, ils découvrent ce qui ressemble étrangement à des neurones miroirs. L'année dernière, une équipe de l'Université de Stanford a rapporté dans Cell la découverte de neurones qui reflètent l'agressivité chez la souris. Cette suite de cellules se déclenchait à la fois lorsqu’une souris se comportait de manière agressive et lorsqu’elle regardait les autres se battre. Parce que les cellules sont devenues actives dans les deux contextes, les chercheurs ont suggéré qu’elles seraient des neurones miroirs.

"C'était le premier exemple démontrant l'existence de neurones miroirs associés à un comportement social complexe", a déclaré Emily Wu, professeur adjoint de neurologie à l'Université de Californie à Los Angeles, qui n'a pas participé à la recherche.

Cette découverte s’ajoute à un nombre croissant de preuves selon lesquelles les neurones situés au-delà du cortex prémoteur ont des propriétés miroir lorsque deux animaux interagissent socialement. Ces mêmes cellules se déclenchent lors d’actions ou d’émotions  personnelles et en réponse au fait de voir d’autres vivre les mêmes expériences.

Techniquement, selon la définition originale, ces cellules ne sont pas des neurones miroirs, a déclaré Hickok : Les neurones miroirs sont des cellules motrices, pas des cellules sociales. Cependant, Wu ne se soucie pas des définitions. Plutôt que débattre de ce qui est ou non un neurone miroir, elle pense qu'il est plus important de cataloguer les propriétés fonctionnelles du miroir qui caractérisent les cellules, où qu'elles se trouvent dans le cerveau.

L’objectif serait de décrire l’étendue de ces neurones et comment, au niveau électrophysiologique, ils se comportent de manière unique. Ce faisant, ces scientifiques dissipent le nuage de battage médiatique autour de la vision de ces cellules telles qu’elles sont réellement.



 

Auteur: Internet

Info: https://www.quantamagazine.org/ - Meghan Willcoxon, 2 avril 2024

[ pulsions partagées ] [ actions symboles ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste