Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 233
Temps de recherche: 0.0658s

théorie du tout

Une nouvelle "loi de la nature" qui englobe le vivant, les planètes et les étoiles

(Photo) Ammonite irisée trouvée près de Calgary, Canada. La diversité biologique (biodiversité) entraîne la diversité minérale, et vice versa.


Selon une équipe composée de scientifiques et de philosophes, la théorie de l'évolution formulée par Charles Darwin au 19e siècle n'est qu'un "cas particulier" d'une loi de la nature qui engloberait le vivant mais aussi les minéraux, les planètes et les étoiles. Attention, débats en perspective !

Et si l'évolution ne se limitait pas à la vie sur Terre ? C'est ce que suggère une équipe de neuf scientifiques et philosophes américains dirigés par la Carnegie Institution for Science, à travers un nouvel article publié dans la revue Proceedings of the National Academy of Sciences.

La publication énonce la "loi de l'augmentation de l'information fonctionnelle", selon laquelle tous les "systèmes naturels complexes" – qu'il s'agisse de la vie sur Terre ou des atomes, des minéraux, des planètes et des étoiles – évoluent vers des états "plus structurés, plus diversifiés et plus complexes".

Vivant, atomes, étoiles…

Concrètement, qu'est-ce que cela signifie ? Juste avant d'en venir aux exemples, il faut définir en quelques mots ce que les auteurs entendent par "évolution". Un terme qu'il faut ici comprendre comme "sélection pour la fonction". Restez concentré, c'est tout simple !

Si le naturaliste du 19e siècle Charles Darwin avait globalement assimilé la "fonction" à la survie des êtres, c'est-à-dire à la capacité de vivre assez longtemps pour produire une progéniture fertile, les auteurs vont plus loin en reconnaissant également comme fonctions la "stabilité" (capacité à perdurer) et la "nouveauté" (nouvelles configurations).

Pour illustrer la sélection de la "nouveauté", l'article évoque à la fois des cas qui concernent le vivant, à l'instar de la photosynthèse, de la vie multicellulaire (quand les cellules ont "appris" à coopérer jusqu'à ne former plus qu'un organisme) et des comportements animaux. Mais aussi des exemples au sein du règne minéral !

Ainsi, les minéraux de la Terre, qui étaient au nombre d'une vingtaine à l'aube de notre système solaire, sont aujourd'hui près de 6 000. Et c'est à partir de seulement deux éléments majeurs – l'hydrogène et l'hélium – que se sont constituées, peu après le big bang, les premières étoiles, au sein desquelles se sont ensuite formés une vingtaine d'éléments chimiques plus lourds, avant que la génération suivante d'étoiles ne s'appuie sur cette diversité initiale pour produire près d'une centaine d'autres éléments.

"L'évolution est partout"

"Charles Darwin a décrit avec éloquence la façon dont les plantes et les animaux évoluent par sélection naturelle, avec de nombreuses variations et caractéristiques des individus et de nombreuses configurations différentes. Nous soutenons que la théorie darwinienne n'est qu'un cas très particulier et très important au sein d'un phénomène naturel beaucoup plus vaste", résume dans un communiqué le Pr Robert M. Hazen, de Carnegie, qui a supervisé les travaux.

Et son collègue Michael L. Wong, astrobiologiste à Carnegie et premier auteur de l'étude, de compléter : "l'univers génère de nouvelles combinaisons d'atomes, de molécules, de cellules, etc. Les combinaisons qui sont stables et qui peuvent engendrer encore plus de nouveauté continueront à évoluer."

"C'est ce qui fait de la vie l'exemple le plus frappant de l'évolution, mais l'évolution est partout."

Cette nouvelle "loi de la nature" qui décrit une complexité croissante n'est pas sans en rappeler une autre : le deuxième principe de la thermodynamique. Celui-ci stipule en effet que "l'entropie" (autrement dit, le désordre) d'un système isolé augmente avec le temps – raison pour laquelle la chaleur circule toujours des objets les plus chauds vers les objets les plus froids.

Discussion ouverte

Forces et mouvement, gravité, électromagnétisme, énergie… La plupart des "lois de la nature", décrivant et expliquant les phénomènes observés en permanence dans le monde naturel, ont été énoncées il y a plus de 150 ans.

Nul doute que la nouvelle "loi de la nature" énoncée par l'équipe américaine – formée de trois philosophes des sciences, de deux astrobiologistes, d'un spécialiste des données, d'un minéralogiste et d'un physicien théorique – suscitera moult réactions au sein de la communauté scientifique.

"À ce stade du développement de ces idées, un peu comme les premiers concepts au milieu du 19e siècle pour comprendre "l'énergie" et "l'entropie", une discussion ouverte et large est maintenant essentielle", a d'ailleurs commenté dans le communiqué Stuart Kauffman, chercheur à l'Institut de biologie des systèmes (Seattle).

Pour rappel, une théorie n'est "scientifique" que si les principes qui la constituent conduisent à au moins une prédiction suffisamment précise pour pouvoir être testée par une expérience (ou une mesure) susceptible de la réfuter…

Auteur: Internet

Info: https://www.geo.fr, Nastasia Michaels, 16/10/2023

[ panthéisme ] [ panpsychisme ] [ complexification ]

 

Commentaires: 0

Ajouté à la BD par miguel

épigénétique

"Percer les secrets du vivant grâce à la biologie quantique"

En primeur pour notre magazine, Birgitta Whaley, qui dirige le Berkeley Quantum Information and Computation Center de l'université de Californie, a accepté d'expliquer en quoi les "mécanismes quantiques à l'oeuvre chez les organismes vivants" pouvaient révolutionner le monde. D'autant qu'ils ne sont qu'une cinquantaine de scientifiques à travers la planète à poursuivre ces travaux fondamentaux.

Sciences et Avenir : Quand on évoque l’information quantique, on pense en premier lieu à la physique et aux particules de matière ou de lumière. Or, vous travaillez sur le vivant ?

Birgitta Whaley : Nous étudions tout un éventail d'organismes, des plantes vertes aux bactéries, qu'il s'agisse d'unicellulaires ou de feuilles. Mais aussi des oiseaux ou d'autres animaux. Nous voulons apporter la preuve qu'il existe un comportement quantique chez ces organismes vivants, à toute petite échelle, impliquant des "grains de lumière" (photons).

Avez-vous découvert ce comportement quantique ? Oui, il est tout à fait évident que des effets quantiques sont au coeur, en particulier, de ce qu’on appelle la photosynthèse. Nous les observons dans les premiers stades de ce mécanisme essentiel à la vie qui permet l’absorption de la lumière, puis sa transformation en énergie électronique, les électrons déclenchant ensuite les réactions chimiques qui permettent la formation de glucides [constituants essentiels des êtres vivants].

Outre la connaissance fondamentale, pourquoi est-ce important de comprendre ce mécanisme ?

Parce qu’il est essentiel à la production de nourriture et donc à notre vie. Mais imaginez aussi que nous parvenions à réaliser une photosynthèse artificielle qui capture l’énergie solaire aussi bien que le font les plantes, dont le processus a été hautement optimisé après 3,6 milliards d’années d’évolution. Ce ne serait plus 15 % de rendement que l’on obtiendrait, comme cela se pratique avec le photovoltaïque aujourd’hui, mais presque 100 % !

Qu’ont donc réussi à faire les plantes, et pas nous ?

Chez les plantes vertes, des récepteurs composés de chlorophylle sont capables d’absorber des photons alors même que la lumière reçue est très faible. Chacun d’eux ne reçoit en moyenne qu’un photon toutes les dix secondes. Il faut que la plante soit vraiment très efficace pour réaliser cette absorption avec si peu de lumière. Il y a même des bactéries marines qui n’absorbent qu’un photon (dans l’infrarouge) toutes les vingt minutes.

Qu’est-il important de mesurer ?

Les détails de ce processus d’absorption, en particulier sa dynamique… Nous connaissons très bien la chlorophylle, nous savons quelle partie de la molécule absorbe le photon et à quel niveau. Le problème vient de ce que cette chlorophylle est enchâssée dans un échafaudage complexe de protéines- pigments qui se mettent à leur tour à vibrer, à entrer en rotation… Nos expériences suggèrent fortement que ces vibrations oeuvrent en conjonction avec l’excitation électronique déclenchée par l’arrivée du photon. Elles aident au transfert des électrons qui déclencheront ultérieurement des réactions chimiques. Ce mécanisme d’absorption, facilité par des effets quantiques, peut avoir jusqu’à 99 % d’efficacité. Un photon arrive, un électron est produit. Finement réglé, il répond à une nécessité de survie de l’organisme.

Quel genre d’appareillages utilisez-vous pour les mesures ?

Nous employons des faisceaux laser pulsés, qui permettent de préciser la dynamique d’excitation des molécules. Par exemple, avec trois pulses qui se succèdent [arrivée de photons d’une certaine fréquence], nous pouvons voir, lors du premier, la molécule réceptrice amorcer son passage vers un état " excité", puis, lors du deuxième pulse, la molécule devenir entièrement excitée, le troisième pulse permettant d’apporter des précisions sur la durée de cette excitation.

Cela ne semble pas évident…

En biologie, vous ne savez pas où s’arrête le système quantique et où commence son environnement. La plupart des spécialistes haussent les épaules en disant que tout cela est trop compliqué, qu’ils ne veulent même pas en entendre parler !

Dans combien de temps pensez-vous comprendre ce qui se passe ?

Peut-être dans vingt ans… Mais d’ici à dix ans, grâce à la biologie synthétique, nous devrions pouvoir élaborer une structure qui fasse progresser notre compréhension.

"COMPORTEMENT. La fascinante intelligence spatiale des oiseaux.

La migration des oiseaux et leur capacité à déterminer la bonne direction à prendre sont aussi un domaine "très tendance" en biologie quantique ! Birgitta Whaley le trouve d’autant plus fascinant que "les effets quantiques ne sont pas du tout évidents. Est peut-être impliquée ici ce qu’on nomme l’intrication quantique" [deux objets qui peuvent être spatialement séparés mais doivent être traités globalement, comme un seul]. La lumière est en effet absorbée par une molécule à l’arrière de la rétine de chaque oeil de l’oiseau, qui produit puis transfère un électron. On se demande alors quel est le comportement quantique des deux électrons (entre eux) qui pénètrent dans le cerveau de l’oiseau, ce qui lui délivre un message particulier. Mais il ne s’agit pour l’instant que "d’une belle hypothèse et il nous faudrait des données expérimentales".)

Auteur: Internet

Info: www.sciencesetavenir.fr, Dominique Leglu, 7.11.2016

[ biophysique ]

 

Commentaires: 0

Ajouté à la BD par miguel

nanomonde

Pour la première fois, des physiciens observent des tourbillons d’électrons !

À l’instar de ce tourbillon d’eau, il peut exister des tourbillons d’électrons sous certaines conditions.

Des chercheurs du MIT aux États-Unis et de l’Institut Weismann en Israël ont réussi à apercevoir ce phénomène pour la première fois ! Prévu depuis de longues années, mais jamais observé, ce comportement caractéristique des fluides pourrait servir à la mise au point de systèmes électroniques à très basse consommation.

Qu’est-ce que des tourbillons d’électrons ?

Les tourbillons d’électrons observés par les scientifiques se comportent comme des fluides. Un fluide est constitué de particules pouvant s’écouler librement et peut être un liquide, un gaz et un plasma.

Un fluide est caractérisé par une grande mobilité de ses molécules. Celles-ci peuvent se mouvoir sans être limitées à une position précise comme dans les solides. Bien que tous les fluides soient compressibles, les gaz le sont beaucoup plus que les liquides et les plasmas. Les molécules des fluides sont maintenues entre elles par des forces d’interactions faibles. Elle sont appelées forces de Van der Walls qui assurent leur cohésion au sein du fluide.

L’eau reste le fluide le plus abondant sur Terre capable de s’écouler librement pour former les ruisseaux, les rivières et de vastes étendues d’eau. Telles que les lacs, les mers et les océans par exemple. Ces masses d’eau sont sujettes à la formation de courants, de vagues et de tourbillons.

On pourrait se demander si un courant électrique constitué d’un ensemble d’électrons en mouvement peut se comporter comme un fluide. Dans des conditions normales, les électrons qui sont infiniment plus petits que des molécules d’eau sont influencés par leur environnement. Par exemple le métal qu’ils traversent. Et  ils ne se comportent pas comme un fluide.

Cependant, la théorie prévoit depuis bien longtemps qu’à des températures très basses proches du zéro absolu (-273 °C), les électrons peuvent s’écouler à la manière d’un fluide pour autant que le matériau dans lequel ils circulent soit pur et sans aucun défaut. Jusqu’à aujourd’hui, cette théorie n’avait jamais été observée.

Les électrons peuvent former un fluide visqueux

Normalement, lorsque des électrons circulent au sein d’un matériau conducteur tel qu’un fil de cuivre, ou dans un matériau semi-conducteur comme le silicium, leur trajectoire est influencée par la présence d’impuretés au sein du matériau. Les vibrations des atomes qui composent le matériau conducteur ou semi-conducteur influencent aussi la trajectoire et le déplacement des électrons. Chaque électron se comporte alors comme une particule individuelle.

Par contre, dans un matériau d’une très grande pureté, dans lequel toutes les impuretés auraient été supprimées, les électrons ne se comportent plus comme des particules individuelles. Ils agissent alors comme des particules quantiques, chaque électron captant les comportements quantiques de ses congénères. Les électrons se déplacent ensemble et forment ce que les physiciens appellent un fluide électronique visqueux.

Il y a quelques années des chercheurs de l’université de Manchester en Angleterre avaient déjà prouvé que des électrons étaient capables de se comporter en fluide. Ceci en réalisant une expérience avec du graphène. Ce matériau est un simple feuillet constitué uniquement d’atomes de carbone disposés suivant un motif hexagonal et de l’épaisseur d’un atome. En faisant passer un courant électrique dans un mince canal "creusé" dans ce matériau, ils se sont rendu compte que la conductance des électrons était bien supérieure à la conductance des électrons libres. Les électrons s’écoulaient donc comme un fluide régulier.

L’une des caractéristiques les plus étonnantes d’un fluide comme l’eau est sa capacité à produire un tourbillon lorsqu’elle s’écoule. Les chercheurs du MIT et de l’institut Weismann ont tenté de découvrir si les électrons peuvent aussi s’écouler sous la forme de tourbillons.

Pour le vérifier, les chercheurs ont utilisé du ditelluride de tungstène de formule chimique WTe2, un composé semi-métallique extrêmement pur et présentant des propriétés quantiques lorsqu’il est épais de seulement un atome. Pour effectuer une comparaison avec un métal ordinaire, ils ont utilisé de fines paillettes d’or.

Ils ont gravé dans les fines paillettes de ditelluride de tungstène et dans celles d’or, un fin canal relié, au niveau de la moitié du canal, à deux chambres circulaires situées de part et d’autre du canal. Ces deux systèmes ont ensuite été placés à une température de -268,6 °C, proche du zéro absolu, puis les canaux ont été soumis au passage d’un courant électrique.

En réalisant des mesures en différents points, les chercheurs se sont rendu compte que dans l’or, le flux d’électrons se dirigeait toujours dans la même direction, que ce soit dans les deux chambres adjacentes et dans le canal.

Par contre, dans le ditelluride de tungstène, les électrons se sont mis à former des tourbillons dans les deux chambres circulaires en inversant leur direction. Puis sont revenus dans le canal central.

Ces résultats très encourageants sont probablement le signe d’un nouveau type d’écoulement hydrodynamique dans des cristaux très fin  d’une grande pureté. Cela ouvre la voie à la création de nouveaux dispositifs électronique nécessitant de faibles puissances de fonctionnement.

Auteur: Internet

Info: https://www.science-et-vie.com, 6 fév 2023, Source, revue Nature, juillet 2022 : Aharon-Steinberg, A., Völkl, T., Kaplan, A. et al.,”Direct observation of vortices in an electron fluid », Nature, 607, 74–80 (2022), https://doi.org/10.1038/s41586-022-04794-y

[ fermion(s) ] [ aquosité ] [ hydrodynamique ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

monde subatomique

Des physiciens ont découvert une force inattendue agissant sur les nanoparticules dans le vide

Ils ont découvert une nouvelle force inattendue qui agit sur les nanoparticules dans le vide, leur permettant d’être poussées par le " néant ".

Bien entendu, la physique quantique commence à préciser que ce " néant ", n’existe pas réellement : même le vide est rempli de petites fluctuations électromagnétiques. Cette nouvelle recherche est une preuve supplémentaire que nous commençons à peine à comprendre les forces étranges qui agissent au plus petit niveau du monde matériel, nous montrant comment le néant peut entraîner un mouvement latéral.

Alors comment est-ce que le vide peut porter une force ? L’une des premières choses que nous apprenons en physique classique est que dans un vide parfait (un lieu donc entièrement dépourvu de matière), la friction ne peut pas exister car l’espace vide ne peut pas exercer une force sur les objets qui le traversent.

Mais ces dernières années, les physiciens spécialisés dans le domaine quantique ont montré que le vide est en réalité rempli par de petites fluctuations électromagnétiques qui peuvent interférer avec l’activité des photons (les particules de lumière), et produire une force considérable sur les objets.

Il s’agit de l’effet Casimir, qui a été prédit en 1948 par le physicien néerlandais Hendrick Casimir*. À présent, la nouvelle étude a démontré que cet effet est encore plus puissant que ce que l’on imaginait auparavant. En effet, ce dernier ne peut être mesuré qu’à l’échelle quantique. Mais comme nous commençons à élaborer des technologies de plus en plus petites, il devient évident que ces effets quantiques pourraient fortement influencer certaines de nos technologies de manière globale.

Ces études sont importantes car nous développons des nanotechnologies qui travaillent avec des distances et des tailles si petites, que ce type de force peut dominer tout le reste ", explique le chercheur principal Alejandro Manjavacas de l’Université du Nouveau-Mexique, aux États-Unis. " Nous savons que ces forces de Casimir existent, alors ce que nous essayons de faire, c’est de trouver l’impact général qu’elles ont sur de très petites particules ", ajoute-t-il.

Afin de découvrir de quelle manière l’effet Casimir pourrait avoir un impact sur les nanoparticules, l’équipe a analysé ce qui s’est passé avec des nanoparticules tournant près d’une surface plane, dans le vide. Ils ont ensuite découvert que l’effet Casimir pouvait effectivement pousser ces nanoparticules latéralement, même si elles ne touchent pas la surface.

Pour imager la chose, imaginez une minuscule sphère tournant sur une surface qui est constamment bombardée de photons. Alors que les photons ralentissent la rotation de la sphère, ils provoquent également un déplacement de cette dernière dans une direction latérale :

(Photo : En rouge, la rotation de la sphère. En noir, la distance de la sphère par rapport à la surface plane et en bleu, l’effet de Casimir latéral.)

Dans le domaine de la physique classique, il faudrait un frottement entre la sphère et la surface pour atteindre ce type de mouvement latéral, mais le monde quantique ne suit pas les mêmes règles : la sphère peut être poussée sur une surface, même si elle ne la touche pas. " La nanoparticule subit une force latérale comme si elle était en contact avec la surface, bien qu’elle soit en réalité séparée de celle-ci ", explique Manjavacas. " C’est une réaction étrange, mais qui peut avoir un impact considérable pour les ingénieurs ", ajoute-t-il.

Cette nouvelle découverte pourrait bien jouer un rôle important dans la manière dont nous développerons des technologies de plus en plus miniaturisées à l’avenir, y compris des dispositifs tels que les ordinateurs quantiques.

Les chercheurs affirment qu’ils pourraient contrôler la direction de la force en changeant la distance entre la particule et la surface, ce qui pourrait s’avérer utile pour les ingénieurs et les scientifiques travaillant sur des méthodes de manipulation de la matière, à l’échelle nanoscopique. 

L’étude a déjà été publiée dans le Physical Review Letters et les résultats doivent à présent être reproduits et vérifiés par d’autres équipes. Mais le fait que nous ayons maintenant la preuve qu’une nouvelle force intrigante pourrait être utilisée pour diriger des nanoparticules dans le vide est très intéressant et met en lumière un tout nouvel élément du monde quantique et ses forces encore largement incomprises. 



*( L'effet Casimir, prédit en 1948 par le physicien néerlandais Hendrick Casimir, est un phénomène quantique où deux plaques métalliques parfaitement conductrices placées dans le vide s'attirent l'une vers l'autre avec une force inversement proportionnelle au carré de leur distance.12 Cet effet résulte de la pression exercée par les fluctuations quantiques du vide sur les plaques.

Explication de l'effet

Selon la théorie quantique des champs, le vide n'est pas complètement vide mais contient des fluctuations d'énergie sous forme de particules virtuelles qui apparaissent et disparaissent constamment. Entre deux plaques rapprochées, ces fluctuations sont restreintes par les conditions aux limites imposées par les plaques conductrices. Cela crée une différence de pression de radiation entre l'intérieur et l'extérieur des plaques, générant une force attractive entre elles.

Observation expérimentale

Bien que prédit théoriquement en 1948, l'effet Casimir n'a été observé expérimentalement pour la première fois qu'en 1997, confirmant ainsi l'existence de cette force quantique dans le vide. Cette découverte a renforcé la compréhension de la nature quantique du vide et de ses effets mesurables. (Source : anthropic) 

Auteur: Internet

Info: https://trustmyscience.com/ - Stéphanie Schmidt, 12 avril 2017

[ éther ] [ vacuité source ]

 

Commentaires: 0

Ajouté à la BD par miguel

évolution biologique

Une nouvelle étude de Yale sur la levure montre comment des facteurs non génétiques sont impliqués dans l'évolution en temps réel.

Dans l'étude, publiée dans la revue Cell Reports du 27 octobre, des chercheurs de l'Institut de biologie systémique de Yale ont montré comment les mécanismes épigénétiques - des modifications du phénotype d'un organisme non causées par des altérations de sa séquence d'ADN - contribuent à l'évolution du réseau de gènes chez la levure qui est responsable de la régulation de l'utilisation du sucre galactose. L'étude a montré qu'un changement épigénétique dans l'activité des gènes se transmettait à travers des centaines de générations de levure, et elle a des implications plus larges concernant le rôle de l'épigénétique dans l'évolution.

"La nature est futée", a déclaré Murat Acar, auteur principal de l'article et professeur associé de biologie moléculaire, cellulaire et du développement, ainsi que de physique. "Elle trouve toujours une solution chaque fois qu'elle est mise au défi par quelque chose. Vous voulez avoir une sorte de gagnant parmi votre population pour surmonter cet environnement difficile".

Jusqu'à récemment, l'explication de l'évolution reposait uniquement sur des mutations génétiques spontanées stimulant des adaptations avantageuses dans les organismes, selon David Moreno Fortuno, associé postdoctoral à l'Institut de biologie des systèmes et l'un des co-auteurs de l'article. Il a expliqué que cette théorie est connue sous le nom de néodarwinisme parce que la nature des gènes n'avait pas encore été découverte à l'époque de Darwin.

La théorie darwinienne de l'évolution contraste avec l'idée de Jean-Baptiste Lamarck, autrefois largement discréditée, selon laquelle l'évolution consiste à transmettre de petits changements qui sont acquis au cours de la vie d'un organisme, selon le PBS. Lamarck a publié sa théorie au début du 19ème siècle en France, et l'exactitude de cette théorie est toujours débattue aujourd'hui, surtout au vu de la résurgence, au cours des deux dernières décennies, de l'étude des influences épigénétiques - ou pas - sur l'évolution.

Les chercheurs ont utilisé un marquage fluorescent dans les cellules de levure pour suivre l'expression des gènes codant du galactose, des cellules plus brillantes correspondant à une plus grande expression de ces gènes. Ils ont observé les niveaux de fluorescence sur une période de sept jours et ont sélectionné à plusieurs reprises les cellules les plus faibles de la population. Les chercheurs nomment cette séparation des cellules plus faibles de la population générale de "pression sélective". Par rapport à la population de levure d'origine, ils ont constaté une diminution dans le temps de la quantité d'expression de ces marqueurs au sein de la population expérimentale.

 "Cette diminution s'est maintenue, même lorsque  la pression sélective fut supprimée pendant plus de 200 générations", a déclaré M. Fortuno.

Du fait que le génome de la levure soit si petit - seulement 12 millions de paires de bases contre 3 milliards pour l'homme - l'analyse de l'ensemble du génome de l'organisme pour les mutations génétiques est beaucoup plus facile à réaliser dans les cellules de levure.

Certaines des cellules de levure qui avaient modifié l'expression du gène codant pour le galactose ne présentèrent aucune mutation dans le réseau de gènes spécifié. Les chercheurs ont donc pu exclure les contributions génétiques à leurs observations.

"En fin de compte, nous avons vu que les théories darwiniennes de l'évolution génétique ne sont pas en mesure d'expliquer ces résultats par elles-mêmes", a déclaré M. Acar. "Il est nécessaire d'y inclure la théorie évolutionniste lamarckienne pour expliquer tout le spectre de nos résultats".

M. Fortuno a abordé les implications potentielles de l'étude, en prédisant que les cellules cancéreuses malignes sont similaires aux cellules de levure dans la mesure où les deux types de cellules sont en "évolution constante". Il a ajouté que la compréhension du rôle des mécanismes épigénétiques dans les génomes des cellules de levure pourrait ouvrir des pistes de recherche pour développer des traitements contre le cancer ou déterminer le stade du cancer dont souffre un patient.

Il note également que certains scientifiques pensent que la culture est un mécanisme épigénétique. Bien que la culture soit non génétique, il est possible qu'elle ait un impact mesurable sur nos marques épigénétiques si ces experts ont raison.

Le document indique également que les mécanismes génétiques et épigénétiques "n'ont pas à s'exclure mutuellement". 

"En réponse à une condition environnementale particulière, les deux types de mécanismes peuvent jouer un rôle et se compléter l'un l'autre", peut-on lire dans le document.

Le document explique également que les mécanismes épigénétiques peuvent provoquer des adaptations plus rapides à un environnement changeant, ils agissent généralement sur une échelle de temps plus courte que les mécanismes génétiques. À l'inverse, les mécanismes génétiques sont en jeu sur des périodes plus longues et entraînent des changements plus permanents dans un organisme.

M. Acar souligne que cette étude n'est qu'une première étape vers une meilleure compréhension du rôle des facteurs épigénétiques et qu'il attend avec impatience de voir des expériences similaires être réalisées sur d'autres organismes.

"Ce n'est qu'alors que nous verrons si ces résultats peuvent être généralisés, qu'ils soient darwiniens, lamarckiens ou hybrides - une théorie unifiée de l'évolution régissant l'évolution des organismes", a-t-il déclaré.

Les cellules de levure se reproduisent de manière asexuée toutes les 90 à 100 minutes.

Auteur: Jalbert Jonathan

Info: https://yaledailynews.com/ NOV 12, 2020

[ biophysique ]

 

Commentaires: 0

Ajouté à la BD par miguel

finances écologiques

Le capitalisme vert utilise Greta Thunberg
Depuis environ cinq mois, une jeune Suédoise de 16 ans souffrant du syndrome d’Asperger se retrouve sous les projecteurs médiatiques du monde entier. Elle fait la "grève de l’école" pour se faire entendre et son combat est juste. Il s’agit pour elle de passer un message aux milliardaires, aux décideurs politiques, que ce soit à la COP24 en Pologne ou dernièrement à Davos afin qu’ils respectent leurs engagements sur le climat. Son dernier discours a ému quasiment tous les militants écologistes de la planète :

- Je ne veux pas que vous soyez désespérés, je veux que vous paniquiez. Je veux que vous ressentiez la peur qui m’habite chaque jour et que vous agissiez, comme s’il y avait le feu, parce que c’est le cas. […] Il y a encore une petite chance de stopper les émissions de gaz à effet de serre afin d’éviter des souffrances pour une grande partie de la population de la planète."

Derrière ces moments forts, on trouve un petit génie suédois des "public-relations", Ingmar Rentzhog. L’envers du conte de fées est moins joli, mais plus intéressant.

Le journaliste d’investigation suédois Andreas Henriksson est, d’après mes recherches, le premier à avoir enquêté sur ce sujet et son article a été publié sur le blog de Rebecca Weidmo Uvell, le 11 décembre 2018. Tout a été finement programmé pour transformer la jeune Suédoise en héroïne internationale

La belle histoire de Greta Thunberg commence le 20 août 2018. Ingmar Rentzhog cofondateur de la start-up We Don’t Have Time (Nous n’avons pas le temps) croise Greta Thunberg devant le Parlement suédois et publie un post émouvant sur sa page Facebook. Nous sommes le 1er jour de la grève commencée par Greta. Le 24 août, sort en librairie une autobiographie mêlant crise familiale et crise climatique, Scener ur hjärtat, corédigée par Malena Ernman la mère de Greta, Svante Thunberg son père, Beata, sa sœur, et Greta. Les parents artistes - chanteuse lyrique et acteur - sont très connus en Suède ; Greta, pas encore.

En fait Ingmar Rentzhog et la famille de Greta se connaissent déjà et on participé ensemble à une conférence sur le climat le 4 mai 2018. Peu de place au hasard donc, dans la rencontre à Stockholm, sur le trottoir devant le Parlement entre Ingmar et Greta.

Tout a été finement programmé pour transformer la jeune Suédoise en héroïne internationale, et ce, dès le 1er article paru dans le quotidien le plus lu dans le pays, Aftonbladet, quelques heures seulement après le post Facebook de Rentzhog.

We Don’t Have Time, la start-up qu’il a cofondée en 2016, a l’ambition de créer un réseau social de plus de 100 millions de membres, qui influencera les hommes et femmes politiques et les chefs d’entreprise pour qu’ils agissent davantage contre le réchauffement climatique. C’est ce qui apparaît en tout cas dans leur plaquette web.

C’est la que ça se complique. Parmi les actionnaires de la start-up, on trouve les membres de deux familles interconnectées : les Persson, enfants du milliardaire Sven Olof Persson, qui a fait fortune, entre autres, dans la vente de voitures (Bilbolaget Nord AB) et les Rentzhog. Les deux familles d’investisseurs, qui se sont rencontrées dans la région du Jämtland, n’ont aucun lien avec l’écologie, ce sont des spécialistes de la finance.

Sauver la planète tout en maintenant la croissance économique et en réclamant encore plus de mondialisation
En mai 2018, Ingmar Rentzhog est recruté comme président-directeur du think tank Global Utmaning, faisant la promotion du développement durable et se déclarant politiquement indépendant. Sa fondatrice n’est autre que Kristina Persson, fille du milliardaire et ex-ministre social-démocrate chargée du développement stratégique et de la coopération nordique entre 2014 et 2016. Via l’analyse des tweets du think tank, on observe un engagement politique fort, à l’aube des élections européennes, envers une alliance qui irait des sociaux-démocrates à la droite suédoise. L’ennemi étant "les nationalismes" émergeant partout en Europe et dans le monde. Des idées qui ne déplairaient pas à notre cher président Macron.

Le 16 janvier 2019, Global Utmaning était fière d’annoncer sur les réseaux sociaux sa nouvelle collaboration avec Global Shapers, une communauté de jeunes dirigeants de 20 à 30 ans "dotés d’un grand potentiel pour jouer un rôle dans l’avenir de la société et qui travaillent à améliorer la situation des populations autour d’eux". Ce réseau a été créé de toutes pièces par le Forum économique mondial en 2011. Ses leaders entendent bien sauver la planète tout en maintenant la croissance économique et en réclamant encore plus de mondialisation. Tout un programme.

Je résume. Nous avons d’un côté une plateforme numérique en construction, We Don’t Have Time, qui a pris un réel essor il y a quelques mois grâce à Greta Thunberg, "jeune conseillère" de la fondation dirigeant cette plateforme. J’ai oublié de préciser au passage que les centaines de milliers d’adresses mels collectées par Rentzhog valent de l’or. Et de l’autre, nous avons une famille de milliardaires comptant une ex-ministre qui investit dans cette start-up, puis qui embauche Ingmar Rentzhog dans un think tank développant les thèmes de la croissance verte, de l’économie circulaire, bref, de l’écoblanchiment.

Cet écoblanchiment qui permet au capitalisme de perdurer. Greta Thunberg se retrouve à conseiller ceux qu’elle fustige. Comme disait l’auteur du Guépard, "si nous voulons que tout reste tel que c’est, il faut que tout change" (Guiseppe Tomasi Di Lampedusa). , https://reporterre.net, 9 février 2019 Attard a été députée écologiste du Calvados, se présente comme "écoanarchiste".

Auteur: Attard Isabelle

Info: https://reporterre.net, 9 février 2019

[ dissimulation ] [ guerrilla marketing ]

 

Commentaires: 0

Ajouté à la BD par miguel

désillusion

La neurobiologie de la déception: la douleur qui dure le plus longtemps  

La déception a un impact douloureux sur notre cerveau. Ce fait s'explique par l'activité des neurotransmetteurs, comme le GABA, qui subissent une altération très spécifique que la science peut désormais expliquer.

La neurobiologie de la déception nous montre une fois de plus qu’il y a des aspects de notre vie que le cerveau vit de façon particulièrement douloureuse. Ainsi, pour une raison que nous ne connaissons pas, dans ces expériences où nous perdons des opportunités ou lorsque la confiance avec quelqu’un de significatif est rompue, une sorte de souffrance est générée qui dure plus longtemps.

William Shakespeare a dit que l’attente est la racine de toute détresse, et c’est peut-être vrai. Mais il est également vrai que nous avons souvent besoin de nous accrocher à certaines choses pour trouver la stabilité. Afin de ne pas perdre courage face à toutes les incertitudes de la vie. Ainsi, nous tenons souvent pour acquis que nos plus proches parents, partenaires ou amis ne nous trahiront pas d’une manière ou d’une autre.

Nous entretenons également des attentes à notre égard, en tenant pour acquis que nous n’échouerons pas dans les domaines où nous sommes si bons. Ou encore que ce que nous avons aujourd’hui restera avec nous demain. Cependant, parfois le destin donne un changement de direction et notre château de cartes s’écroule. Ces expériences, définies essentiellement par une perte de sécurité, sont interprétées au niveau du cerveau comme des signaux d’alarme pour notre survie.

La disparition d’une opportunité qui était si excitante pour nous, être licenciés du jour au lendemain, subir une trahison émotionnelle... Voilà des événements plus que douloureux. Ils sont, d’une certaine façon, des coups portés au tissu de ce qui faisait partie de nous de façon significative. Voyons donc ce qui se passe au niveau du cerveau lorsque nous vivons ces expériences.

La neurobiologie de la déception répond à un intérêt récent dans le domaine des neurosciences. Depuis de nombreuses années, les psychologues, les psychiatres et les neurologues se demandent pas seulement pourquoi cette émotion est vécue si intensément. Une chose qui est claire, c’est que les déceptions font aussi partie de notre personnalité.

Ceux qui les ont vécues deviennent souvent plus méfiants. Les déceptions nuisent à la recherche d’espoir et nous rendent parfois plus prudents lorsqu’il s’agit de susciter des attentes impliquant les gens. Quoi qu’il en soit, il faut qu’il se passe quelque chose au niveau du cerveau pour que son impact soit aussi évident. Découvrons ensemble ce que la science nous dit à ce sujet.

Les neurotransmetteurs et la déception. Comme nous le savons, les neurotransmetteurs sont des produits chimiques qui transmettent des signaux aux neurones. Grâce à cette neurochimie, les émotions, les comportements, les pensées, etc. sont facilités. Ainsi, il est utile de rappeler qu’il existe des neurotransmetteurs très spécifiques, comme la dopamine et la sérotonine. Ils mesurent complètement notre état d’esprit.

Or, dans une étude intéressante réalisée par le Dr Roberto Malinow, du département de neurobiologie de l’Université de Californie, à San Diego, les chercheurs ont révélé qu’il existe deux neurotransmetteurs très spécifiques qui régulent complètement l’expérience de la déception. Il s’agit du glutamate et du GABA, qui agissent dans une zone très spécifique de notre cerveau : l’habénula latérale.

L’habénula et la libération de GABA et de glutamate. L’habénula latérale est l’une des plus anciennes structures de notre cerveau. Nous savons donc, par exemple, qu’elle fait partie des processus émotionnels qui facilitent notre prise de décision. Cependant, malgré le fait qu’elle agisse souvent de manière positive, en stimulant la motivation, cette région a aussi son côté sombre.

Son bon fonctionnement dépend essentiellement d’une libération correcte et équilibrée de glutamate et de GABA. Ainsi, plus l’apport de ces neurotransmetteurs dans l’habénula est important, plus le sentiment de déception est grand. En revanche, plus la libération de GABA et de glutamate est faible, moins cette émotion a d’impact sur notre cerveau.

Le Dr Roberto Malinowski, cité ci-dessus, fait une remarque importante sur la neurobiologie de la déception. On a vu que l’impact de la déception maintenue dans le temps conduit dans de nombreux cas à des troubles dépressifs. C’est-à-dire que lorsque la libération de GABA et de glutamate est intense, il y a un plus grand risque de souffrir de ce trouble psychologique.

On sait aussi que cette excitation de l’habénula due à la libération excessive de ces neurotransmetteurs, nous rend plus obsédés par certaines idées, souvenirs ou situations douloureuses vécues. Il nous est très difficile de tourner la page, d’où la stagnation émotionnelle et la souffrance.

Cependant, la découverte de la relation entre le glutamate et le GABA dans la déception et la dépression ouvre également la porte à de nouveaux traitements. Jusqu’à présent, on supposait que grâce aux antidépresseurs et à la régulation de la sérotonine, le rapport GABA-glutamate était également équilibré. Aujourd’hui, cependant, il est devenu évident que malgré l’amélioration, il est courant de ressentir divers effets secondaires.

Le défi actuel est donc de développer des traitements qui agissent spécifiquement sur certains neurotransmetteurs et non sur d’autres. De cette façon, des réponses plus appropriées seraient données aux patients qui, en raison de diverses altérations au niveau neurochimique, vivent plus intensément certaines réalités. La neurobiologie de la déception est donc un domaine de grand intérêt dont nous améliorons progressivement la compréhension. 

Auteur: Internet

Info: https://nospensees.fr, 01 juin, 2020

[ déconvenue ] [ insuccès ] [ désenchantement ] [ désabusement ] [ désappointement déclic ]

 

Commentaires: 0

Ajouté à la BD par miguel

thérapie

Chanter vaut mieux que parler pour calmer les bébés

Dans une nouvelle étude de l'Université de Montréal, des chercheuses ont observé que des bébés demeuraient calmes deux fois plus longtemps lorsqu'ils entendaient des chansons (qu'ils ne connaissaient pas) que lorsqu'ils entendaient quelqu'un leur parler.

"L'effet du chant et des paroles sur l'attention des enfants en bas âge a fait l'objet de nombreuses études, mais nous voulions savoir quelles étaient leurs répercussions sur la maîtrise des émotions, explique la professeure Isabelle Peretz, du Centre de recherche sur le cerveau, le langage et la musique, de l'UdeM. La capacité de maîtriser ses émotions n'est bien sûr pas très développée chez les bébés, et nous croyons que le chant aide les enfants, y compris ceux en bas âge, à renforcer cette faculté."

L'étude, publiée récemment dans Infancy, a porté sur 30 bébés en santé de six à neuf mois. Les humains sont naturellement captivés par la musique. Chez les adultes et les enfants plus âgés, cet effet d'"entraînement" se traduit par des comportements comme taper du pied, hocher la tête ou battre la mesure. "Chez les enfants en bas âge, il n'y a aucune synchronisation entre leurs mouvements et la musique parce qu'ils n'en ont pas les capacités motrices ou mentales, signale la professeure Peretz. Notre étude visait en partie à déterminer s'ils avaient les capacités mentales pour ressentir cet effet. Selon nos conclusions, les bébés se laissaient emporter par la musique, ce qui permet de croire qu'ils possèdent les aptitudes mentales pour se laisser "entraîner"." Les chercheuses ont utilisé divers moyens pour s'assurer que la réaction des bébés à la musique n'était pas influencée par d'autres facteurs, comme la sensibilité à la voix de leur mère.

En premier lieu, elles ont fait entendre aux bébés des enregistrements de paroles (en langage "de bébé" et d'adulte) et de musique en turc pour que les sons ne leur soient pas familiers. "Les chansons ont été choisies dans le répertoire turc, et non occidental. Il s'agit d'un aspect important de cette recherche, car des travaux ont démontré que les chansons que nous chantons aux jeunes enfants se trouvent dans une tonalité précise avec un tempo particulier, souligne Mariève Corbeil, première auteure de l'étude, également de l'Université de Montréal. Tous les parents savent qu'ils n'auront pas beaucoup de succès en chantant des chansons de Rihanna à leur bébé!"

Deuxièmement, les bébés n'ont été soumis à aucun autre stimulus. "Les parents se trouvaient dans la salle, mais ils étaient assis derrière leur bébé. Leurs expressions faciales ne pouvaient donc pas influer sur celles de l'enfant, mentionne Mme Corbeil. Nous avons aussi fait entendre aux bébés des enregistrements plutôt que des chansons ou des paroles en direct afin que tous les enfants soient soumis à des prestations comparables et qu'aucune interaction n'ait lieu entre le bébé et la personne qui chante ou qui parle." Une fois leur enfant calme, les parents prenaient place sur des chaises derrière le bébé, et l'expérience commençait. Les chercheuses faisaient jouer les enregistrements jusqu'à ce que le bébé manifeste les signes avant-coureurs de pleurs : abaissement des sourcils, déplacement latéral des coins de la bouche, ouverture de la bouche et soulèvement des joues. Ces expressions faciales sont les signes de chagrin les plus courants.

"Quand ils entendaient une chanson turque, les bébés restaient calmes pendant environ neuf minutes en moyenne. En entendant quelqu'un parler, ils demeuraient calmes deux fois moins longtemps, qu'il s'agisse ou non de langage de bébé", indique Mme Corbeil. Le langage de bébé les calmait pendant un peu plus de quatre minutes en moyenne comparativement à un peu moins de quatre minutes pour le langage d'adulte.

"Le peu de différence entre ces deux types de paroles nous a surprises", poursuit-elle. Les chercheuses ont ensuite vérifié leurs conclusions en soumettant un autre groupe d'enfants à des enregistrements de mères chantant dans une langue familière (le français). Elles ont constaté les mêmes effets. "Nos conclusions laissent peu de doutes sur l'efficacité des rondes enfantines pour apaiser les bébés pendant une période prolongée, affirme la professeure Peretz.

Même dans l'environnement plutôt stérile de la salle d'expérience - murs noirs, lumière tamisée, absence de jouets et de toute stimulation visuelle ou tactile -, la voix d'une femme qui chante maintenait le bien-être des bébés plus longtemps que la parole." Mme Corbeil ajoute : "Les bébés écoutaient les chansons en turc pendant près de neuf minutes avant de présenter les signes annonçant qu'ils allaient pleurer. Ce délai était de six minutes dans le cas des chansons en français, soit la langue avec laquelle ils étaient familiarisés. Ces résultats montrent l'importance intrinsèque de la musique et des chansons pour enfants en particulier, qui satisfont notre désir de simplicité et notre attirance pour la répétition."

Les conclusions de cette étude sont importantes, car les mères, surtout en Occident, parlent beaucoup plus qu'elles ne chantent à leurs enfants et elles ne mettent donc pas à profit les vertus du chant quant à la maîtrise des émotions. Les chercheuses croient que le chant pourrait être particulièrement utile aux parents qui vivent des difficultés socioéconomiques ou émotionnelles. "Lorsque leurs enfants manifestent des signes d'irritation, les parents cherchent habituellement à les réconforter. Toutefois, ces signes provoquent parfois de la frustration et de la colère chez certains parents à risque, ce qui peut mener à des réactions insensibles et, dans les pires cas, à de la négligence ou de la violence, note la professeure Peretz. Les parents à risque dont s'occupent les organismes de services sociaux pourraient être encouragés à faire jouer des chansons à leurs jeunes enfants et, mieux encore, à leur en chanter."

Auteur: Corbeil Mariève

Info: Ecrit avec Sandra Trehub et Isabelle Peretz. Elle ont publié, Singing Delays the Onset of Infant Distress, dans Infancy le 22 septembre 2015. Elles sont affiliées au Laboratoire international de recherche sur le cerveau, la musique et le son de l'Université de Montréal et au Centre de recherche sur le cerveau, le langage et la musique

[ éducation ] [ nourrisson ] [ musique ] [ hypnose sonore ]

 

Commentaires: 0

psychanalyse

Ce serait une erreur de croire que l'inconscient est quelque chose d'inoffensif, à propos de quoi on pourrait, par exemple, organiser des petits jeux de société, ou qu'on pourrait à la légère utiliser à des essais thérapeutiques. Assurément, l'inconscient n'est pas dangereux en toutes circonstances ni chez tout le monde. Mais, dès qu'il existe une névrose, celle-ci est un signal d'alarme qui indique qu'il s'est produit dans l'inconscient une accumulation toute particulière d'énergie, formant une sorte de charge susceptible d'exploser. C'est pourquoi, dès lors, des précautions s'imposent. On ignore totalement ce qu'on est susceptible de déclencher quand on commence à analyser les rêves d'un sujet. Il se peut qu'on mette ainsi en mouvement quelque chose d'intérieur, d'invisible; très probablement il s'agit de quelque chose qui, de toute façon se serait tôt ou tard frayé une issue au-dehors... mais il est possible aussi que cela ne se serait jamais produit. On creuse, en quelque sorte, dans l'espoir de trouver un puits artésien, et l'on risque de tomber sur un volcan. Dès que des symptômes névrotiques existent, la plus grande réserve est de mise, et l'on ne doit avancer qu'avec prudence. Mais les cas névrotiques ne sont pas à beaucoup près les plus dangereux. On peut rencontrer des sujets dont l'apparence est des plus normales, qui ne présentent aucun symptôme névrotique particulier eux-mêmes parfois médecins ou éducateurs qui font même étalage de leur "normalité" qui sont des modèles de bonne éducation, qui ont dans la vie des opinions et des habitudes des plus normales, et dont la normalité n'en est pas moins une compensation artificielle pour une psychose latente et cachée. Les intéressés eux-mêmes ne soupçonnent en rien leur état. L'intuition vague qu'ils en ont ne s'exprime peut-être indirectement que par l'attrait particulier que leur inspirent la psychologie et la psychiatrie, domaines qui les captivent comme la lumière attire les papillons. Or, du fait que la technique de l'analyse active l'inconscient et l'aide à s'exprimer, elle détruit, en pareil cas, la compensation salutaire qui s'était installée, et l'inconscient fait irruption sous forme d'imaginations irrépressibles, d'onirisme, donnant lieu à des états d'excitation qui, dans certaines circonstances, aboutissent à une aliénation mentale durable, à moins qu'elle n'ait poussé auparavant au suicide. Ces psychoses latentes, hélas! ne sont pas tellement rares. Quiconque s'occupe d'analyse de l'inconscient est exposé au danger de tomber sur des cas de cette nature, même s'il dispose d'une grande expérience et de beaucoup d'habileté. Abstraction faite de ces cas, il est d'ailleurs possible que le praticien, par maladresse, par des erreurs de conception, par des interprétations arbitraires, fasse échouer des cas qui ne comportaient pas nécessairement un dénouement fâcheux. Cela n'est pas, il est vrai, l'apanage exclusif de l'analyse de l'inconscient, mais marque de son sceau toute intervention médicale si elle est manquée. L'affirmation gratuite que l'analyse rend les gens fous est naturellement aussi stupide que l'idée du vulgaire qui prétend que le médecin aliéniste, à force de s'occuper de fous, doive le devenir à son tour. En dehors des risques inhérents au traitement, l'inconscient peut devenir dangereux par lui-même. Une des formes les plus fréquentes que revêtent les dangers qu'il fait encourir, c'est la détermination d'accidents. Un nombre d'accidents de toute nature, beaucoup plus considérable que le public ne le pense, répond à un conditionnement psychique; qu'il s'agisse de petits incidents comme de trébucher, de se cogner, de brûler les doigts, ou de grandes catastrophes, accidents d'automobiles ou chutes en montagne, tous ces accidents, petits ou grands, peuvent être motivés et causés psychologiquement et se trouvent parfois préparés depuis des semaines ou même des mois. J'ai examiné beaucoup de cas de ce genre et, bien souvent, j'ai constaté chez le sujet l'existence de rêves qui dénotaient, bien des semaines à l'avance, l'existence d'une tendance à s'endommager soi-même; tendance qui, bien entendu, s'exprimait la plupart du temps de façon symbolique. Tous les accidents qui arrivent soit disant par inattention devraient être examinés dans la perspective d'une détermination éventuelle de cette sorte. On sait bien que lorsque, pour une raison ou une autre, on est mal disposé, il vous arrive non seulement des anicroches plus ou moins sérieuses, mais aussi parfois des choses graves qui, si elles surviennent à un moment psychologiquement approprié, peuvent même mettre un terme à une existence. D'ailleurs la sagesse populaire le dit : "Un tel est mort au bon moment", sentiment inspiré par une intuition très juste de la causalité psychologique du cas. De façon analogue, des maladies physiques peuvent être engendrées et entretenues. Un fonctionnement défectueux de l'âme peut porter au corps de notables dommages, de même que réciproquement une affection physique peut entraîner une souffrance de l'âme. Car l'âme et le corps ne sont pas des éléments séparés; ils constituent, au contraire, une seule et même vie. Aussi y a-t-il rarement une maladie somatique qui, alors même qu'elle n'a pas été déterminée par des causes psychiques, n'entraîne des complications morales d'une nature quelconque, complications qui, à leur tour, retentissent sur l'affection organique. Mais ce serait une erreur de ne mettre en relief que le côté défavorable de l'inconscient. Dans tous les cas courants, l'inconscient ne devient défavorable et dangereux que parce que nous sommes en désaccord avec lui, donc en opposition avec des tendances majeures de nous-mêmes. L'attitude négative à l'adresse de l'inconscient, voire sa répudiation par le conscient, sont nuisibles dans la mesure où les dynamismes de l'inconscient sont identiques à l'énergie des instincts. Par conséquent, un manque de contact et de liens avec l'inconscient est synonyme de déracinement et d'instabilité instinctuelle. Mais si l'on réussit à établir cette fonction, que j'ai dite transcendante, la désunion avec soi-même cessera et le sujet pourra bénéficier des apports favorables de l'inconscient. Car dès que la dissociation entre les divers éléments de soi-même cesse, l'inconscient accorde - l'expérience le prouve abondamment - toute l'aide et tous les élans qu'une nature bienveillante et prodigue peut accorder aux hommes. De fait l’inconscient recèle des possibilités qui sont absolument incessibles au conscient ; car il dispose de tous les contenus psychiques subliminaux, de tout ce qui a été oublié ou négligé, et, en outre, de la sagesse conférée par l'expérience d'innombrables millénaires, sagesse déposée et confiée à ses structures archétypiques.

Auteur: Jung Carl Gustav

Info: Dans "Psychologie de l'inconscient", trad. Roland Cohen, Livre de Poche, Paris, 1993, pages 195-198

[ conciliation ] [ dialectique ] [ psychothérapie ]

 
Mis dans la chaine

Commentaires: 0

Ajouté à la BD par Coli Masson

polypeptides

Les biologistes dévoilent les formes moléculaires de la vie

On vous décrit la quête visant à comprendre comment les protéines se plient rapidement et élégamment pour prendre des formes qui leur permettent d'effectuer des tâches uniques.

Pour le hula hoop, vous vous levez et faites pivoter vos hanches vers la droite et vers la gauche. Pour faire du vélo, on s'accroupit, on tend les bras et on pédale sur les jambes. Pour plonger dans une piscine, vous étendez les bras, rentrez le menton et vous penchez en avant. Ces formes corporelles nous permettent d’entreprendre certaines actions – ou, comme pourrait le dire un biologiste, notre structure détermine notre fonction.

Cela est également vrai au niveau moléculaire. Chaque tâche imaginable effectuée par une cellule possède une protéine conçue pour l'exécuter. Selon certaines estimations, il existe 20 000 types différents de protéines dans le corps humain : certaines protéines des cellules sanguines sont parfaitement conçues pour capter les molécules d'oxygène et de fer, certaines protéines des cellules cutanées fournissent un soutien structurel, etc. Chacun a une forme adaptée à son métier. 

Cependant, si une protéine se replie mal, elle ne peut plus fonctionner, ce qui peut entraîner un dysfonctionnement et une maladie. En comprenant comment les protéines se replient, les biologistes gagneraient non seulement une compréhension plus approfondie des protéines elles-mêmes, mais pourraient également débloquer de nouvelles façons de cibler les protéines liées à la maladie avec de nouveaux médicaments.

Cela s’est avéré être un formidable défi scientifique. Chaque protéine commence par une chaîne de molécules plus petites liées appelées acides aminés. Lorsque les acides aminés s'alignent dans l'ordre dicté par un gène, ils se plient et prennent la forme appropriée de la protéine en quelques microsecondes – un phénomène qui a stupéfié les scientifiques du XXe siècle lorsqu'ils l'ont découvert. 

Dans les années 1950, le biochimiste Christian Anfinsen a émis l’hypothèse qu’il devait y avoir un code interne intégré à la chaîne d’acides aminés qui détermine la manière dont une protéine doit se replier. Si tel était le cas, pensait-il, il devrait exister un moyen de prédire la structure finale d'une protéine à partir de sa séquence d'acides aminés. Faire cette prédiction est devenu connu sous le nom de problème de repliement des protéines. Depuis, certains scientifiques ont redéfini le problème en trois questions liées : Qu'est-ce que le code de pliage ? Quel est le mécanisme de pliage ? Pouvez-vous prédire la structure d’une protéine simplement en regardant sa séquence d’acides aminés ? 

Les biologistes ont passé des décennies à tenter de répondre à ces questions. Ils ont expérimenté des protéines individuelles pour comprendre leurs structures et construit des programmes informatiques pour déduire des modèles de repliement des protéines. Ils ont étudié la physique et la chimie des molécules d’acides aminés jusqu’au niveau atomique pour découvrir les règles du repliement des protéines. Malgré cela, les biologistes n'ont fait que des progrès hésitants dans la compréhension des règles de repliement internes d'une protéine depuis qu'Anfinsen a exposé le problème.

Il y a quelques années, ils ont réalisé une avancée décisive lorsque de nouveaux outils d’intelligence artificielle ont permis de résoudre une partie du problème. Les outils, notamment AlphaFold de Google DeepMind, ne peuvent pas expliquer comment une protéine se replie à partir d'une chaîne d'acides aminés. Mais étant donné une séquence d’acides aminés, ils peuvent souvent prédire la forme finale dans laquelle elle se replie. 

Ce n’est que dans les décennies à venir qu’il deviendra clair si cette distinction – savoir comment une protéine se replie par rapport à ce en quoi elle se replie – fera une différence dans des applications telles que le développement de médicaments. Le magicien doit-il révéler le tour de magie ?

Quoi de neuf et remarquable

Début mai, Google DeepMind a annoncé la dernière itération de son algorithme de prédiction des protéines, appelé AlphaFold3, qui prédit les structures non seulement de protéines individuelles, mais également de protéines liées les unes aux autres et d'autres biomolécules comme l'ADN et l'ARN. Comme je l’ai signalé pour Quanta, cette annonce est intervenue quelques mois seulement après qu’un algorithme concurrent de prédiction des protéines – RosettaFold All-Atom, développé par le biochimiste David Baker de la faculté de médecine de l’Université de Washington et son équipe – a annoncé une mise à niveau similaire. " Vous découvrez désormais toutes les interactions complexes qui comptent en biologie ", m'a dit Brenda Rubenstein, professeure agrégée de chimie et de physique à l'Université Brown. Il reste néanmoins un long chemin à parcourir avant que ces algorithmes puissent déterminer les structures dynamiques des protéines lors de leur déplacement dans les cellules. 

Parfois, les protéines agissent de manière imprévisible, ce qui ajoute une autre difficulté au problème du repliement. La plupart des protéines se replient en une seule forme stable. Mais comme Quanta l’a rapporté en 2021, certaines protéines peuvent se replier sous plusieurs formes pour remplir plusieurs fonctions. Ces protéines à commutation de plis ne sont pas bien étudiées et personne ne sait quelle est leur abondance. Mais grâce aux progrès technologiques tels que la cryomicroscopie électronique et la résonance magnétique nucléaire à l’état solide, les chercheurs y voient plus clairement. De plus, certaines protéines possèdent des régions qui ne se plient pas selon une forme discrète mais qui bougent de manière dynamique. Comme Quanta l'a rapporté en février, ces protéines intrinsèquement désordonnées peuvent avoir des fonctions importantes, comme l'amélioration de l'activité des enzymes, la classe de protéines qui provoquent des réactions chimiques. 

Lorsque les protéines se replient mal, elles peuvent se regrouper et causer des ravages dans l’organisme. Les agrégats de protéines sont caractéristiques des maladies neurodégénératives comme la maladie d'Alzheimer, dans lesquelles des agrégats de protéines potentiellement toxiques appelés plaques amyloïdes s'accumulent entre les neurones et compromettent la signalisation du cerveau. Comme Quanta l’a rapporté en 2022 , l’agrégation des protéines pourrait être répandue dans les cellules vieillissantes ; comprendre pourquoi les protéines se replient mal et s’accumulent pourrait aider au développement de traitements pour les problèmes liés au vieillissement. Parfois, des protéines mal repliées peuvent également favoriser le mauvais repliement et l’agrégation d’autres protéines, déclenchant une cascade d’effets néfastes qui illustrent à quel point il est essentiel qu’une protéine se plie pour prendre sa forme appropriée.



 

Auteur: Internet

Info: https://www.quantamagazine.org/ mai 2024, Mme Yasemin Saplakoglu

[ tridimensionnelles ] [ conformation protéique ]

 

Commentaires: 0

Ajouté à la BD par miguel