Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 256
Temps de recherche: 0.0619s

nanomonde

La majeure partie de la vie sur Terre est en sommeil, après avoir activé un " frein d’urgence"

De nombreux microbes et cellules dorment profondément, attendant le bon moment pour s’activer. Les biologistes ont découvert une protéine largement répandue qui arrête brusquement l'activité d'une cellule et la réactive tout aussi rapidement.

(Photo : Lorsque les choses se compliquent, de nombreux microbes entrent en dormance. De nouvelles recherches ont découvert une protéine omniprésente qui arrête instantanément la production de protéines dans une cellule.)

Des chercheurs ont récemment rapporté la découverte d'une protéine naturelle, appelée Balon, qui peut stopper brutalement la production de nouvelles protéines par une cellule. Balon a été trouvé dans des bactéries qui hibernent dans le pergélisol arctique, mais il semble également être fabriqué par de nombreux autres organismes et pourrait être un mécanisme négligé de dormance dans l'arbre de vie.

Pour la plupart des formes de vie, la capacité de s’isoler est un élément essentiel pour rester en vie. Des conditions difficiles comme le manque de nourriture ou le froid peuvent apparaître de nulle part. Dans cette situation désastreuse, plutôt que de s’effondrer et de mourir, de nombreux organismes sont passés maîtres dans l’art de la dormance. Ils ralentissent leur activité et leur métabolisme. Puis, lorsque des temps meilleurs reviennent, ils se réaniment.

Rester assis dans un état de dormance est en fait la norme pour la majorité de la vie sur Terre : selon certaines estimations, 60 % de toutes les cellules microbiennes hibernent à un moment donné. Même dans les organismes dont le corps entier ne se met pas en dormance, comme la plupart des mammifères, certaines populations cellulaires se reposent et attendent le meilleur moment pour s'activer.

"Nous vivons sur une planète endormie", a déclaré Sergey Melnikov , biologiste moléculaire évolutionniste à l'Université de Newcastle. "La vie, c'est avant tout dormir."

Mais comment les cellules réussissent-elles cet exploit ? Au fil des années, les chercheurs ont découvert un certain nombre de " facteurs d’hibernation ", des protéines que les cellules utilisent pour induire et maintenir un état de dormance. Lorsqu’une cellule détecte une condition défavorable, comme la famine ou le froid, elle produit une série de facteurs d’hibernation pour arrêter son métabolisme.

Certains facteurs d’hibernation démantelent la machinerie cellulaire ; d'autres empêchent l'expression des gènes. Les plus importants, cependant, arrêtent le ribosome, la machine cellulaire chargée de fabriquer de nouvelles protéines. La fabrication de protéines représente plus de 50 % de la consommation d’énergie d’une cellule bactérienne en croissance. Ces facteurs d'hibernation jettent du sable dans les engrenages du ribosome, l'empêchant de synthétiser de nouvelles protéines et économisant ainsi de l'énergie pour les besoins de survie de base.

Plus tôt cette année, en publiant dans Nature, des chercheurs ont rapporté la découverte d' un nouveau facteur d'hibernation, qu'ils ont nommé Balon. Une protéine qui est étonnamment courante : une recherche de sa séquence génétique a révélé sa présence dans 20 % de tous les génomes bactériens catalogués. Et cela fonctionne d’une manière que les biologistes moléculaires n’avaient jamais vue auparavant.

(Photo : Karla Helena-Bueno a découvert un facteur d'hibernation courant lorsqu'elle a accidentellement laissé une bactérie arctique sur la glace pendant trop longtemps. " J'ai essayé d'explorer un coin de nature sous-étudié et j'ai trouvé quelque chose ", a-t-elle déclaré.)

Auparavant, tous les facteurs connus d'hibernation perturbant le ribosome fonctionnaient passivement : ils attendaient qu'un ribosome ait fini de construire une protéine, puis l'empêchaient d'en créer une nouvelle. Balon, cependant, tire sur le frein d'urgence. Il s'introduit dans chaque ribosome de la cellule, interrompant même les ribosomes actifs au milieu de leur travail. Avant Balon, les facteurs d'hibernation n'étaient observés que dans les ribosomes vides.

"Ce papier au sujet de Balon est incroyablement détaillé", a déclaré le biologiste évolutionniste Jay Lennon, qui étudie la dormance microbienne à l'Université d'Indiana et n'a pas participé à la nouvelle étude. "Cela enrichira notre vision du fonctionnement de la dormance."

Melnikov et son étudiante diplômée Karla Helena-Bueno ont découvert Balon chez Psychrobacter urativorans, une bactérie adaptée au froid, originaire des sols gelés et récoltée dans le pergélisol arctique. (Selon Melnikov, la bactérie a été découverte pour la première fois dans un paquet de saucisses congelées dans les années 1970, puis redécouverte par le célèbre génomiciste Craig Venter lors d'un voyage dans l'Arctique.) Ils étudient P. urativorans et d'autres microbes inhabituels pour caractériser la diversité des outils de construction de protéines utilisés dans tout le spectre de la vie et pour comprendre comment les ribosomes peuvent s'adapter aux environnements extrêmes.

Parce que la dormance peut être déclenchée par diverses conditions, notamment la famine et la sécheresse, les scientifiques poursuivent ces recherches avec un objectif pratique en tête : " Nous pouvons probablement utiliser ces connaissances pour concevoir des organismes capables de tolérer des climats plus chauds ", a déclaré Melnikov, " et donc résister au changement climatique. "

Présentation : Balon

Helena-Bueno a découvert Balon entièrement par hasard. Elle s'employait à amadouer qour que les P.Urativorans grandissent joyeusement en laboratoire. Au lieu de cela, elle a fait le contraire. Elle a laissé la culture dans un seau à glace pendant trop longtemps et a réussi à la soumettre à un choc froid. Au moment où elle se rappela de sa présence, les bactéries adaptées au froid étaient devenues dormantes.

Ne voulant pas gaspiller la culture, les chercheurs ont quand même poursuivi leurs investigations initiales. Helena-Bueno a extrait les ribosomes des bactéries choquées par le froid et les a soumis à la cryo-EM. Abréviation de microscopie électronique cryogénique, la cryo-EM est une technique permettant de visualiser de minuscules structures biologiques à haute résolution. Helena-Bueno a vu une protéine coincée dans le site A du ribosome bloqué – la " porte " où les acides aminés sont livrés pour la construction de nouvelles protéines.

Helena-Bueno et Melnikov n'ont pas reconnu la protéine. En effet, cela n’avait jamais été décrit auparavant. Elle présentait une similitude avec une autre protéine bactérienne, importante pour le démontage et le recyclage des parties ribosomales, appelée Pelota de l'espagnol pour " balle ". Ils ont donc nommé la nouvelle protéine Balon, un mot espagnol pour " balle ".

"Contrairement à d’autres facteurs d’hibernation, Balon peut être inséré pour bloquer la croissance, puis rapidement éjecté comme une cassette."

La capacité de Balon à arrêter l'activité du ribosome est une adaptation essentielle pour un microbe soumis à un stress, a déclaré Mee-Ngan Frances Yap, microbiologiste à l'Université Northwestern qui n'a pas participé aux travaux. "Lorsque les bactéries se développent activement, elles produisent beaucoup de ribosomes et d'ARN", a-t-elle déclaré. " Lorsqu’elle est confrontée à un stress, une espèce peut avoir besoin d’arrêter la traduction " de l’ARN en nouvelles protéines pour commencer à économiser de l’énergie pendant une période d’hibernation potentiellement longue.

Notamment, le mécanisme de Balon est un processus réversible. Contrairement à d’autres facteurs d’hibernation, il peut être inséré pour bloquer la croissance, puis rapidement éjecté comme une cassette. Il permet à une cellule de se mettre rapidement en veille en cas d’urgence et de se réanimer tout aussi rapidement pour se réadapter à des conditions plus favorables.

Balon peut le faire car il s'accroche aux ribosomes d'une manière unique. Chaque facteur d'hibernation ribosomale découvert précédemment bloque physiquement le site A du ribosome, de sorte que tout processus de fabrication de protéines en cours doit être terminé avant que le facteur puisse s'attacher pour désactiver le ribosome. Balon, en revanche, se lie à proximité mais pas à travers le canal, ce qui lui permet d'aller et venir indépendamment de ce que fait le ribosome.

Malgré la nouveauté mécaniste de Balon, il s’agit d’une protéine extrêmement courante. Une fois identifié, Helena-Bueno et Melnikov ont trouvé des parents génétiques de Balon dans plus de 20 % de tous les génomes bactériens catalogués dans les bases de données publiques. Avec l'aide de Mariia Rybak , biologiste moléculaire à la branche médicale de l'Université du Texas, ils ont caractérisé deux de ces protéines bactériennes alternatives : une provenant du pathogène humain Mycobacterium tuberculosis, responsable de la tuberculose, et un autre chez Thermus thermophilus, qui vit dans le dernier endroit où on pourrait trouver P. urativorans, c'est-à-dire dans des bouches d'aération sous-marines ultra-chaudes. Les deux protéines se lient également au site A du ribosome, ce qui suggère qu'au moins certains de ces gènes apparentés agissent de la même manière que Balon chez d'autres espèces bactériennes.

Balon est notamment absent d' Escherichia coli et de Staphylococcus aureus, les deux bactéries les plus étudiées et les modèles de dormance cellulaire les plus largement utilisés. En se concentrant uniquement sur quelques organismes de laboratoire, les scientifiques ont raté une tactique d'hibernation largement répandue, a déclaré Helena-Bueno. "J'ai essayé d'explorer un coin de nature sous-étudié et j'ai trouvé quelque chose."

Tout le monde hiberne

Chaque cellule a besoin de pouvoir se mettre en veille et d’attendre son moment. La bactérie modèle de laboratoire E. coli possède cinq modes d'hibernation distincts, a déclaré Melnikov, chacun étant suffisant à lui seul pour permettre au microbe de survivre à une crise." La plupart des microbes sont affamés ", explique Ashley Shade, microbiologiste à l'université de Lyon, qui n'a pas participé à la nouvelle étude. " Ils vivent en constant état de manque. Ils ne se dédoublent pas et ne vivent pas leur meilleure vie ".

Mais la dormance est également nécessaire en dehors des périodes de famine. Même chez les organismes, comme la plupart des mammifères, dont le corps entier n’est pas complètement endormi, les populations cellulaires individuelles doivent attendre le meilleur moment pour s’activer. Les ovocytes humains dorment pendant des décennies en attendant d’être fécondés. Les cellules souches humaines naissent dans la moelle osseuse, puis restent au repos, attendant que le corps les appelle pour se développer et se différencier. Les fibroblastes du tissu nerveux, les lymphocytes du système immunitaire et les hépatocytes du foie entrent tous dans des phases dormantes, inactives et sans division et se réactivent plus tard.

"Ce n'est pas quelque chose qui est propre aux bactéries ou aux archées", a déclaré Lennon. " Chaque organisme de l’arbre de vie a une manière de mettre en œuvre cette stratégie. Ils peuvent suspendre leur métabolisme.

Les ours hibernent. Les virus de l'herpès se lysogénisent. Les vers forment un stade Dauer. Les insectes entrent en diapause. Les amphibiens estivent. Les oiseaux entrent en torpeur. Tous ces mots désignent exactement la même chose : un état de dormance que les organismes peuvent inverser lorsque les conditions sont favorables.

"Avant l'invention de l'hibernation, la seule façon de vivre était de continuer à grandir sans interruption", a déclaré Melnikov. "Mettre la vie sur pause est un luxe."

C'est aussi une sorte d'assurance à l'échelle de la population. Certaines cellules poursuivent leur dormance en détectant les changements environnementaux et en réagissant en conséquence. Cependant, de nombreuses bactéries utilisent une stratégie stochastique. "Dans des environnements fluctuant de manière aléatoire, si vous ne vous mettez pas parfois en dormance, il y a un risque que la population entière disparaisse" à la suite de rencontres aléatoires avec des catastrophes, a déclaré Lennon. Même dans les cultures d' E. coli les plus saines, les plus heureuses et à la croissance la plus rapide, entre 5 % et 10 % des cellules seront néanmoins dormantes. Ce sont les survivants désignés qui survivront si quelque chose arrivait à leurs cousins ​​plus actifs et plus vulnérables.

En ce sens, la dormance est une stratégie de survie face aux catastrophes mondiales. C'est pourquoi Helena-Bueno étudie l'hibernation. Elle s'intéresse aux espèces qui pourraient rester stables malgré le changement climatique, à celles qui pourraient se rétablir et aux processus cellulaires, comme l'hibernation assistée par Balon, qui pourraient aider.

Plus fondamentalement, Melnikov et Helena-Bueno espèrent que la découverte de Balon et son omniprésence aideront les gens à recadrer ce qui est important dans la vie. Nous dormons tous fréquemment et beaucoup d’entre nous l’apprécient beaucoup. "Nous passons un tiers de notre vie à dormir, mais nous n'en parlons pas du tout", a déclaré Melnikov. Au lieu de nous plaindre de ce qui nous manque lorsque nous dormons, peut-être pourrions-nous le vivre comme un processus qui nous relie à toute vie sur Terre, y compris les microbes qui dorment au plus profond du pergélisol arctique.

Auteur: Internet

Info: https://www.quantamagazine.org/ - Dan Samorodnitski, 5 juin 2024

[ prudent tâtonnements bayésiens ] [ création de réserves ] [ hivernation ] [ arrêts ] [ répits ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

homme-animal

Les insectes et autres animaux ont une conscience, déclarent les experts

Un groupe d'éminents biologistes et philosophes a annoncé un nouveau consensus : il existe " une possibilité réaliste " que les insectes, les poulpes, les crustacés, les poissons et d'autres animaux négligés fassent l'expérience de la conscience.  

En 2022, des chercheurs du Bee Sensory and Behavioral Ecology Lab de l’Université Queen Mary de Londres ont observé des bourdons faire quelque chose de remarquable : ces petites créatures floues se livraient à une activité qui ne pouvait être décrite que comme un jeu. Une fois face à de minuscules boules de bois, les abeilles les poussent et les font tourner. Ce comportement n’avait aucun lien évident avec l’accouplement ou la survie, et n’était pas non plus récompensé par les scientifiques. Apparemment, c'était juste pour s'amuser.

L’étude sur les abeilles joueuses fait partie d’un ensemble de recherches citées aujourd’hui par un groupe d’éminents spécialistes de l’esprit animal, étayant une nouvelle déclaration qui étend le soutien scientifique à la conscience à un plus grand nombre d’animaux que ce qui avait été formellement reconnu auparavant. Depuis des décennies, les scientifiques s’accordent largement sur le fait que les animaux semblables à nous – les grands singes, par exemple – ont une expérience consciente, même si leur conscience diffère de la nôtre. Ces dernières années, cependant, les chercheurs ont commencé à reconnaître que la conscience pourrait également être répandue chez des animaux très différents de nous, notamment des invertébrés dotés d’un système nerveux complètement différent et bien plus simple.

La nouvelle déclaration, signée par des biologistes et des philosophes, adhère formellement à ce point de vue. On y lit notamment : " Les preuves empiriques indiquent au moins une possibilité réaliste d’expérience consciente chez tous les vertébrés (y compris tous les reptiles, amphibiens et poissons) et de nombreux invertébrés (y compris, au minimum, les mollusques céphalopodes, les crustacés décapodes et les insectes). " Inspiré par les résultats de recherches récentes décrivant des comportements cognitifs complexes chez ces animaux et chez d'autres animaux, le document représente un nouveau consensus et suggère que les chercheurs ont peut-être surestimé le degré de complexité neuronale requis pour la conscience.

La Déclaration de New York sur la conscience animale en quatre paragraphes a été dévoilée aujourd'hui, le 19 avril, lors d'une conférence d'une journée intitulée " La science émergente de la conscience animale " qui s'est tenue à l'Université de New York. Menée par la philosophe et spécialiste des sciences cognitives Kristin Andrews de l'Université York en Ontario, le philosophe et spécialiste de l'environnement Jeff Sebo de l'Université de New York et le philosophe Jonathan Birch de la London School of Economics and Political Science, la déclaration a jusqu'à présent été signée par 39 chercheurs, dont les psychologues Nicola Clayton et Irene Pepperberg, les neuroscientifiques Anil Seth et Christof Koch , le zoologiste Lars Chittka et les philosophes David Chalmers et Peter Godfrey-Smith .

La déclaration se concentre sur le type de conscience le plus fondamental, connu sous le nom de conscience phénoménale. En gros, si une créature a une conscience phénoménale, alors c'est " comme quelque chose " qu'être cette créature — une idée énoncée par le philosophe Thomas Nagel dans son essai influent de 1974, " Qu'est-ce que ça fait d'être une chauve-souris ? " Même si une créature est très différente de nous, écrit Nagel, " " Un organisme a fondamentalement des états mentaux conscients qui correspondent à ce qu'est cet organisme, si et seulement si. ... Nous pouvons appeler cela le caractère subjectif de l'expérience. Si une créature est ainsi consciente, elle a la capacité d’éprouver des sentiments tels que la douleur, le plaisir ou la faim, mais pas nécessairement des états mentaux plus complexes comme la conscience de soi.

" J'espère que celà attire une plus grande attention aux problèmes de la conscience non humaine et aux défis éthiques qui accompagnent la possibilité d'expériences conscientes bien au-delà de l'humain", a écrit Seth, neuroscientifique à l'Université du Sussex, dans un e-mail. " J'espère que cela suscitera des discussions, éclairera les politiques et les pratiques en matière de bien-être animal et galvanisera la compréhension et l'appréciation du fait que nous avons beaucoup plus en commun avec d'autres animaux qu'avec des choses comme ChatGPT. "

Une prise de conscience croissante

La déclaration a commencé à prendre forme l’automne dernier, à la suite de conversations entre Sebo, Andrews et Birch. " Nous parlions tous les trois de tout ce qui s'est passé au cours des 10 ou 15 dernières années dans la science de la conscience animale", se souvient Sebo. Nous savons maintenant, par exemple, que les poulpes ressentent de la douleur et que les seiches se souviennent des détails d'événements passés spécifiques. Des études sur les poissons ont montré que les labres (Labroides dimidiatus) semblent réussir une version du " test du miroir ", qui indique un certain degré d'auto-reconnaissance, et que les poissons zèbres montrent des signes de curiosité. Dans le monde des insectes, les abeilles présentent un comportement de jeu apparent, tandis que les mouches des fruits de la drosophile ont des habitudes de sommeil distinctes influencées par leur environnement social. Pendant ce temps, les écrevisses présentent des états de type anxiété – et ces états peuvent être modifiés par des médicaments anti-anxiété.

Ces signes, ainsi que d’autres, d’états de conscience chez des animaux qui ont longtemps été considérés comme moins conscients ont excité et interpellé les biologistes, les spécialistes des sciences cognitives et les philosophes de l’esprit. "Beaucoup de gens acceptent depuis un certain temps que, par exemple, les mammifères et les oiseaux sont soit conscients, soit très susceptibles de l'être, mais moins d'attention a été accordée aux autres taxons de vertébrés et en particulier d'invertébrés", a déclaré Sebo. Lors de conversations et de réunions, les experts ont largement convenu que ces animaux devaient avoir une conscience. Cependant, ce consensus nouvellement formé n’a pas été communiqué au grand public, notamment aux autres scientifiques et décideurs politiques. Les trois chercheurs ont donc décidé de rédiger une déclaration claire et concise et de la faire circuler parmi leurs collègues pour approbation. La déclaration n’est pas censée être exhaustive mais plutôt " indiquer où nous pensons que le domaine se trouve actuellement et où il se dirige ", a déclaré Sebo.

La nouvelle déclaration met à jour les efforts les plus récents visant à établir un consensus scientifique sur la conscience animale. En 2012, des chercheurs ont publié la Déclaration de Cambridge sur la conscience, qui affirmait qu'un grand nombre d'animaux non humains, y compris, mais sans s'y limiter, les mammifères et les oiseaux, ont " la capacité de manifester des comportements intentionnels " et que " les humains ne sont pas les seuls à posséder les substrats neurologiques " qui génèrent la conscience.

La nouvelle déclaration élargit la portée de son prédécesseur et est également rédigée avec plus de soin, a écrit Seth. " Elle n'essaie pas de faire de la science par diktat, mais souligne plutôt ce que nous devrions prendre au sérieux concernant la conscience animale et l'éthique pertinente, compte tenu des preuves et des théories dont nous disposons." Il a écrit qu’il n’était " pas favorable aux avalanches de lettres ouvertes et autres ", mais qu’il était finalement " parvenu à la conclusion que cette déclaration méritait vraiment d’être soutenue ".

Godfrey-Smith, philosophe des sciences à l'Université de Sydney qui a beaucoup travaillé avec les poulpes, estime que les comportements complexes que présentent ces créatures – notamment la résolution de problèmes, l'utilisation d'outils et le comportement de jeu – ne peuvent être interprétés que comme des indicateurs de conscience. "Elles ont cet engagement attentif avec les choses, avec nous et avec de nouveaux objets qui fait qu'il est très difficile de ne pas penser qu'il se passe beaucoup de choses à l'intérieur d'elles", a-t-il déclaré. Il a noté que des articles récents portant sur la douleur et les états oniriques chez les poulpes et les seiches " vont dans la même direction… ".

Même si de nombreux animaux mentionnés dans la déclaration ont un cerveau et un système nerveux très différents de ceux des humains, les chercheurs affirment que cela ne constitue pas nécessairement un obstacle à la conscience. Par exemple, le cerveau d’une abeille ne contient qu’environ un million de neurones, contre environ 86 milliards dans le cas des humains. Mais chacun de ces neurones d’abeille peut être structurellement aussi complexe qu’un chêne. Le réseau de connexions qu’ils forment est également incroyablement dense, chaque neurone en contactant peut-être 10 000 ou 100 000 autres. Le système nerveux d’une pieuvre, en revanche, est complexe à d’autres égards. Son organisation est hautement distribuée plutôt que centralisée ; un bras coupé peut présenter de nombreux comportements de l'animal intact.

(4 photos : Des recherches récentes sur l’esprit des animaux – notamment ceux des écrevisses, des poulpes, des serpents et des poissons – suggèrent que la conscience " peut exister dans une architecture neurale qui semble complètement étrangère " à la nôtre, a déclaré Peter Godfrey-Smith.)

Le résultat, a déclaré Andrews, est que "  nous n’avons peut-être pas besoin d’autant d’équipement que nous le pensions " pour atteindre la conscience. Elle note, par exemple, que même un cortex cérébral – la couche externe du cerveau des mammifères, censée jouer un rôle dans l’attention, la perception, la mémoire et d’autres aspects clés de la conscience – n’est peut-être pas nécessaire pour une conscience phénoménale plus simple comme celle ciblée dans la déclaration.

"Il y a eu un grand débat sur la question de savoir si les poissons sont conscients, et cela était en grande partie dû au fait qu'ils n'avaient pas les structures cérébrales que nous observons chez les mammifères", a-t-elle déclaré. "Mais quand vous regardez les oiseaux, les reptiles et les amphibiens, ils ont des structures cérébrales très différentes et des pressions évolutives différentes - et pourtant certaines de ces structures cérébrales, comme nous le constatons, font le même genre de travail qu'un cortex cérébral chez l'homme. " Godfrey-Smith est d’accord, notant que des comportements révélateurs de conscience " peuvent exister dans une architecture qui semble complètement étrangère à l’architecture des vertébrés ou des humains ".

Relations conscientes

Bien que la déclaration ait des implications pour le traitement des animaux, et en particulier pour la prévention de la souffrance animale, Sebo a noté que l'accent devrait aller au-delà de la douleur. Il ne suffit pas d'empêcher les animaux en captivité de ressentir des douleurs et des inconforts corporels, a-t-il déclaré. " Nous devons également leur offrir le type d’enrichissement et d’opportunités qui leur permettent d’exprimer leurs instincts, d’explorer leur environnement, de s’engager dans les systèmes sociaux et d’être par ailleurs le genre d’agents complexes qu’ils sont. "

Mais les conséquences de l’attribution du label " conscient " à un plus grand nombre d’animaux – en particulier à des animaux dont nous n’avons pas l’habitude de prendre en compte les intérêts – ne sont pas simples. Par exemple, notre relation avec les insectes peut être " inévitablement quelque peu antagoniste ", a déclaré Godfrey-Smith. Certains ravageurs dévorent les récoltes et les moustiques peuvent être porteurs de maladies. " L'idée selon laquelle nous pourrions simplement faire la paix avec les moustiques est une pensée très différente de l'idée selon laquelle nous pourrions faire la paix avec les poissons et les poulpes", a-t-il déclaré.

De même, peu d’attention est accordée au bien-être des insectes comme la drosophile, largement utilisés dans la recherche en biologie. " Dans la recherche, nous pensons au bien-être du bétail et des souris, mais nous ne pensons jamais au bien-être des insectes ", a déclaré Matilda Gibbons , qui étudie les bases neuronales de la conscience à l'Université de Pennsylvanie et a signé la déclaration.

Même si les organismes scientifiques ont créé certaines normes pour le traitement des souris de laboratoire, il n'est pas clair si la déclaration d'aujourd'hui mènera à de nouvelles normes pour le traitement des insectes. Mais les nouvelles découvertes scientifiques suscitent parfois de nouvelles politiques. La Grande-Bretagne, par exemple, a adopté une législation visant à accroître la protection des poulpes, des crabes et des homards après qu'un rapport de la London School of Economics  ait indiqué que ces animaux pouvaient ressentir de la douleur, de la détresse ou être blessés.

Bien que la déclaration ne fasse aucune mention de l’intelligence artificielle, la question d’une éventuelle conscience de l’IA préoccupe les chercheurs en conscience animale. "Il est très peu probable que les systèmes d'IA actuels soient conscients", a déclaré Sebo. Cependant, ce qu’il a appris sur l’esprit animal " me fait réfléchir et me donne envie d’aborder le sujet avec prudence et humilité ".

 

Auteur: Internet

Info: https://www.quantamagazine.org/ - Dan Falk  19 avril 2024

[ entités vivantes ] [ monades ] [ animal-végétal ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

addiction

Elle étudie la façon dont la toxicomanie interfère avec l'apprentissage dans le cerveau

Erin Calipari cherche à comprendre comment des drogues comme les opioïdes et la cocaïne modifient les circuits d'apprentissage et la neurochimie dans l'un des épicentres nationaux des troubles liés à la consommation de substances psychoactives et de la toxicomanie.

(Photo : La dopamine est mieux comprise comme une molécule " d’apprentissage " que comme une molécule de " plaisir ", déclare Erin. "Tout le monde doit avoir un neuromodulateur préféré dans le cerveau, et pour moi c'est la dopamine.")

À quoi ressemble l’apprentissage dans le cerveau et comment les drogues interfèrent-elles avec cela ?

Notre cerveau est programmé pour nous aider à voir les choses qui sont importantes et à y réagir. Cela détermine si nous devons refaire quelque chose ou non. Devons-nous déménager ou rester ? Est-ce bon ou mauvais? Est-ce quelque chose auquel je dois faire attention ?

Les drogues convainquent notre cerveau : " Oui, c’est important. C’est quelque chose que nous devons refaire. Les drogues déterminent non seulement les décisions concernant la drogue elle-même, mais également les décisions concernant les stimuli non médicamenteux présents dans notre environnement. Elles modifient la façon dont nous apprenons.

Comment ça marche au niveau moléculaire ?

Les médicaments comme les opioïdes agissent sur la dopamine. La plupart des gens considèrent la dopamine comme une " molécule du plaisir ", mais ce n’est pas tout. Oui, la dopamine est libérée par des stimuli enrichissants comme le chocolat ou le sucre. Mais Elle est également libérée par des stimuli aversifs comme le stress ou la douleur. Elle se déclenche lorsque les choses sont nouvelles ou différentes, qu'elles soient bonnes ou mauvaises. Et de cette façon, la dopamine est essentielle pour vous aider à apprendre.

Les drogues continuent essentiellement à stimuler la dopamine même lorsque les choses ne sont plus nouvelles ou différentes. Le cerveau continue de penser que quelque chose est important, vous signalant ainsi de continuer à y prêter attention. Mais si les drogues augmentent la dopamine sur le moment, leur consommation à long terme la diminue. Ainsi, avec la consommation croissante de drogues, il y a de moins en moins de dopamine dans le cerveau, ce qui signifie que vous avez du mal à apprendre quelque chose de nouveau.

La dopamine doit-elle être redéfinie comme une molécule " d’apprentissage " plutôt que comme une molécule de " plaisir " ?

Oui. Comprendre la dopamine en tant que molécule qui détermine l’efficacité de notre apprentissage est beaucoup plus précis.

Comment étudiez-vous ce système compliqué ?

Dans mon laboratoire, nous utilisons différentes stratégies pour enregistrer et manipuler différentes cellules du cerveau afin d’essayer de déterminer quelles cellules et quels circuits nous aident à prendre des décisions adaptatives. Et puis, une fois que nous avons identifié ces circuits, nous y allons et disons : Comment l'exposition aux drogues change-t-elle le fonctionnement du système ? Nous effectuons ce travail au niveau physiologique et épigénétique. L’objectif est de comprendre la biologie fondamentale – comment les médicaments détournent les circuits – et ensuite de déterminer si nous pouvons inverser le processus. Nous pouvons utiliser les outils CRISPR*, par exemple, pour inverser une partie de la plasticité de cellules cérébrales spécifiques.

Comprendre le fonctionnement de la dopamine peut-il éventuellement nous aider à développer des traitements contre la dépendance ?

Comprendre ce que fait la dopamine pour aider le cerveau à apprendre est vraiment important. Mais ce sera très difficile à cibler. Vous ne pouvez pas simplement bloquer la dopamine : si vous le faites, les gens ne pourront plus bouger, ils ne pourront plus prêter attention à quoi que ce soit. De nombreux travaux sont en cours sur différentes manières d'affiner le système dopaminergique au lieu de simplement l'activer ou le désactiver. Je pense que c'est ce que nous allons devoir faire.

Qu'est-ce que ça fait de travailler en tant que chercheur en toxicomanie dans l'un des épicentres de la toxicomanie ?

Nashville est mauvais. Au plus fort de l’épidémie d’opioïdes, le Tennessee avait l’un des taux de prescriptions d’opioïdes les plus élevés. Ces dernières années, ce chiffre a diminué, mais pas le problème des opioïdes. Et il ne s’agit pas uniquement d’opioïdes pour nous ; la méthamphétamine est également un problème important. Vanderbilt se trouve donc dans cet espace unique en tant que l’un des plus grands hôpitaux de recherche de la région, au cœur des troubles liés à l’usage de ces substances.

Parfois, il est épuisant de ne pas pouvoir résoudre sa dépendance. C'est écrasant dans un sens pas sympa. Parfois, c'est triste de parler à des personnes qui souffrent de troubles liés à l'usage de substances, et je ne sais pas comment les aider. Elles me posent des questions, mais si je suis experte des changements neurobiologiques spécifiques qui se produisent il m’est difficile de comprendre l’impact de ce trouble sur la vie quotidienne d’un individu puisque je ne l’ai pas vécu personnellement.

Sommes-nous sur le point de comprendre et, à terme, de trouver un remède à la dépendance ?

Guérir de la dépendance est difficile car la dépendance n’est pas une maladie uniforme. Certaines personnes souffrant de dépendance souffrent de troubles comorbides comme l’anxiété et la dépression. Certaines personnes prennent des drogues pour éviter la douleur. Certaines personnes ont un comportement compulsif, d’autres non.

Il sera essentiel de comprendre ce qui est similaire et différent dans le cerveau des individus présentant chacun de ces symptômes uniques pour comprendre comment aborder le traitement en premier lieu. Dans mon laboratoire, par exemple, nous étudions les différences entre les hommes et les femmes.

Qu'avez-vous découvert ?

Lorsque l’on examine les raisons pour lesquelles les gens consomment de la drogue, les femmes sont plus susceptibles de déclarer qu’elles en prennent pour éviter ou échapper à des conséquences négatives, comme le stress et l’anxiété. Les hommes sont plus susceptibles de consommer des drogues de manière impulsive, de planer et de sortir avec des amis. Les deux sexes consomment des drogues et un certain pourcentage d’entre eux développeront un trouble lié à l’usage de substances. Mais ils le font pour différentes raisons.

Les hormones ont beaucoup à voir avec cela. Nous avons découvert que l'estradiol, une hormone ovarienne qui circule avec le cycle menstruel, modifie la façon dont la nicotine agit dans le cerveau en modifiant les fonctions de ses récepteurs.

Nous avons également constaté que si l’on donne aux animaux un accès illimité aux drogues, les mâles et les femelles consomment la même quantité de drogues et leur comportement semble identique. Mais lorsque nous avons examiné les modifications apportées aux protéines de leur cerveau, les hommes et les femmes étaient totalement différents. Beaucoup de ces protéines ont des fonctions cellulaires similaires. Nous pensons que ce médicament augmente la dopamine chez les hommes et les femmes et détermine le comportement de la même manière, mais les voies moléculaires utilisées par chaque sexe sont très différentes.

Pourquoi les cerveaux de sexes différents emprunteraient-ils des chemins différents pour arriver au même point ?

Si vous aviez un système dans lequel vous avez besoin d’un neurone pour coder une information, ce système serait susceptible de tomber en panne. Tout devrait fonctionner parfaitement à chaque fois pour que vous puissiez naviguer dans l'environnement. Mais le cerveau comporte de nombreuses redondances, ce qui signifie que vous n’avez pas besoin que tout fonctionne parfaitement. Il existe de nombreuses façons d’arriver au même but. La raison pour laquelle les mâles et les femelles ont des manières différentes de coder leurs comportements est probablement basée sur l'évolution et la survie de notre espèce.

Cela doit être un domaine difficile dans lequel travailler. Qu'est-ce qui vous motive ?

Ce qui me préoccupe chaque jour, c’est que ce sont des questions importantes. Apprendre la prochaine chose et résoudre des problèmes difficiles est en soi très satisfaisant. Ensuite, lorsque vous respirez, prenez du recul et réalisez que les problèmes difficiles que vous résolvez ont vraiment un impact sur les gens, cela rend le tout encore plus significatif. Mais ma véritable motivation réside dans le mentorat de la prochaine génération. Lorsque je me suis lancé dans la recherche, mon objectif était d’influencer le plus de personnes possible. Je pensais y parvenir en découvrant quelque chose d'important et en changeant la société, ce qui est évidemment le but ultime. Mais ensuite, quand je suis arrivée ici et que j'ai installé mon laboratoire, j'ai réalisé que ce qu'on fait, c'est apprendre aux étudiants qu'ils peuvent faire ce travail. Leur permettre de découvrir ce pour quoi ils sont bons et ce qu'ils aiment me permet de continuer, même lorsque la science ne va pas toujours comme je le souhaite.

Vous êtes un peu comme l'entraîneur de votre propre équipe.

Lorsque vous finissez par diriger un laboratoire, vous réalisez qu’il s’agit d’une grande partie de la science, mais aussi d’une grande partie de la non-science. Il s'agit d'amener les gens à travailler ensemble et de créer l'environnement approprié pour chaque individu, ce qui peut s'avérer difficile. C'est comme constituer une équipe. S'ils travaillent ensemble, c'est moins difficile pour chacun. Et si vous le faites correctement, alors tout le monde y gagne.

Vous défendez également les femmes scientifiques. D’où vient cette motivation ?

Personne dans ma famille n’avait de diplôme d’études supérieures avant moi. Parce que mon père est sportif, l'accent n'était pas mis sur les études. Ensuite, je me suis retrouvé dans un espace dans lequel – je ne veux pas dire que je n’avais rien à faire, mais j’étais entouré d’un groupe de personnes qui, à mon avis, étaient plus intelligentes que moi. Ils savaient ce qu'ils faisaient. Ils savaient quel chemin ils étaient censés emprunter.  Heureusement j’ai eu des mentors extraordinaires qui m’ont aidé à rester sur un chemin que je ne connaissais pas. Et puis, en vieillissant, j’ai commencé à réaliser que ma place était ici. J'étais aussi intelligente que les gens autour de moi. Cela seul m’a fait réaliser à quel point il est important que les gens se sentent à leur place.

Au lieu de demander aux femmes d'agir comme des hommes pour s'intégrer dans un système construit pour les hommes, peut-être devrions-nous changer le système pour renforcer les éléments qui nous manquent, c'est-à-dire les éléments que les femmes apportent à la table : la façon dont elles naviguent dans le monde, comment elles perçoivent les choses, comment elles accompagnent les étudiants. Nous bénéficions énormément de la création d’un espace pour les femmes.

Vous avez fait du sport toute votre vie, y compris le basket-ball à l'université. Pensez-vous que cela a eu une influence sur votre carrière aujourd’hui ? 

Les choses les plus importantes que l’on apprend dans le sport sont comment se dépasser pour s’améliorer chaque jour, comment se remettre d’un échec et comment compter sur ses coéquipiers. Quand j'étais plus jeune, ces expériences m'ont appris à venir travailler après qu'une expérience n'ait pas fonctionné et à demander de l'aide lorsque j'en avais besoin.

Durant mon entraînement, j’étais l’athlète qui jouait à un jeu. Cependant, lorsque je suis devenu professeur, je suis tout d’un coup devenu entraîneur. Mon travail est différent maintenant. Il se concentre sur la façon dont je peux amener mon équipe à s’améliorer. Je dois identifier les points forts de chacun et les mettre en mesure de réussir. Je suis également là pour les aider à combler les lacunes avec d’excellents coéquipiers qui sont bons dans des domaines pour lesquels ils ne sont peut-être pas bons. Le sport m'a donné les compétences nécessaires pour me concentrer sur le travail acharné et la motivation, et m'a donné un cadre pour créer une équipe efficace et la motiver à donner le meilleur d'elle-même.

Votre père, John Calipari , est un entraîneur de basket-ball professionnel. Était-il un mentor pour vous ?

Il était un mentor extraordinaire, mais plus par les choses qu'il faisait que par les choses qu'il disait. Quand j'étais au collège, il a été viré. Le regarder se faire virer, puis revenir et dire : " Vous savez quoi, tout va bien ; Je vais me lever et recommencer " – c'était vraiment important pour moi de réaliser que même lorsque les choses semblent être d'énormes échecs, c'est parfois le début de quelque chose de nouveau.

Auteur: Internet

Info: Quanta Magazine, Yasemin Saplakoglu, 7 décembre 2023 *système simple, rapide et efficace pour couper l'ADN à un endroit précis du génome, dans n'importe quelle cellule.

[ accoutumance ] [ femmes-hommes ] [ éducation ] [ dépaysement ] [ ajustement ]

 

Commentaires: 0

Ajouté à la BD par miguel

exobiologie

Les extraterrestres sont-ils là sous nos yeux ?

Difficile de détecter quelque chose sans avoir aucune idée de ce que c'est.

Cette année, plusieurs missions sont en quête de vie sur la planète rouge. Mais reconnaîtrions-nous des extraterrestres si nous les trouvions ? En juillet, trois missions non habitées se sont envolées vers Mars : de Chine (Tianwen-1), depuis les États-Unis (Mars 2020 Perseverance Rover de la Nasa) et des Émirats arabes unis (Hope). Les missions chinoise et américaine sont équipées d'atterrisseurs qui rechercheront des signes de vie actuelle ou passée sur Mars. La Nasa prévoit également d'envoyer sa sonde Europa Clipper sur la lune de Jupiter, Europa, et l'atterrisseur robotisé Dragonfly sur la lune de Saturne, Titan. Ces deux lunes sont considérées comme des terrains de chasse prometteurs pour la vie dans notre système solaire, tout comme les océans souterrains d'Encelade, la lune glacée de Saturne.

En attendant, nous pouvons désormais entrevoir la composition chimique des atmosphères des planètes qui orbitent autour d'autres étoiles (exoplanètes), dont plus de 4 000 sont aujourd'hui connues. Certains espèrent que ces études pourraient révéler d'éventuelles signatures de vie.

Mais ces recherches peuvent-elles être efficaces si nous n'avons pas une idée claire de ce qu'est la "vie" ? La définition officieuse de la Nasa est la suivante : "système chimique autonome capable d'évolution darwinienne". "La Nasa a besoin d'une définition de la vie pour savoir comment construire des détecteurs et quels types d'instruments utiliser lors de ses missions", explique le zoologiste Arik Kershenbaum, de l'université de Cambridge. Mais tout le monde ne pense pas qu'elle utilise la bonne définition.

L'astrobiologiste Lynn Rothschild, du centre de recherche Ames de la Nasa en Californie, voit une mise en garde dans l'histoire de Winnie l'ourson d'AA Milne, dans laquelle Pooh et Piglet chassent un Woozle sans savoir à quoi il ressemble et confondent leurs propres empreintes avec ses traces. "On ne peut chasser quelque chose sans avoir aucune idée de ce que c'est", dit-elle.

Le problème de la définition de la vie hante les planétologues depuis que les deux atterrisseurs Viking de la Nasa se sont posés sur Mars en 1976. Depuis, les rovers ont parcouru des dizaines de kilomètres sur les plaines martiennes mais n'ont trouvé aucun signe de vie. Mais saurions-nous la reconnaître si nous la voyions ?

Certains astrobiologistes - scientifiques qui étudient la possibilité de vie sur d'autres mondes - pensent que notre vision est trop étroite. Nous ne connaissons qu'un seul type de vie : la vie terrestre. Tous les êtres vivants sur Terre sont constitués de cellules adaptées à un environnement aquatique, utilisant une machinerie moléculaire construite à partir de protéines et codée sous forme de gènes dans l'ADN. Peu de scientifiques pensent que la vie extraterrestre - si tant est qu'elle existe - repose sur les mêmes éléments chimiques. "Il serait erroné de supposer que la biochimie qui nous est familière est celle que nous allons trouver sur d'autres planètes", déclare Kershenbaum. La surface de Titan, par exemple, est trop froide (moins 179 °C) pour contenir de l'eau liquide, mais la mission de l'atterrisseur Huygens en 2005 a révélé la présence de lacs d'un autre type, constitués d'hydrocarbures comme ceux de l'essence, principalement du méthane et de l'éthane.

Rothschild pense que les règles universelles de la chimie réduisent certaines des options. "J'ai du mal à imaginer une autre forme de vie qui ne soit pas basée sur le carbone", dit-elle. Il est donc logique de concevoir les missions planétaires de recherche de la vie en gardant cela à l'esprit. L'eau présente également "une tonne d'avantages" en tant que solvant de la vie. Même si des réactions chimiques intéressantes se produisaient dans les lacs de méthane de Titan, elles seraient fortement ralenties par les températures glaciales. La vie pourrait-elle se dérouler à un rythme aussi glacial ? Le planétologue Stuart Bartlett, de l'Institut de technologie de Californie à Pasadena, garde l'esprit ouvert. "Il pourrait y avoir des organismes flottant dans l'atmosphère de Titan qui boivent essentiellement de l'essence pour se maintenir", dit-il.

On a longtemps pensé que toute entité méritant d'être qualifiée de vivante possède des attributs qui ne dépendent pas de sa composition chimique précise. Il est toutefois très difficile de définir ces qualités générales. Les systèmes vivants - même les bactéries - sont extrêmement complexes, maintenus par des informations qui passent (dans notre cas via les gènes) entre les générations et créent une organisation. Mais il ne s'agit pas de l'ordre froid et mort des cristaux, où les atomes sont empilés selon des motifs réguliers. Il s'agit plutôt de l'ordre dynamique d'une ville ou d'une formation nuageuse, que les scientifiques qualifient de "déséquilibré" : il est constamment alimenté en énergie et ne s'installe pas dans un état statique.

Bartlett et Wong proposent une catégorie plus large appelée "lyfe", dont la vie telle que nous la connaissons n'est qu'une variante.

Lorsque James Lovelock, aujourd'hui connu pour l'hypothèse Gaia qui propose que notre planète entière soit assimilée à une entité vivante, participa à la conception des atterrisseurs Viking dans les années 1970, il suggéra de rechercher un tel déséquilibre chimique dans l'environnement - que seule la vie pourrait éventuellement maintenir sur des échelles de temps géologiques. Il s'agit plutôt de l'ordre dynamique d'une ville ou d'une formation nuageuse, que les scientifiques qualifient de "déséquilibré" : Les deux étant constamment alimentés en énergie et ne s'installent pas dans un état statique.  Mais des états de "déséquilibre ordonné" peuvent également être trouvés dans des systèmes non vivants, comme des liquides fluides, de sorte que ce seul critère ne permet pas d'identifier la vie.

Bartlett, en collaboration avec l'astrobiologiste Michael Wong de l'Université de Washington à Seattle, soutient que nous devons échapper au carcan de la pensée terrestre sur la vie. Ils proposent d'introduire une catégorie plus large appelée "lyfe" (prononcé, d'une façon étrangement typique du West Country, comme "loif"), dont la vie telle que nous la connaissons n'est qu'une variation. "Notre proposition tente de se libérer de certains des préjugés potentiels dus au fait que nous faisons partie de cette seule instanciation de lyfe", explique Bartlett. Ils suggèrent quatre critères pour la lyfe :

1. Elle puise dans les sources d'énergie de son environnement qui l'empêchent de devenir uniforme et immuable.

2. Elle connaît une croissance exponentielle (par exemple par réplication).

3. Elle peut se réguler pour rester stable dans un environnement changeant.

4. Elle apprend et se souvient des informations sur cet environnement. L'évolution darwinienne est un exemple de cet apprentissage sur des échelles de temps très longues : les gènes préservent les adaptations utiles à des circonstances particulières.

Les deux chercheurs affirment qu'il existe des systèmes "sublyfe" qui ne répondent qu'à certains de ces critères, et peut-être aussi des "superlyfe" qui en remplissent d'autres : des formes lyfe qui ont des capacités supérieures aux nôtres et qui pourraient nous regarder comme nous regardons des processus complexes mais non vivants tels que la croissance des cristaux.

"Nous espérons cette définition libère suffisamment notre imagination pour que nous ne passions pas à côté de formes de lyfe qui pourraient se cacher à la vue de tous", déclare Bartlett. Lui et Wong suggèrent que certains organismes lytiques pourraient utiliser des sources d'énergie inexploitées ici sur Terre, comme les champs magnétiques ou l'énergie cinétique, l'énergie du mouvement. "Il n'existe aucune forme de vie connue qui exploite directement l'énergie cinétique dans son métabolisme", déclare Bartlett.

Selon eux, il pourrait y avoir d'autres moyens de stocker des informations que dans des brins génétiques comme l'ADN. Les scientifiques ont, par exemple, déjà imaginé des moyens artificiels de stocker et de traiter l'information en utilisant des réseaux bidimensionnels de molécules synthétiques, comme des réseaux en damier ou des abaques. Selon Bartlett, la distinction entre "alyfe" et "non-lyfe" pourrait être floue : être "alyve" pourrait être une question de degré. Après tout, les scientifiques se disputent déjà sur la question de savoir si les virus peuvent être considérés comme tels, même si personne ne doute de leur capacité à détruire la vie.

Il est sceptique quant à la notion de la définition de travail de la Nasa selon laquelle la vie ne peut apparaître et se développer que par l'évolution darwinienne. Il affirme que même les organismes terrestres peuvent façonner leur comportement d'une manière qui ne dépend pas d'un mécanisme Darwinien, à savoir des mutations aléatoires couplées à une compétition pour les ressources qui sélectionne les mutations avantageuses. "L'évolution darwinienne existe bien sûr, mais je pense qu'elle doit être complétée par une vision plus large de l'apprentissage biologique", déclare-t-il.

L'astrobiologiste et physicienne Sara Walker, de l'Arizona State University, partage cet avis. "Il se peut que certains systèmes possèdent de nombreux attributs de la vie mais ne franchissent jamais le seuil de la vie darwinienne", dit-elle. Mais dans son nouveau livre The Zoologist's Guide to the Galaxy, Kershenbaum affirme qu'il est difficile d'imaginer un autre processus susceptible de produire des systèmes chimiques complexes dignes d'être considérés comme vivants (ou alyves). L'évolution par sélection naturelle, dit-il, suit "des principes bien définis dont nous savons qu'ils s'appliqueront non seulement sur Terre mais aussi ailleurs dans l'univers" - et il est "très confiant dans le fait qu'elle sera à l'origine de la diversité de la vie sur les planètes extraterrestres". Si c'est le cas, affirme-t-il, nous pouvons faire des hypothèses raisonnables sur d'autres attributs de ces planètes : par exemple, la vie aura un processus comme la photosynthèse pour récolter l'énergie de l'étoile mère.

Bartlett et Wong se demandent également si les choses vivantes doivent avoir des frontières physiques bien définies.

Après tout, alors que nous pourrions imaginer n'être que tout ce qui se trouve à l'intérieur de notre peau, nous dépendons d'autres organismes en nous : le micro-biote des bactéries dans nos intestins par exemple. Et certains philosophes soutiennent que notre esprit s'étend au-delà de notre cerveau et de notre corps, par exemple dans nos appareils technologiques. "Nous pensons que la vie est un processus qui se déroule probablement à l'échelle de planètes entières", déclare Bartlett. Walker convient que "la seule limite naturelle des processus vivants est la planète", ce qui rappelle l'hypothèse Gaia de Lovelock.

Mais en l'absence d'une limite pour les ingrédients moléculaires, dit Rothschild, tous les composants d'un système vivant se dilueraient dans son environnement, comme des gouttelettes d'encre dans l'eau. Et Kershenbaum affirme que des organismes distincts et délimités sont nécessaires si l'évolution est darwinienne, car ce n'est qu'alors qu'il y a quelque chose d'autre à concurrencer.

Walker pense qu'en fait Bartlett et Wong ne vont pas assez loin dans leur tentative de libérer les idées quant à une vie terracentrique. Leur notion de lyfe, dit-elle, "fait table rase de bon nombre des problèmes omniprésents dans les définitions actuelles de la vie en proposant une définition plus large basée sur les définitions existantes. Les problèmes de base restent les mêmes. Nous n'avons pas besoin de nouvelles définitions de la vie. Ce dont nous avons besoin, c'est de nouvelles théories qui s'attaquent aux principes sous-jacents qui régissent la physique du vivant dans notre univers."

Une autre possibilité d'élargir notre vision de ce que pourrait être la vie est que nous devenions capables de créer de toutes pièces, en laboratoire, des systèmes vivants totalement différents de ceux que nous connaissons. "Nous en sommes beaucoup plus proches que vous ne le pensez", déclare M. Rothschild. En fait, cela s'est peut-être déjà produit et nous ne nous en sommes pas rendu compte, ajoute-t-elle, en plaisantant à moitié. Si nous ne savons pas ce que nous cherchons, un chercheur a peut-être déjà créé une nouvelle forme de vie - et l'a jetée dans l'évier.

En fin de compte, nous ne devrions peut-être pas être trop sûrs que la vie corresponde à une quelconque définition naturelle, estime M. Rothschild. "Je crois que ce que nous avons actuellement, ce sont des définitions non naturelles de la vie, parce que nous n'avons qu'un seul point de données. Je me demande si la vie n'est pas simplement ce que nous définissons."

"Nous pourrions découvrir des systèmes si bizarres et inattendus qu'il serait ompossible de décider s'ils sont vivants ou non", dit Kershenbaum. "Mais si nous découvrons quelque chose de vraiment intéressant et complexe qui ne correspond pas tout à fait à la définition de la vie, cela restera une avancée passionnante. Nous n'allons pas l'ignorer parce que ça ne correspond pas à notre définition !"

Auteur: Ball Philip

Info: The Guardian, 5 Septembre 2020 - Are aliens hiding in plain sight?

[ dépassement conceptuel ] [ spéculations ] [ changement de paradigme ] [ révolution scientifique ] [ monade planétaire ]

 

Commentaires: 0

Ajouté à la BD par miguel

hiérarchie cosmique

Les hypercivilisations et l’hypothèse des extraterrestres primitifs

De plus en plus de spécialistes admettent que la vie est partout dans l’Univers et que trois-quatre milliards d’années de conditions favorables, durables sur une planète, assurent l’émergence et le développement d’êtres intelligents et éventuellement la naissance d’une "civilisation technologique", capable de construire des vaisseaux spatiaux, pour voyager vers d’autres planètes habitables.

Ces conditions, bien que rares, se retrouvent en de nombreux endroits dans l’immensité de l’univers. Sur cette base, l’hypothèse extraterrestre est devenue le moyen le plus facile d’expliquer le phénomène OVNI.

D’un autre côté, des ufologues prestigieux, dont le Dr J. Allen Hynek ou Jacques Vallée, ont remis en question cette explication. Avec les sceptiques purs et durs, ils ont mentionné, entre autres, que les distances entre les civilisations sont trop grandes pour de tels voyages cosmiques.

Mais, comme je l’ai soutenu dans mon récent livre "UFOs over Romania", si nous adoptons une approche appropriée, nous découvrirons que les distances les plus importantes entre les civilisations cosmiques ne sont pas celles de l’espace mais celles du temps.

J’ai estimé que, dans l’histoire de notre Galaxie, un certain nombre de civilisations technologiques ont pu voir le jour, dont quelques centaines ont survécu aux maladies infantiles (auxquelles nous sommes confrontés sur Terre) et existent toujours.

Mais ces civilisations ne sont pas apparues simultanément. Par exemple, en juillet 2015, on a annoncé la découverte, à 1 400 années-lumière de la Terre, de l’exoplanète Kepler 452b.

Elle est similaire à la Terre et orbite dans la zone habitable d’une étoile semblable au Soleil. Ce système solaire est plus vieux d’un milliard d’années que le nôtre. Cela signifie que la vie et une éventuelle civilisation technologique pourraient y être apparues un milliard d’années plus tôt que sur Terre.

Plus généralement, les premières civilisations technologiques dans la Voie lactée pourraient apparaître il y a un milliard d’années, ou même avant.

Par conséquent, nous comprenons que les civilisations possibles dans le Cosmos sont très éloignées les unes des autres non seulement dans l’espace, mais aussi dans le temps. Dans notre Galaxie, ces quelques centaines de civilisations survivantes, estimées ci-dessus, sont apparues, très probablement, une fois tous les quelques millions d’années. Par conséquent, dans la Voie lactée, il n’existe aucune civilisation proche de notre niveau.

Qu’adviendra-t-il de notre civilisation (si elle survit) dans des millions (ou des milliards) d’années ? Il est impossible de l’imaginer. Nous n’oublions pas que nous ne sommes pas en mesure de prévoir notre avenir, même dans une perspective de quelques centaines d’années seulement. À quoi ressembleraient les habitants d’une civilisation qui nous aurait devancés de plusieurs millions d’années ?

Peut-être sont-ils devenus immortels, peut-être le temps et l’espace ne comptent-ils pas pour eux, peut-être se sont-ils déplacés dans une réalité virtuelle omniprésente, dans d’autres dimensions, etc. Mais la véritable réponse est très certainement encore plus complexe et défie notre logique et notre imagination. Nous pouvons toutefois accepter qu’ils se soient transformés en quelque chose d’autre, au-delà de notre compréhension, en quelque chose que nous pouvons nommer une "hypercivilisation".

Si quelqu’un considère que nous avons été trop optimistes et que les êtres intelligents sont beaucoup plus rares, nous devrions ajouter que notre Voie lactée n’est qu’une des 150 milliards de galaxies de l’Univers, plus ou moins semblables, accessibles à nos instruments. Et nous avons de fortes raisons de croire qu’il existe aussi d’autres Univers, peut-être des Univers "parallèles", peut-être d’autres états de la matière, ou des parties d’un "Multivers", etc.

La scolarisation et la science-fiction, mais pas seulement, ont fixé nos esprits sur des schémas ignorant complètement la possibilité d’hypercivilisations. Par conséquent, nous sommes confrontés à deux "hypothèses extraterrestres" : la première est ce que nous pourrions appeler "l’hypothèse des extraterrestres primitifs", l’autre celle des hypercivilisations.

L' "hypothèse des extraterrestres primitifs" suppose que toutes les civilisations cosmiques sont plus ou moins au même niveau d’évolution. Elle nourrit donc de fausses idées préconçues telles que : des voyages cosmiques très longs et difficiles, le désir d’atterrir sur la pelouse de la Maison Blanche, l’égalité des droits, la conversation, l’invasion, l’intervention, l’aide et ainsi de suite.

Cette vision primitive est totalement invraisemblable. Si les hypercivilisations existent (et elles existent, avec une probabilité de 99,999999%) elles ont exploité, dans les moindres détails, notre Galaxie, il y a des millions d’années, donc elles connaissent, depuis longtemps, notre existence. Ce raisonnement a conduit Enrico Fermi, quand il a dit, en 1950 : "ils devraient être ici ; où sont-ils ?"

Mais ni lui, ni beaucoup d’autres, n’ont envisagé que des représentants d’hypercivilisations pourraient être ici, parmi nous, mais pourraient avoir une apparence si différente de nos attentes que nous ne pourrions pas les reconnaître. Ce qui nous empêche de les voir, c’est aussi un ensemble de préjugés répandus et profondément enracinés, comme ceux qui suivent.

L’idée préconçue de l’égalité des droits. Une différence de plusieurs millions d’années, voire de centaines de millions, est aussi énorme qu’entre nous et un lézard ou même une fourmi.

S’ils sont là (comme c’est très probable), ils peuvent nous examiner, suivre notre évolution, voire nous contacter sous une forme ou une autre, mais ils ne se mettront jamais au même niveau que nous.

L’idée préconçue de la conversation. En 1959 déjà, Giuseppe Cocconi et Philip Morrison affirmaient que si la différence entre deux civilisations est de plusieurs millions d’années, la probabilité qu’elles puissent échanger des idées est nulle. Nous interagissons parfois avec un lézard ; mais il ne s’agira jamais d’une conversation, disaient-ils.

Le provincialisme temporel (terme utilisé par le Dr J. Allen Hynek). Il affirme qu’en opposition avec les siècles sombres précédents, les trois-quatre cents dernières années nous ont finalement amenés à la lumière de la vérité réelle et de la science.

Dans cette lumière, nous pouvons maintenant décider quels faits peuvent être acceptés et lesquels ne seront jamais possibles. Si, il y a environ cent ans, nous avons commencé à utiliser la radio, certains pensent qu’elle restera à jamais le meilleur moyen de communication.

Si Einstein a postulé il y a cent ans que la vitesse de la lumière est une limite, aucune autre loi physique ne sera découverte jusqu’à la fin des temps pour éviter cette limite, etc.

Comme exemple particulier, nous avons la préconception SETI. Selon elle, même si les signaux radio mettent des milliers d’années à passer d’un monde habité à l’autre, les civilisations cosmiques considéreront que la signalisation par ondes radio sera, pour toujours, le moyen de contact le plus approprié et que nous devons dépenser de l’argent pour les rechercher.

L’idée préconçue de l’invasion. Pour beaucoup de gens, il devrait être normal que si une civilisation cosmique arrive sur Terre, elle tente de nous conquérir par la force. Mais les hypercivilisations savaient probablement, il y a des millions d’années, que nous étions là ; elles pouvaient donc nous envahir à tout moment et, dans un certain sens, elles nous envahissent probablement déjà, depuis des millions d’années. Certains "artefacts déplacés" pourraient en être un indice.

L’idée préconçue d’une intervention et d’une aide. Certains espèrent que les extraterrestres nous aideront (ou du moins certains "élus") à surmonter les catastrophes futures. Mais même nous, si nous découvrons un terrain de valeur, qui a échappé à l’intrusion humaine, nous essayons de le déclarer réserve, ne permettant qu’une intervention très limitée, pour des raisons scientifiques. Cette attitude semble se renforcer avec le temps.

Une hypercivilisation observant la Terre et la civilisation technologique humaine devrait agir de manière similaire, en évitant d’interférer dans notre évolution, mais en prélevant des échantillons, en faisant quelques expériences, en ayant des contacts très limités (pas du tout officiellement ou entre égaux) avec seulement quelques individus, sélectionnés selon leurs critères et non les nôtres.

Par conséquent, aucune installation, aucune destruction, d’une part, et aucun contact officiel, aucune conversation ou aide substantielle, d’autre part, ne sont à attendre des civilisations cosmiques hautement avancées, même si elles sont ici maintenant.

La différence entre une hypercivilisation et nous pourrait être aussi grande que celle entre nous et les fourmis. Les entomologistes qui se proposeraient d’étudier la vie d’une fourmilière essaieraient de perturber, le moins possible, sa vie. Ils pourront bien sûr faire des expériences, en examinant ou en modifiant certaines fourmis, voire en les emmenant dans des laboratoires éloignés, en essayant de créer de nouvelles "races", etc.

Ils essaieront certainement de découvrir, autant que possible, la vie de la fourmilière, mais ne présenteront pas de "références" à la reine des fourmis.

Si les entomologistes disposent de la technologie nécessaire, ils créeront quelques fourmis robots, les enverront dans la fourmilière et observeront depuis un endroit sûr, par exemple "sur l’écran de l’ordinateur", les données qu’elles transmettent. Et si une fourmi robot se perdait dans cette mission, l’incident alourdirait un peu les coûts de la recherche, sans être une tragédie.

Nous pouvons spéculer qu’une hypercivilisation pourrait tenter de réaliser, en utilisant du matériel génétique provenant de la Terre, de nouvelles races, avec un cerveau plus grand, une intelligence supérieure, adaptées à certaines tâches spéciales, etc. Par conséquent, de nombreuses "races" décrites par les prétendus abductés (les gris, les grands blonds, etc.) peuvent être de telles races humaines artificielles ou même des bio-robots dérivés de l’espèce humaine.

Ils peuvent être "produits" par exemple dans des réserves ou des bases situées quelque part en dehors de la Terre. De la même manière, nous créons de nouvelles variétés de blé à partir des variétés traditionnelles. Parfois, la variété de blé parfaite devient stérile ou exposée à de nouvelles maladies.

À ce moment-là, les agronomes tentent de trouver des gènes appropriés dans le pool représenté par les espèces primitives de blé, afin d’améliorer la variété "parfaite".

Et si les humains sur Terre étaient le "réservoir sauvage" de gènes, aptes à améliorer des races artificielles ailleurs ? Dans ce cas, il n’y aura pas de problème de compatibilité entre les visiteurs et nous, comme dans certaines histoires d’enlèvement et d’hybridation par des ovnis, mais aussi, par exemple, dans la note biblique : "En ces jours-là, les êtres divins et les filles humaines avaient des relations sexuelles et donnaient naissance à des enfants".

"Ce sont les anciens héros" (Genèse, 6, 4). Certains supposent même qu’il existe une intervention extérieure permanente dans l’évolution de la race humaine afin de l’améliorer.

Mais il est évident que la comparaison ci-dessus – de l’humanité avec une fourmilière – est légèrement forcée, car l’humanité est, néanmoins, une future hypercivilisation potentielle. L’apparition d’une civilisation technologique pourrait être un événement très rare dans notre Galaxie, ne se produisant probablement qu’une fois en plusieurs millions d’années. Il est donc normal que nous intéressions les intelligences supérieures. Mais que peuvent-elles attendre de nous ?

Une hypercivilisation se comportera de manière insaisissable et ne nous donnera pas ses connaissances et ses technologies ; plus encore, elle nous l’interdira. Ce n’est pas seulement à cause de l’agressivité et de la xénophobie humaines, qui font de toute nouvelle technologie de nouvelles armes, ni seulement pour éviter un "choc culturel", qui pourrait virtuellement détruire toutes nos structures sociales, économiques, politiques, militaires, scientifiques, religieuses et culturelles.

Je peux spéculer qu’ils ont aussi d’autres raisons pour cela. Les hypercivilisations pourraient attendre (et peut-être même récolter maintenant) nos idées originales, nos points de vue, nos créations (dans l’art, la science, la philosophie, l’éthique, etc.), qui sont le résultat de millions d’années de notre évolution indépendante. Et toute cette récolte attendue pourrait être détruite par un contact prématuré.

Certaines histoires anciennes, apparemment absurdes, peuvent être une indication d’une telle attitude : la punition pour la pomme de l’arbre interdit de la connaissance, l’enchaînement de Prométhée, ou les anges déchus (du livre d’Enoch), jetés dans une fosse pleine de feu, parce qu’ils ont enseigné aux terriens certaines compétences.

De nombreuses personnes enlevées ou contactées ont parlé des boules de lumière éthérées comme de "dépôts de connaissance et d’intelligence", enregistrant "tout dans l’Univers", entre autres, la vie de tous les individus (ou des plus intéressants). Nous avons quelques indices à ce sujet lorsque nous parlons du "livre de la vie", des "archives akashiques", de l' "inconscient collectif", ou même du "champ morphogénétique", etc.

Cette "super-mémoire" pourrait être écrite sur un support "spirituel", ou sur quelque chose autour de nous que nous ne sommes pas encore capables d’imaginer. Parfois, certaines personnes, sous certaines conditions, pourraient avoir accès à cet entrepôt de données.

C’est ainsi que l’on peut expliquer : le channelling, la "xénoglossie", les "walk-ins", la "réincarnation", les fantômes, etc. Dans une telle réalité virtuelle, le temps est différent. Nous pouvons voyager dans le passé, vivre des événements, sans changer le passé réel, ou nous pouvons voir des scénarios du futur (parfois apocalyptiques), sans accepter la fatalité.

Bien sûr, tout ce qui précède n’est pas une preuve que les hypercivilisations sont l’explication de tout ce qui est étrange et notamment des ovnis. Ce n’est qu’une hypothèse, mais – je pense – une hypothèse qui ne peut être facilement écartée.

 

Auteur: Farcaş Daniel D.

Info: Hypercivilisations and the primitive extraterrestrial hypothesis, openminds 19 july 2017

[ spéculations ] [ xénocommunication ]

 

Commentaires: 0

Ajouté à la BD par miguel

microbiote

Un chef d'orchestre de la subtile symphonie d'Evolution

Le biologiste Richard Lenski pensait que son expérience à long terme sur l'évolution pourrait durer 2 000 générations. Près de trois décennies et plus de 65 000 générations plus tard, il est toujours étonné par " l’incroyable inventivité " de l’évolution.

Au début de sa carrière, le biologiste décoré Richard Lenski pensait qu'il pourrait être contraint d'évoluer. Après l’annulation de sa subvention de recherche postdoctorale, Lenski a commencé à envisager provisoirement d’autres options. Avec un enfant et un deuxième en route, Lenski a assisté à un séminaire sur l'utilisation de types spécifiques de données dans un contexte actuariel* – le même type de données avec lequel il avait travaillé lorsqu'il était étudiant diplômé. Lenski a récupéré la carte de visite du conférencier, pensant qu'il pourrait peut-être mettre à profit son expérience dans une nouvelle carrière.

"Mais ensuite, comme c'est parfois le cas - et j'ai eu beaucoup de chance - le vent a tourné", a déclaré Lenski à Quanta Magazine dans son bureau de la Michigan State University. " Nous avons obtenu le renouvellement de la subvention et peu de temps après, j'ai commencé à recevoir des offres pour être professeur. 

Lenski, professeur d'écologie microbienne à l'État du Michigan, est surtout connu pour ses travaux sur ce que l'on appelle l' expérience d'évolution à long terme . Le projet, lancé en 1988, examine l'évolution en action. Lui et les membres de son laboratoire ont cultivé 12 populations d' E. coli en continu depuis plus de 65 000 générations, suivant le développement et les mutations des 12 souches distinctes.

Les résultats ont attiré l’attention et les éloges – y compris une bourse " genius " MacArthur, que Lenski a reçue en 1996 – à la fois pour l’énormité de l’entreprise et pour les découvertes intrigantes que l’étude a produites. Plus particulièrement, en 2003, Lenski et ses collaborateurs ont réalisé qu'une souche d' E. coli avait développé la capacité d'utiliser le citrate comme source d'énergie, ce qu'aucune population précédente d' E. coli n'était capable de faire.

Lenski s'intéresse également aux organismes numériques, c'est-à-dire aux programmes informatiques conçus pour imiter le processus d'évolution. Il a joué un rôle déterminant dans l’ouverture du Beacon Center dans l’État du Michigan, qui donne aux informaticiens et aux biologistes évolutionnistes l’opportunité de forger des collaborations uniques.

Quanta Magazine a rencontré Lenski dans son bureau pour parler de ses propres intérêts évolutifs dans le domaine de la biologie évolutive – et du moment où il a presque mis fin à l'expérience à long terme. 

QUANTA MAGAZINE : Quels types de questions ont été les moteurs de votre carrière ?

RICHARD LENSKI : Une question qui m'a toujours intrigué concerne la reproductibilité ou la répétabilité de l'évolution . Stephen Jay Gould, paléontologue et historien des sciences, a posé cette question : si nous pouvions rembobiner la bande de la vie sur Terre, à quel point serait-elle similaire ou différente si nous regardions l'ensemble du processus se reproduire ? L’expérimentation à long terme que nous menons nous a permis de rassembler de nombreuses données sur cette question.

Alors, l’évolution est-elle reproductible ?

Oui et non! Je dis parfois aux gens que c'est une question fascinante et motivante, mais à un certain niveau, c'est une question terrible, et on ne dirait jamais à un étudiant diplômé de s'y poser. C’est parce qu’elle est très ouverte et qu’il n’y a pas de réponse très claire.

Grâce à cette expérience à long terme, nous avons vu de très beaux exemples de choses remarquablement reproductibles, et d'autre part des choses folles où une population s'en va et fait des choses qui sont complètement différentes des 11 autres populations de la planète dans l' expérience.

Comment vous est venue l’idée de cette expérience à long terme ?

Je travaillais déjà depuis plusieurs années sur l'évolution expérimentale des bactéries, ainsi que des virus qui infectent les bactéries. C'était fascinant, mais tout est devenu si compliqué si vite que j'ai dit : " Réduisons l'évolution à sa plus simple expression. " En particulier, j'ai voulu approfondir cette question de reproductibilité ou répétabilité de l'évolution. Et pour pouvoir l'examiner, je voulais un système très simple. Lorsque j'ai commencé l'expérience à long terme, mon objectif initial était de l'appeler expérience à long terme lorsque j'arriverais à 2 000 générations.

Combien de temps cela vous a-t-il pris ?

La durée réelle de l'expérience a duré environ 10 ou 11 mois, mais au moment où nous avons collecté les données, les avons rédigées et publié l'article, il nous a fallu environ deux ans et demi. À ce moment-là, l’expérience avait déjà dépassé 5 000 générations et j’ai réalisé qu'il fallait la poursuivre.

Pensiez-vous que l’expérience se poursuivrait aussi longtemps ?

Non, non... il y a eu une période de cinq ans, peut-être de la fin des années 90 au début des années 2000, pendant laquelle j'ai réfléchi à la possibilité d'arrêter l'expérience. C'était pour plusieurs raisons différentes. La première était que je devenais accro à cette autre façon d’étudier l’évolution, qui impliquait d’observer l’évolution dans des programmes informatiques auto-réplicatifs, ce qui était absolument fascinant. Soudain, j'ai découvert cette manière encore plus brillante d'étudier l'évolution, où elle pouvait s'étendre sur encore plus de générations et faire encore plus d'expériences, apparemment plus soignées.

Comment votre vision de l’étude de l’évolution via ces organismes numériques a-t-elle évolué au fil du temps ?

J’ai eu ce genre d’" amour de chiot " lorsque j’en ai entendu parler pour la première fois. Au début, c'était tellement extraordinairement intéressant et excitant de pouvoir regarder des programmes auto-répliquants, de pouvoir changer leur environnement et d'observer l'évolution se produire.

L’un des aspects les plus passionnants de l’évolution numérique est qu’elle montre que nous considérons l’évolution comme une affaire de sang, d’intestins, d’ADN, d’ARN et de protéines. Mais l’idée d’évolution se résume en réalité à des idées très fondamentales d’hérédité, de réplication et de compétition. Le philosophe des sciences Daniel Dennett a souligné que nous considérons l’évolution comme cette instanciation, cette forme de vie biologique, mais que ses principes sont bien plus généraux que cela.

Je dirais que mes dernières orientations de recherche ont consisté principalement à discuter avec des collègues très intelligents et à siéger à des comités d'étudiants diplômés qui utilisent ces systèmes. Je suis moins impliqué dans la conception d'expériences ou dans la formulation d'hypothèses spécifiques, car ce domaine évolue extrêmement rapidement. Je pense que j'ai eu beaucoup de chance de pouvoir cueillir certains des fruits les plus faciles à trouver, mais maintenant j'ai l'impression d'être là en tant que biologiste, critiquant peut-être des hypothèses, suggérant des contrôles qui pourraient être effectués dans certaines expériences.

Votre intérêt pour les organismes numériques est donc l’une des raisons pour lesquelles vous avez envisagé de mettre fin à l’expérience à long terme. Quel était l'autre ?

À ce stade, l’autre chose qui était un peu frustrante dans les lignes à long terme était que la vitesse à laquelle les bactéries évoluaient ralentissait. À la façon dont j’y pensais, c’était presque comme si l’évolution s’était arrêtée. Je pensais que c'était tout simplement un environnement trop simple et qu'ils n'avaient pas grand-chose à faire de plus.

Donc ces deux choses différentes m’ont fait réfléchir à arrêter l’expérience. Et j'ai parlé à quelques collègues et ils m'ont dit en gros : tu ne devrais pas faire ça. D’ailleurs, j’en ai parlé avec ma femme, Madeleine, lorsque je commençais à m’intéresser beaucoup à ces organismes numériques – nous étions d’ailleurs en congé sabbatique en France à cette époque – et je lui ai dit : " Peut-être que je devrais appeler chez moi et fermer le labo. " Et elle a dit : " Je ne pense pas que tu devrais faire ça. "

Pourquoi votre femme et vos collègues ont-ils eu cette réaction ?

L’expérience s’était déjà avérée très rentable au sens scientifique, fournissant des données très riches sur la dynamique du changement évolutif. C’était plus ou moins unique dans les échelles de temps étudiées. Je pense donc que c’était de très bons conseils qu’ils m’ont donné. Je ne sais pas si j’aurais déjà pu débrancher moi-même. J'étais certainement un peu frustré et j'y pensais – mais de toute façon, les gens ont dit non !

Avez-vous dépassé le palier où vous disiez avoir l’impression que les organismes n’évoluaient pas tellement ?

C’est en fait l’une des découvertes vraiment intéressantes de l’expérience. Lorsque j’ai commencé l’expérience à long terme, je pensais que les bactéries atteindraient rapidement une sorte de limite à leur croissance. Il y a seulement quelques années, nous avons commencé à réaliser que les bactéries seraient toujours capables de dépasser tout ce que nous avions déduit dans le passé quant à leur limite stricte. J’ai réalisé que nous n’y réfléchissions tout simplement pas de la bonne manière. Même dans l’environnement le plus simple, il est toujours possible pour les organismes de réaliser n’importe quelle étape de leur métabolisme, ou n’importe quelle étape de leur biochimie, un peu mieux. Et la sélection naturelle, même si elle ne réussit pas à chaque étape, favorisera toujours, à long terme, ces améliorations subtiles.

Une lignée de bactéries a développé la capacité d’utiliser le citrate comme source de nourriture. Est-ce que cela s'est produit avant ou après que vous envisagiez d'arrêter l'expérience ?

C’est l’une des choses qui m’a fait réaliser que nous n’arrêterions pas l’expérience. En 2003, une lignée a développé la capacité d’utiliser le citrate. Cela a changé la donne : se rendre compte que même dans cet environnement extrêmement simple, les bactéries devaient évoluer et comprendre certaines choses importantes.

J’aime dire que les bactéries dînaient tous les soirs sans se rendre compte qu’il y avait ce bon dessert citronné juste au coin de la rue. Et jusqu’à présent, même après 65 000 générations, seule une population sur 12 a compris comment consommer ce citrate.

Vous avez également mentionné que certaines populations au sein de votre expérience ont développé des mutations à un rythme plus élevé. A quoi cela ressemble-t-il?

Après plus de 60 000 générations, six des 12 populations ont évolué pour devenir hypermutables. Elles ont développé des changements dans la réparation de leur ADN et dans les processus métaboliques de l'ADN, ce qui les amène à avoir de nouvelles mutations quelque part de l'ordre de 100 fois la vitesse à laquelle l'ancêtre [au début de l'expérience] le faisait.

C'est un processus très intéressant, car il est à la fois bon et mauvais du point de vue des bactéries. C'est mauvais car la plupart des mutations sont nocives ou, au mieux, neutres. Seule une rare pépite dans cette mine est une mutation bénéfique. Les bactéries qui ont le taux de mutation le plus élevé sont un peu plus susceptibles de découvrir l’une de ces pépites. Mais d’un autre côté, ils sont également plus susceptibles de produire des enfants et petits-enfants porteurs de mutations délétères.

La lignée capable de consommer du citrate faisait-elle partie du groupe qui avait évolué pour devenir hypermutable ?

C'est une excellente question. La lignée qui a développé la capacité d’utiliser le citrate n’avait pas un taux de mutation élevé. Il est intéressant de noter qu’il est devenu l’un de ceux présentant un taux de mutation plus élevé, mais seulement après avoir développé la capacité d’utiliser le citrate. Cela est cohérent avec l’avantage du taux de mutation plus élevé – la capacité supplémentaire d’exploration. Les bactéries étaient en fait assez mauvaises pour utiliser le citrate au départ, donc il y avait beaucoup d'opportunités après qu'elles aient développé la capacité d'utiliser le citrate pour affiner cette capacité.

Comment l’expérience à long terme vous aide-t-elle à comprendre l’évolution de la vie à plus grande échelle ?

Pour moi, l’une des leçons de cette expérience à long terme a été de constater à quel point la vie peut être riche et intéressante, même dans l’environnement le plus ennuyeux et le plus simple. Le fait que l’évolution puisse générer cette diversité et découvrir des portes légèrement entrouvertes qu’elle peut franchir témoigne de l’incroyable inventivité de l’évolution. Et s’il peut être si inventif et créatif à cette minuscule échelle spatiale et temporelle, et dans un environnement aussi ennuyeux, cela me suscite encore plus de respect, quand je pense à quel point il est remarquable dans la nature.

Qu’est-ce qui vous a le plus surpris dans ce projet ?

Que ça continue après toutes ces années. L’un de mes objectifs dans la vie est de faire en sorte que l’expérience continue. J'aimerais lever une dotation pour poursuivre l'expérience à perpétuité.

Qu’espérez-vous pour l’expérience à long terme dans le futur ?

J’espère que ce projet apportera bien d’autres surprises. Par exemple, deux lignées coexistent depuis 60 000 générations dans l’une des populations, où l’une se nourrit du produit que l’autre génère. Je pense qu'il est fascinant de se demander si, à un moment donné, cela pourrait se transformer en quelque chose qui ressemble davantage à une interaction prédateur-proie. Ce n’est certainement pas hors du domaine des possibles. Si cela arriverait un jour, je ne sais pas.

Cela a également été une immense joie de travailler avec des étudiants, des postdoctorants et des collaborateurs, et de les voir grandir et se développer. C'est vraiment la plus grande joie pour moi d'être un scientifique. J'aime dire aux gens que je suis bigame. J'ai deux familles : ma famille de laboratoire et ma famille biologique, et elles sont toutes les deux incroyablement merveilleuses.

Auteur: Internet

Info: Logan Zillmer pour Quanta Magazine - * Relatif aux méthodes mathématiques des actuaires

[ microbiome ] [ bio-informatique ] [ plasticité ] [ dépassement ] [ tâtonnement ] [ élargissement ] [ gaspillage ] [ adaptation ]

 

Commentaires: 0

Ajouté à la BD par miguel

paliers bayésiens

Une nouvelle preuve montre que les graphiques " expandeurs " se synchronisent

La preuve établit de nouvelles conditions qui provoquent une synchronisation synchronisée des oscillateurs connectés.

Il y a six ans, Afonso Bandeira et Shuyang Ling tentaient de trouver une meilleure façon de discerner les clusters dans d'énormes ensembles de données lorsqu'ils sont tombés sur un monde surréaliste. Ling s'est rendu compte que les équations qu'ils avaient proposées correspondaient, de manière inattendue, parfaitement à un modèle mathématique de synchronisation spontanée. La synchronisation spontanée est un phénomène dans lequel des oscillateurs, qui peuvent prendre la forme de pendules, de ressorts, de cellules cardiaques humaines ou de lucioles, finissent par se déplacer de manière synchronisée sans aucun mécanisme de coordination central.

Bandeira, mathématicien à l' École polytechnique fédérale de Zurich , et Ling, data scientist à l'Université de New York , se sont plongés dans la recherche sur la synchronisation, obtenant une série de résultats remarquables sur la force et la structure que doivent avoir les connexions entre oscillateurs pour forcer les oscillateurs. à synchroniser. Ce travail a abouti à un article d'octobre dans lequel Bandeira a prouvé (avec cinq co-auteurs) que la synchronisation est inévitable dans des types spéciaux de réseaux appelés graphes d'expansion, qui sont clairsemés mais également bien connectés.

Les graphiques expanseurs s'avèrent avoir de nombreuses applications non seulement en mathématiques, mais également en informatique et en physique. Ils peuvent être utilisés pour créer des codes correcteurs d’erreurs et pour déterminer quand les simulations basées sur des nombres aléatoires convergent vers la réalité qu’elles tentent de simuler. Les neurones peuvent être modélisés dans un graphique qui, selon certains chercheurs, forme un expanseur, en raison de l'espace limité pour les connexions à l'intérieur du cerveau. Les graphiques sont également utiles aux géomètres qui tentent de comprendre comment parcourir des surfaces compliquées , entre autres problèmes.

Le nouveau résultat " donne vraiment un aperçu considérable des types de structures graphiques qui vont garantir la synchronisation ", a déclaré Lee DeVille , un mathématicien de l'Université de l'Illinois qui n'a pas participé aux travaux. 

Synchronisation douce-amère         

"La synchronisation est vraiment l'un des phénomènes fondamentaux de la nature", a déclaré Victor Souza , un mathématicien de l'Université de Cambridge qui a travaillé avec Bandeira sur l'article. Pensez aux cellules stimulateurs cardiaques de votre cœur, qui synchronisent leurs pulsations via des signaux électriques. Lors d'expériences en laboratoire, "vous pouvez faire vibrer des centaines ou des milliers de cellules embryonnaires de stimulateur cardiaque à l'unisson", a déclaré Steven Strogatz , mathématicien à l'Université Cornell et autre co-auteur. " C'est un peu effrayant parce que ce n'est pas un cœur entier ; c'est juste au niveau des cellules."

En 1975, le physicien japonais Yoshiki Kuramoto a introduit un modèle mathématique décrivant ce type de système. Son modèle fonctionne sur un réseau appelé graphe, où les nœuds sont reliés par des lignes appelées arêtes. Les nœuds sont appelés voisins s’ils sont liés par une arête. Chaque arête peut se voir attribuer un numéro appelé poids qui code la force de la connexion entre les nœuds qu’elle connecte.

Dans le modèle de synchronisation de Kuramoto, chaque nœud contient un oscillateur, représenté par un point tournant autour d'un cercle. Ce point montre, par exemple, où se trouve une cellule cardiaque dans son cycle de pulsation. Chaque oscillateur tourne à sa propre vitesse préférée. Mais les oscillateurs veulent également correspondre à leurs voisins, qui peuvent tourner à une fréquence différente ou à un moment différent de leur cycle. (Le poids du bord reliant deux oscillateurs mesure la force du couplage entre eux.) S'écarter de ces préférences contribue à l'énergie dépensée par un oscillateur. Le système tente d'équilibrer tous les désirs concurrents en minimisant son énergie totale. La contribution de Kuramoto a été de simplifier suffisamment ces contraintes mathématiques pour que les mathématiciens puissent progresser dans l'étude du système. Dans la plupart des cas, de tels systèmes d’équations différentielles couplées sont pratiquement impossibles à résoudre.

Malgré sa simplicité, le modèle Kuramoto s'est révélé utile pour modéliser la synchronisation des réseaux, du cerveau aux réseaux électriques, a déclaré Ginestra Bianconi , mathématicienne appliquée à l'Université Queen Mary de Londres. "Dans le cerveau, ce n'est pas particulièrement précis, mais on sait que c'est très efficace", a-t-elle déclaré.

"Il y a ici une danse très fine entre les mathématiques et la physique, car un modèle qui capture un phénomène mais qui est très difficile à analyser n'est pas très utile", a déclaré Souza.

Dans son article de 1975, Kuramoto supposait que chaque nœud était connecté à tous les autres nœuds dans ce qu'on appelle un graphe complet. À partir de là, il a montré que pour un nombre infini d’oscillateurs, si le couplage entre eux était suffisamment fort, il pouvait comprendre leur comportement à long terme. Faisant l'hypothèse supplémentaire que tous les oscillateurs avaient la même fréquence (ce qui en ferait ce qu'on appelle un modèle homogène), il trouva une solution dans laquelle tous les oscillateurs finiraient par tourner simultanément, chacun arrondissant le même point de son cercle exactement au même endroit. en même temps. Même si la plupart des graphiques du monde réel sont loin d'être complets, le succès de Kuramoto a conduit les mathématiciens à se demander ce qui se passerait s'ils assouplissaient ses exigences.  

Mélodie et silence

Au début des années 1990, avec son élève Shinya Watanabe , Strogatz a montré que la solution de Kuramoto était non seulement possible, mais presque inévitable, même pour un nombre fini d'oscillateurs. En 2011, Richard Taylor , de l'Organisation australienne des sciences et technologies de la défense, a renoncé à l'exigence de Kuramoto selon laquelle le graphique devait être complet. Il a prouvé que les graphes homogènes où chaque nœud est connecté à au moins 94 % des autres sont assurés de se synchroniser globalement. Le résultat de Taylor avait l'avantage de s'appliquer à des graphes avec des structures de connectivité arbitraires, à condition que chaque nœud ait un grand nombre de voisins.

En 2018, Bandeira, Ling et Ruitu Xu , un étudiant diplômé de l'Université de Yale, ont abaissé à 79,3 % l'exigence de Taylor selon laquelle chaque nœud doit être connecté à 94 % des autres. En 2020, un groupe concurrent a atteint 78,89 % ; en 2021, Strogatz, Alex Townsend et Martin Kassabov ont établi le record actuel en démontrant que 75 % suffisaient.

Pendant ce temps, les chercheurs ont également attaqué le problème dans la direction opposée, en essayant de trouver des graphiques hautement connectés mais non synchronisés globalement. Dans une série d'articles de 2006 à 2022 , ils ont découvert graphique après graphique qui pourraient éviter la synchronisation globale, même si chaque nœud était lié à plus de 68 % des autres. Beaucoup de ces graphiques ressemblent à un cercle de personnes se tenant la main, où chaque personne tend la main à 10, voire 100 voisins proches. Ces graphiques, appelés graphiques en anneaux, peuvent s'installer dans un état dans lequel chaque oscillateur est légèrement décalé par rapport au suivant.

De toute évidence, la structure du graphique influence fortement la synchronisation. Ling, Xu et Bandeira sont donc devenus curieux des propriétés de synchronisation des graphiques générés aléatoirement. Pour rendre leur travail précis, ils ont utilisé deux méthodes courantes pour construire un graphique de manière aléatoire.

Le premier porte le nom de Paul Erdős et Alfréd Rényi, deux éminents théoriciens des graphes qui ont réalisé des travaux fondateurs sur le modèle. Pour construire un graphique à l'aide du modèle Erdős-Rényi, vous commencez avec un groupe de nœuds non connectés. Ensuite, pour chaque paire de nœuds, vous les reliez au hasard avec une certaine probabilité p . Si p vaut 1 %, vous liez les bords 1 % du temps ; si c'est 50 %, chaque nœud se connectera en moyenne à la moitié des autres.

Si p est légèrement supérieur à un seuil qui dépend du nombre de nœuds dans le graphique, le graphique formera, avec une très grande probabilité, un réseau interconnecté (au lieu de comprendre des clusters qui ne sont pas reliés). À mesure que la taille du graphique augmente, ce seuil devient minuscule, de sorte que pour des graphiques suffisamment grands, même si p est petit, ce qui rend le nombre total d'arêtes également petit, les graphiques d'Erdős-Rényi seront connectés.

Le deuxième type de graphe qu’ils ont considéré est appelé graphe d -régulier. Dans de tels graphes, chaque nœud a le même nombre d’arêtes, d . (Ainsi, dans un graphe 3-régulier, chaque nœud est connecté à 3 autres nœuds, dans un graphe 7-régulier, chaque nœud est connecté à 7 autres, et ainsi de suite.)

(Photo avec schéma)

Les graphiques bien connectés bien qu’ils soient clairsemés (n’ayant qu’un petit nombre d’arêtes) sont appelés graphiques d’expansion. Celles-ci sont importantes dans de nombreux domaines des mathématiques, de la physique et de l'informatique, mais si vous souhaitez construire un graphe d'expansion avec un ensemble particulier de propriétés, vous constaterez qu'il s'agit d'un " problème étonnamment non trivial ", selon l'éminent mathématicien. Terry Tao. Les graphes d'Erdős-Rényi, bien qu'ils ne soient pas toujours extensibles, partagent bon nombre de leurs caractéristiques importantes. Et il s'avère cependant que si vous construisez un graphe -régulier et connectez les arêtes de manière aléatoire, vous obtiendrez un graphe d'expansion.

Joindre les deux bouts

En 2018, Ling, Xu et Bandeira ont deviné que le seuil de connectivité pourrait également mesurer l'émergence d'une synchronisation globale : si vous générez un graphique d'Erdős-Rényi avec p juste un peu plus grand que le seuil, le graphique devrait se synchroniser globalement. Ils ont fait des progrès partiels sur cette conjecture, et Strogatz, Kassabov et Townsend ont ensuite amélioré leur résultat. Mais il subsiste un écart important entre leur nombre et le seuil de connectivité.

En mars 2022, Townsend a rendu visite à Bandeira à Zurich. Ils ont réalisé qu'ils avaient une chance d'atteindre le seuil de connectivité et ont fait appel à Pedro Abdalla , un étudiant diplômé de Bandeira, qui à son tour a enrôlé son ami Victor Souza. Abdalla et Souza ont commencé à peaufiner les détails, mais ils se sont rapidement heurtés à des obstacles.

Il semblait que le hasard s’accompagnait de problèmes inévitables. À moins que p ne soit significativement plus grand que le seuil de connectivité, il y aurait probablement des fluctuations sauvages dans le nombre d'arêtes de chaque nœud. L'un peut être attaché à 100 arêtes ; un autre pourrait être attaché à aucun. "Comme pour tout bon problème, il riposte", a déclaré Souza. Abdalla et Souza ont réalisé qu'aborder le problème du point de vue des graphiques aléatoires ne fonctionnerait pas. Au lieu de cela, ils utiliseraient le fait que la plupart des graphes d’Erdős-Rényi sont des expanseurs. "Après ce changement apparemment innocent, de nombreuses pièces du puzzle ont commencé à se mettre en place", a déclaré Souza. "En fin de compte, nous obtenons un résultat bien meilleur que ce à quoi nous nous attendions." Les graphiques sont accompagnés d'un nombre appelé expansion qui mesure la difficulté de les couper en deux, normalisé à la taille du graphique. Plus ce nombre est grand, plus il est difficile de le diviser en deux en supprimant des nœuds.

Au cours des mois suivants, l’équipe a complété le reste de l’argumentation en publiant son article en ligne en octobre. Leur preuve montre qu'avec suffisamment de temps, si le graphe a suffisamment d'expansion, le modèle homogène de Kuramoto se synchronisera toujours globalement.

Sur la seule route

L’un des plus grands mystères restants de l’étude mathématique de la synchronisation ne nécessite qu’une petite modification du modèle présenté dans le nouvel article : que se passe-t-il si certaines paires d’oscillateurs se synchronisent, mais que d’autres s’en écartent ? Dans cette situation, " presque tous nos outils disparaissent immédiatement ", a déclaré Souza. Si les chercheurs parviennent à progresser sur cette version du problème, ces techniques aideront probablement Bandeira à résoudre les problèmes de regroupement de données qu’il avait entrepris de résoudre avant de se tourner vers la synchronisation.

Au-delà de cela, il existe des classes de graphiques outre les extensions, des modèles plus complexes que la synchronisation globale et des modèles de synchronisation qui ne supposent pas que chaque nœud et chaque arête sont identiques. En 2018, Saber Jafarpour et Francesco Bullo de l'Université de Californie à Santa Barbara ont proposé un test de synchronisation globale qui fonctionne lorsque les rotateurs n'ont pas de poids ni de fréquences préférées identiques. L'équipe de Bianconi et d'autres ont travaillé avec des réseaux dont les liens impliquent trois, quatre nœuds ou plus, plutôt que de simples paires.

Bandeira et Abdalla tentent déjà d'aller au-delà des modèles Erdős-Rényi et d -regular vers d'autres modèles de graphes aléatoires plus réalistes. En août dernier, ils ont partagé un article , co-écrit avec Clara Invernizzi, sur la synchronisation dans les graphes géométriques aléatoires. Dans les graphes géométriques aléatoires, conçus en 1961, les nœuds sont dispersés de manière aléatoire dans l'espace, peut-être sur une surface comme une sphère ou un plan. Les arêtes sont placées entre des paires de nœuds s'ils se trouvent à une certaine distance les uns des autres. Leur inventeur, Edgar Gilbert, espérait modéliser des réseaux de communication dans lesquels les messages ne peuvent parcourir que de courtes distances, ou la propagation d'agents pathogènes infectieux qui nécessitent un contact étroit pour se transmettre. Des modèles géométriques aléatoires permettraient également de mieux capturer les liens entre les lucioles d'un essaim, qui se synchronisent en observant leurs voisines, a déclaré Bandeira.

Bien entendu, relier les résultats mathématiques au monde réel est un défi. "Je pense qu'il serait un peu mensonger de prétendre que cela est imposé par les applications", a déclaré Strogatz, qui a également noté que le modèle homogène de Kuramoto ne peut jamais capturer la variation inhérente aux systèmes biologiques. Souza a ajouté : " Il y a de nombreuses questions fondamentales que nous ne savons toujours pas comment résoudre. C'est plutôt comme explorer la jungle. " 



 

Auteur: Internet

Info: https://www.quantamagazine.org - Leïla Sloman, 24 juillet 2023

[ évolution ]

 

Commentaires: 0

Ajouté à la BD par miguel

univers protonique

À l’intérieur du Proton, " la chose la plus complexe qu'on puisse imaginer "

La particule chargée positivement au cœur de l’atome est un objet d’une complexité indescriptible, qui change d’apparence en fonction de la manière dont elle est sondée. Nous avons tenté de relier les nombreuses faces du proton pour former l'image la plus complète à ce jour.

(image : Des chercheurs ont récemment découvert que le proton comprend parfois un quark charmé et un antiquark charmé, particules colossales puisqeu chacune est plus lourde que le proton lui-même.)

Plus d’un siècle après qu’Ernest Rutherford ait découvert la particule chargée positivement au cœur de chaque atome, les physiciens ont encore du mal à comprendre pleinement le proton.

Les professeurs de physique des lycées les décrivent comme des boules sans relief contenant chacune une unité de charge électrique positive – des feuilles parfaites pour les électrons chargés négativement qui bourdonnent autour d’elles. Les étudiants apprennent que la boule est en réalité un ensemble de trois particules élémentaires appelées quarks. Mais des décennies de recherche ont révélé une vérité plus profonde, trop bizarre pour être pleinement saisie avec des mots ou des images.

"C'est la chose la plus compliquée que l'on puisse imaginer", a déclaré Mike Williams, physicien au Massachusetts Institute of Technology. "En fait, on ne peut même pas imaginer à quel point c'est compliqué."

Le proton est un objet de mécanique quantique qui existe sous la forme d’un brouillard de probabilités jusqu’à ce qu’une expérience l’oblige à prendre une forme concrète. Et ses formes diffèrent radicalement selon la manière dont les chercheurs mettent en place leur expérience. Relier les nombreux visages de la particule a été l’œuvre de plusieurs générations. "Nous commençons tout juste à comprendre ce système de manière complète", a déclaré Richard Milner , physicien nucléaire au MIT.

Alors que la poursuite se poursuit, les secrets du proton ne cessent de se dévoiler. Plus récemment, une analyse monumentale de données publiée en août a révélé que le proton contient des traces de particules appelées quarks charmés, plus lourdes que le proton lui-même.

Le proton " a été une leçon d’humilité pour les humains ", a déclaré Williams. " Chaque fois qu'on pense pouvoir maîtriser le sujet, il nous envoie des balles à trajectoires courbées (en référence aux Pitchers du baseball)

Récemment, Milner, en collaboration avec Rolf Ent du Jefferson Lab, les cinéastes du MIT Chris Boebel et Joe McMaster et l'animateur James LaPlante, ont entrepris de transformer un ensemble d'intrigues obscures qui compilent les résultats de centaines d'expériences en une série d'animations de la forme -changement de proton. Nous avons intégré leurs animations dans notre propre tentative de dévoiler ses secrets.

Ouvrir le proton

La preuve que le proton contient de telles multitudes est venue du Stanford Linear Accelerator Center (SLAC) en 1967. Dans des expériences antérieures, les chercheurs l'avaient bombardé d'électrons et les avaient regardés ricocher comme des boules de billard. Mais le SLAC pouvait projeter des électrons avec plus de force, et les chercheurs ont constaté qu'ils rebondissaient différemment. Les électrons frappaient le proton assez fort pour le briser – un processus appelé diffusion inélastique profonde – et rebondissaient sur des fragments ponctuels du proton appelés quarks. "Ce fut la première preuve de l'existence réelle des quarks", a déclaré Xiaochao Zheng , physicien à l'Université de Virginie.

Après la découverte du SLAC, qui remporta le prix Nobel de physique en 1990, l'examen minutieux du proton s'est intensifié. Les physiciens ont réalisé à ce jour des centaines d’expériences de diffusion. Ils déduisent divers aspects de l'intérieur de l'objet en ajustant la force avec laquelle ils le bombardent et en choisissant les particules dispersées qu'ils collectent par la suite.

En utilisant des électrons de plus haute énergie, les physiciens peuvent découvrir des caractéristiques plus fines du proton cible. De cette manière, l’énergie électronique définit le pouvoir de résolution maximal d’une expérience de diffusion profondément inélastique. Des collisionneurs de particules plus puissants offrent une vision plus nette du proton.

Les collisionneurs à plus haute énergie produisent également un plus large éventail de résultats de collision, permettant aux chercheurs de choisir différents sous-ensembles d'électrons sortants à analyser. Cette flexibilité s'est avérée essentielle pour comprendre les quarks, qui se déplacent à l'intérieur du proton avec différentes impulsions.

En mesurant l'énergie et la trajectoire de chaque électron diffusé, les chercheurs peuvent déterminer s'il a heurté un quark transportant une grande partie de l'impulsion totale du proton ou juste une infime partie. Grâce à des collisions répétées, ils peuvent effectuer quelque chose comme un recensement, déterminant si l'impulsion du proton est principalement liée à quelques quarks ou répartie sur plusieurs.

(Illustration qui montre les apparences du proton en fonction des types de collisions)

Même les collisions de division de protons du SLAC étaient douces par rapport aux normes actuelles. Lors de ces événements de diffusion, les électrons jaillissaient souvent d'une manière suggérant qu'ils s'étaient écrasés sur des quarks transportant un tiers de l'impulsion totale du proton. Cette découverte correspond à une théorie de Murray Gell-Mann et George Zweig, qui affirmaient en 1964 qu'un proton était constitué de trois quarks.

Le " modèle des quarks " de Gell-Mann et Zweig reste une façon élégante d'imaginer le proton. Il possède deux quarks " up " avec des charges électriques de +2/3 chacun et un quark " down " avec une charge de −1/3, pour une charge totale de protons de +1.

(Image mobile : Trois quarks sont présents dans cette animation basée sur les données.)

Mais le modèle avec des quarks est une simplification excessive qui présente de sérieuses lacunes.

Qui échoue, par exemple, lorsqu'il s'agit du spin d'un proton, une propriété quantique analogue au moment cinétique. Le proton possède une demi-unité de spin, tout comme chacun de ses quarks up et down. Les physiciens ont initialement supposé que — dans un calcul faisant écho à la simple arithmétique de charge — les demi-unités des deux quarks up moins celle du quark down devaient être égales à une demi-unité pour le proton dans son ensemble. Mais en 1988, la Collaboration européenne sur les muons a rapporté que la somme des spins des quarks était bien inférieure à la moitié. De même, les masses de deux quarks up et d’un quark down ne représentent qu’environ 1 % de la masse totale du proton. Ces déficits ont fait ressortir un point que les physiciens commençaient déjà à comprendre : le proton est bien plus que trois quarks.

Beaucoup plus que trois quarks

L'accélérateur annulaire de hadrons et d'électrons (HERA), qui a fonctionné à Hambourg, en Allemagne, de 1992 à 2007, a projeté des électrons sur des protons avec une force environ mille fois supérieure à celle du SLAC. Dans les expériences HERA, les physiciens ont pu sélectionner les électrons qui avaient rebondi sur des quarks à impulsion extrêmement faible, y compris ceux transportant aussi peu que 0,005 % de l'impulsion totale du proton. Et ils les ont détectés : Les électrons d'HERA ont rebondi sur un maelström de quarks à faible dynamique et de leurs contreparties d'antimatière, les antiquarks.

(Photo image animée : De nombreux quarks et antiquarks bouillonnent dans une " mer " de particules bouillonnantes."

Les résultats ont confirmé une théorie sophistiquée et farfelue qui avait alors remplacé le modèle des quarks de Gell-Mann et Zweig. Développée dans les années 1970, il s’agissait d’une théorie quantique de la " force forte " qui agit entre les quarks. La théorie décrit les quarks comme étant liés par des particules porteuses de force appelées gluons. Chaque quark et chaque gluon possède l'un des trois types de charges "colorées ", étiquetées rouge, verte et bleue ; ces particules chargées de couleur se tirent naturellement les unes sur les autres et forment un groupe – tel qu’un proton – dont les couleurs s’additionnent pour former un blanc neutre. La théorie colorée est devenue connue sous le nom de chromodynamique quantique, ou QCD.

Selon cette QCD, les gluons peuvent capter des pics d’énergie momentanés. Avec cette énergie, un gluon se divise en un quark et un antiquark – chacun portant juste un tout petit peu d’impulsion – avant que la paire ne s’annihile et ne disparaisse. C'est cette " mer " de gluons, de quarks et d'antiquarks transitoires qu'HERA, avec sa plus grande sensibilité aux particules de faible impulsion, a détecté de première main.

HERA a également recueilli des indices sur ce à quoi ressemblerait le proton dans des collisionneurs plus puissants. Alors que les physiciens ajustaient HERA pour rechercher des quarks à faible impulsion, ces quarks – qui proviennent des gluons – sont apparus en nombre de plus en plus grand. Les résultats suggèrent que dans des collisions à énergie encore plus élevée, le proton apparaîtrait comme un nuage composé presque entièrement de gluons. (Image)

Les gluons abondent sous une forme semblable à un nuage.

Ce pissenlit de gluon est exactement ce que prédit la QCD. "Les données HERA sont une preuve expérimentale directe que la QCD décrit la nature", a déclaré Milner.

Mais la victoire de la jeune théorie s'est accompagnée d'une pilule amère : alors que la QCD décrivait magnifiquement la danse des quarks et des gluons à durée de vie courte révélée par les collisions extrêmes d'HERA, la théorie est inutile pour comprendre les trois quarks à longue durée de vie observés suite à un plus léger bombardement du SLAC.

Les prédictions de QCD ne sont faciles à comprendre que lorsque la force forte est relativement faible. Et la force forte ne s'affaiblit que lorsque les quarks sont extrêmement proches les uns des autres, comme c'est le cas dans les paires quark-antiquark de courte durée. Frank Wilczek, David Gross et David Politzer ont identifié cette caractéristique déterminante de la QCD en 1973, remportant le prix Nobel 31 ans plus tard.

Mais pour des collisions plus douces comme celle du SLAC, où le proton agit comme trois quarks qui gardent mutuellement leurs distances, ces quarks s'attirent suffisamment fortement les uns les autres pour que les calculs de QCD deviennent impossibles. Ainsi, la tâche de démystifier plus loin une vision du proton à trois quarks incombe en grande partie aux expérimentateurs. (Les chercheurs qui mènent des " expériences numériques ", dans lesquelles les prédictions QCD sont simulées sur des superordinateurs, ont également apporté des contributions clés .) Et c'est dans ce genre d' images à basse résolution que les physiciens continuent de trouver des surprises.

Une charmante nouvelle approche

Récemment, une équipe dirigée par Juan Rojo de l'Institut national de physique subatomique des Pays-Bas et de l'Université VU d'Amsterdam a analysé plus de 5 000 instantanés de protons pris au cours des 50 dernières années, en utilisant l'apprentissage automatique pour déduire les mouvements des quarks et des gluons à l'intérieur du proton via une procédure qui évite les conjectures théoriques.

Ce nouvel examen a détecté un flou en arrière-plan dans les images qui avait échappé aux chercheurs antérieurs. Dans des collisions relativement douces, juste capables d'ouvrir à peine le proton, la majeure partie de l'impulsion était enfermée dans les trois quarks habituels : deux ups et un down. Mais une petite quantité d’impulsion semble provenir d’un quark " charmé " et d’un antiquark charmé – particules élémentaires colossales dont chacune dépasse de plus d’un tiers le proton entier.

(Image mobie : Le proton agit parfois comme une " molécule " de cinq quarks.)

Ces charmés de courte durée apparaissent fréquemment dans le panorama " mer des quarks " du proton (les gluons peuvent se diviser en six types de quarks différents s'ils ont suffisamment d'énergie). Mais les résultats de Rojo et de ses collègues suggèrent que les charmés ont une présence plus permanente, ce qui les rend détectables lors de collisions plus douces. Dans ces collisions, le proton apparaît comme un mélange quantique, ou superposition, d'états multiples : un électron rencontre généralement les trois quarks légers. Mais il rencontrera occasionnellement une " molécule " plus rare de cinq quarks, comme un quark up, down et charmé regroupés d'un côté et un quark up et un antiquark charmé de l'autre.

Des détails aussi subtils sur la composition du proton pourraient avoir des conséquences. Au Grand collisionneur de hadrons, les physiciens recherchent de nouvelles particules élémentaires en frappant ensemble des protons à grande vitesse et en observant ce qui en ressort ; Pour comprendre les résultats, les chercheurs doivent commencer par savoir ce que contient un proton. L’apparition occasionnelle de quarks charmés géants rendrait impossible la production de particules plus exotiques.

Et lorsque des protons appelés rayons cosmiques déferlent ici depuis l'espace et percutent les protons de l'atmosphère terrestre, des quarks charmés apparaissant au bon moment inonderaient la Terre de neutrinos extra-énergétiques, ont calculé les chercheurs en 2021. Cela pourrait dérouter les observateurs à la recherche de neutrinos à haute énergie provenant de tout le cosmos.

La collaboration de Rojo prévoit de poursuivre l'exploration du proton en recherchant un déséquilibre entre les quarks charmés et les antiquarks. Et des constituants plus lourds, comme le quark top, pourraient faire des apparitions encore plus rares et plus difficiles à détecter.

Les expériences de nouvelle génération rechercheront des fonctionnalités encore plus inconnues. Les physiciens du Laboratoire national de Brookhaven espèrent lancer le collisionneur électron-ion dans les années 2030 et reprendre là où HERA s'est arrêté, en prenant des instantanés à plus haute résolution qui permettront les premières reconstructions 3D du proton. L'EIC utilisera également des électrons en rotation pour créer des cartes détaillées des spins des quarks et des gluons internes, tout comme le SLAC et HERA ont cartographié leurs impulsions. Cela devrait aider les chercheurs à enfin déterminer l'origine du spin du proton et à répondre à d'autres questions fondamentales concernant cette particule déroutante qui constitue l'essentiel de notre monde quotidien.

 

Auteur: Internet

Info: https://www.quantamagazine.org/ - Charlie Bois, 19 octobre 2022

[ univers subatomique ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-machine

Comment l'IA comprend des trucs que personne ne lui lui a appris

Les chercheurs peinent à comprendre comment les modèles d'Intelligence artificielle, formés pour perroquetter les textes sur Internet, peuvent effectuer des tâches avancées comme coder, jouer à des jeux ou essayer de rompre un mariage.

Personne ne sait encore comment ChatGPT et ses cousins ​​de l'intelligence artificielle vont transformer le monde, en partie parce que personne ne sait vraiment ce qui se passe à l'intérieur. Certaines des capacités de ces systèmes vont bien au-delà de ce pour quoi ils ont été formés, et même leurs inventeurs ne savent pas pourquoi. Un nombre croissant de tests suggèrent que ces systèmes d'IA développent des modèles internes du monde réel, tout comme notre propre cerveau le fait, bien que la technique des machines soit différente.

"Tout ce que nous voulons faire avec ces systèmes pour les rendre meilleurs ou plus sûrs ou quelque chose comme ça me semble une chose ridicule à demander  si nous ne comprenons pas comment ils fonctionnent", déclare Ellie Pavlick de l'Université Brown,  un des chercheurs travaillant à combler ce vide explicatif.

À un certain niveau, elle et ses collègues comprennent parfaitement le GPT (abréviation de generative pretrained transformer) et d'autres grands modèles de langage, ou LLM. Des modèles qui reposent sur un système d'apprentissage automatique appelé réseau de neurones. De tels réseaux ont une structure vaguement calquée sur les neurones connectés du cerveau humain. Le code de ces programmes est relativement simple et ne remplit que quelques pages. Il met en place un algorithme d'autocorrection, qui choisit le mot le plus susceptible de compléter un passage sur la base d'une analyse statistique laborieuse de centaines de gigaoctets de texte Internet. D'autres algorithmes auto-apprenants supplémentaire garantissant que le système présente ses résultats sous forme de dialogue. En ce sens, il ne fait que régurgiter ce qu'il a appris, c'est un "perroquet stochastique", selon les mots d'Emily Bender, linguiste à l'Université de Washington. Mais les LLM ont également réussi à réussir l'examen pour devenir avocat, à expliquer le boson de Higgs en pentamètre iambique (forme de poésie contrainte) ou à tenter de rompre le mariage d'un utilisateurs. Peu de gens s'attendaient à ce qu'un algorithme d'autocorrection assez simple acquière des capacités aussi larges.

Le fait que GPT et d'autres systèmes d'IA effectuent des tâches pour lesquelles ils n'ont pas été formés, leur donnant des "capacités émergentes", a surpris même les chercheurs qui étaient généralement sceptiques quant au battage médiatique sur les LLM. "Je ne sais pas comment ils le font ou s'ils pourraient le faire plus généralement comme le font les humains, mais tout ça mes au défi mes pensées sur le sujet", déclare Melanie Mitchell, chercheuse en IA à l'Institut Santa Fe.

"C'est certainement bien plus qu'un perroquet stochastique, qui auto-construit sans aucun doute une certaine représentation du monde, bien que je ne pense pas que ce soit  vraiment de la façon dont les humains construisent un modèle de monde interne", déclare Yoshua Bengio, chercheur en intelligence artificielle à l'université de Montréal.

Lors d'une conférence à l'Université de New York en mars, le philosophe Raphaël Millière de l'Université de Columbia a offert un autre exemple à couper le souffle de ce que les LLM peuvent faire. Les modèles avaient déjà démontré leur capacité à écrire du code informatique, ce qui est impressionnant mais pas trop surprenant car il y a tellement de code à imiter sur Internet. Millière est allé plus loin en montrant que le GPT peut aussi réaliser du code. Le philosophe a tapé un programme pour calculer le 83e nombre de la suite de Fibonacci. "Il s'agit d'un raisonnement en plusieurs étapes d'un très haut niveau", explique-t-il. Et le robot a réussi. Cependant, lorsque Millière a demandé directement le 83e nombre de Fibonacci, GPT s'est trompé, ce qui suggère que le système ne se contentait pas de répéter ce qui se disait sur l'internet. Ce qui suggère que le système ne se contente pas de répéter ce qui se dit sur Internet, mais qu'il effectue ses propres calculs pour parvenir à la bonne réponse.

Bien qu'un LLM tourne sur un ordinateur, il n'en n'est pas un lui-même. Il lui manque des éléments de calcul essentiels, comme sa propre mémoire vive. Reconnaissant tacitement que GPT seul ne devrait pas être capable d'exécuter du code, son inventeur, la société technologique OpenAI, a depuis introduit un plug-in spécialisé -  outil que ChatGPT peut utiliser pour répondre à une requête - qui remédie à cela. Mais ce plug-in n'a pas été utilisé dans la démonstration de Millière. Au lieu de cela, ce dernier suppose plutôt que la machine a improvisé une mémoire en exploitant ses mécanismes d'interprétation des mots en fonction de leur contexte -  situation similaire à la façon dont la nature réaffecte des capacités existantes à de nouvelles fonctions.

Cette capacité impromptue démontre que les LLM développent une complexité interne qui va bien au-delà d'une analyse statistique superficielle. Les chercheurs constatent que ces systèmes semblent parvenir à une véritable compréhension de ce qu'ils ont appris. Dans une étude présentée la semaine dernière à la Conférence internationale sur les représentations de l'apprentissage (ICLR), le doctorant Kenneth Li de l'Université de Harvard et ses collègues chercheurs en intelligence artificielle, Aspen K. Hopkins du Massachusetts Institute of Technology, David Bau de la Northeastern University et Fernanda Viégas , Hanspeter Pfister et Martin Wattenberg, tous à Harvard, ont créé leur propre copie plus petite du réseau neuronal GPT afin de pouvoir étudier son fonctionnement interne. Ils l'ont entraîné sur des millions de matchs du jeu de société Othello en alimentant de longues séquences de mouvements sous forme de texte. Leur modèle est devenu un joueur presque parfait.

Pour étudier comment le réseau de neurones encodait les informations, ils ont adopté une technique que Bengio et Guillaume Alain, également de l'Université de Montréal, ont imaginée en 2016. Ils ont créé un réseau de "sondes" miniatures pour analyser le réseau principal couche par couche. Li compare cette approche aux méthodes des neurosciences. "C'est comme lorsque nous plaçons une sonde électrique dans le cerveau humain", dit-il. Dans le cas de l'IA, la sonde a montré que son "activité neuronale" correspondait à la représentation d'un plateau de jeu d'Othello, bien que sous une forme alambiquée. Pour confirmer ce résultat, les chercheurs ont inversé la sonde afin d'implanter des informations dans le réseau, par exemple en remplaçant l'un des marqueurs noirs du jeu par un marqueur blanc. "En fait, nous piratons le cerveau de ces modèles de langage", explique Li. Le réseau a ajusté ses mouvements en conséquence. Les chercheurs ont conclu qu'il jouait à Othello à peu près comme un humain : en gardant un plateau de jeu dans son "esprit" et en utilisant ce modèle pour évaluer les mouvements. Li pense que le système apprend cette compétence parce qu'il s'agit de la description la plus simple et efficace de ses données pour l'apprentissage. "Si l'on vous donne un grand nombre de scripts de jeu, essayer de comprendre la règle qui les sous-tend est le meilleur moyen de les comprimer", ajoute-t-il.

Cette capacité à déduire la structure du monde extérieur ne se limite pas à de simples mouvements de jeu ; il apparaît également dans le dialogue. Belinda Li (aucun lien avec Kenneth Li), Maxwell Nye et Jacob Andreas, tous au MIT, ont étudié des réseaux qui jouaient à un jeu d'aventure textuel. Ils ont introduit des phrases telles que "La clé est dans le coeur du trésor", suivies de "Tu prends la clé". À l'aide d'une sonde, ils ont constaté que les réseaux encodaient en eux-mêmes des variables correspondant à "coeur" et "Tu", chacune avec la propriété de posséder ou non une clé, et mettaient à jour ces variables phrase par phrase. Le système n'a aucun moyen indépendant de savoir ce qu'est une boîte ou une clé, mais il a acquis les concepts dont il avait besoin pour cette tâche."

"Une représentation de cette situation est donc enfouie dans le modèle", explique Belinda Li.

Les chercheurs s'émerveillent de voir à quel point les LLM sont capables d'apprendre du texte. Par exemple, Pavlick et sa doctorante d'alors, l'étudiante Roma Patel, ont découvert que ces réseaux absorbent les descriptions de couleur du texte Internet et construisent des représentations internes de la couleur. Lorsqu'ils voient le mot "rouge", ils le traitent non seulement comme un symbole abstrait, mais comme un concept qui a une certaine relation avec le marron, le cramoisi, le fuchsia, la rouille, etc. Démontrer cela fut quelque peu délicat. Au lieu d'insérer une sonde dans un réseau, les chercheurs ont étudié sa réponse à une série d'invites textuelles. Pour vérifier si le systhème ne faisait pas simplement écho à des relations de couleur tirées de références en ligne, ils ont essayé de le désorienter en lui disant que le rouge est en fait du vert - comme dans la vieille expérience de pensée philosophique où le rouge d'une personne correspond au vert d'une autre. Plutôt que répéter une réponse incorrecte, les évaluations de couleur du système ont évolué de manière appropriée afin de maintenir les relations correctes.

Reprenant l'idée que pour remplir sa fonction d'autocorrection, le système recherche la logique sous-jacente de ses données d'apprentissage, le chercheur en apprentissage automatique Sébastien Bubeck de Microsoft Research suggère que plus la gamme de données est large, plus les règles du système faire émerger sont générales. "Peut-être que nous nous constatons un tel bond en avant parce que nous avons atteint une diversité de données suffisamment importante pour que le seul principe sous-jacent à toutes ces données qui demeure est que des êtres intelligents les ont produites... Ainsi la seule façon pour le modèle d'expliquer toutes ces données est de devenir intelligent lui-même".

En plus d'extraire le sens sous-jacent du langage, les LLM sont capables d'apprendre en temps réel. Dans le domaine de l'IA, le terme "apprentissage" est généralement réservé au processus informatique intensif dans lequel les développeurs exposent le réseau neuronal à des gigaoctets de données et ajustent petit à petit ses connexions internes. Lorsque vous tapez une requête dans ChatGPT, le réseau devrait être en quelque sorte figé et, contrairement à l'homme, ne devrait pas continuer à apprendre. Il fut donc surprenant de constater que les LLM apprennent effectivement à partir des invites de leurs utilisateurs, une capacité connue sous le nom d'"apprentissage en contexte". "Il s'agit d'un type d'apprentissage différent dont on ne soupçonnait pas l'existence auparavant", explique Ben Goertzel, fondateur de la société d'IA SingularityNET.

Un exemple de la façon dont un LLM apprend vient de la façon dont les humains interagissent avec les chatbots tels que ChatGPT. Vous pouvez donner au système des exemples de la façon dont vous voulez qu'il réponde, et il obéira. Ses sorties sont déterminées par les derniers milliers de mots qu'il a vus. Ce qu'il fait, étant donné ces mots, est prescrit par ses connexions internes fixes - mais la séquence de mots offre néanmoins une certaine adaptabilité. Certaines personnes utilisent le jailbreak à des fins sommaires, mais d'autres l'utilisent pour obtenir des réponses plus créatives. "Il répondra mieux aux questions scientifiques, je dirais, si vous posez directement la question, sans invite spéciale de jailbreak, explique William Hahn, codirecteur du laboratoire de perception de la machine et de robotique cognitive à la Florida Atlantic University. "Sans il sera un meilleur universitaire." (Comme son nom l'indique une invite jailbreak -prison cassée-, invite à  moins délimiter-verrouiller les fonctions de recherche et donc à les ouvrir, avec les risques que ça implique) .

Un autre type d'apprentissage en contexte se produit via l'incitation à la "chaîne de pensée", ce qui signifie qu'on demande au réseau d'épeler chaque étape de son raisonnement - manière de faire qui permet de mieux résoudre les problèmes de logique ou d'arithmétique en passant par plusieurs étapes. (Ce qui rend l'exemple de Millière si surprenant  puisque le réseau a trouvé le nombre de Fibonacci sans un tel encadrement.)

En 2022, une équipe de Google Research et de l'École polytechnique fédérale de Zurich - Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev, Andrey Zhmoginov et Max Vladymyrov - a montré que l'apprentissage en contexte suit la même procédure de calcul de base que l'apprentissage standard, connue sous le nom de descente de gradient". 

Cette procédure n'était pas programmée ; le système l'a découvert sans aide. "C'est probablement une compétence acquise", déclare Blaise Agüera y Arcas, vice-président de Google Research. De fait il pense que les LLM peuvent avoir d'autres capacités latentes que personne n'a encore découvertes. "Chaque fois que nous testons une nouvelle capacité que nous pouvons quantifier, nous la trouvons", dit-il.

Bien que les LLM aient suffisamment d'angles morts et autres défauts pour ne pas être qualifiés d'intelligence générale artificielle, ou AGI - terme désignant une machine qui atteint l'ingéniosité du cerveau animal - ces capacités émergentes suggèrent à certains chercheurs que les entreprises technologiques sont plus proches de l'AGI que même les optimistes ne l'avaient deviné. "Ce sont des preuves indirectes que nous en sommes probablement pas si loin", a déclaré Goertzel en mars lors d'une conférence sur le deep learning à la Florida Atlantic University. Les plug-ins d'OpenAI ont donné à ChatGPT une architecture modulaire un peu comme celle du cerveau humain. "La combinaison de GPT-4 [la dernière version du LLM qui alimente ChatGPT] avec divers plug-ins pourrait être une voie vers une spécialisation des fonctions semblable à celle de l'homme", déclare Anna Ivanova, chercheuse au M.I.T.

Dans le même temps, les chercheurs s'inquiètent de voir leur capacité à étudier ces systèmes s'amenuiser. OpenAI n'a pas divulgué les détails de la conception et de l'entraînement de GPT-4, en partie du à la concurrence avec Google et d'autres entreprises, sans parler des autres pays. "Il y aura probablement moins de recherche ouverte de la part de l'industrie, et les choses seront plus cloisonnées et organisées autour de la construction de produits", déclare Dan Roberts, physicien théoricien au M.I.T., qui applique les techniques de sa profession à la compréhension de l'IA.

Ce manque de transparence ne nuit pas seulement aux chercheurs, il entrave également les efforts qui visent à comprendre les répercussions sociales de l'adoption précipitée de la technologie de l'IA. "La transparence de ces modèles est la chose la plus importante pour garantir la sécurité", affirme M. Mitchell.

Auteur: Musser Georges

Info: https://www.scientificamerican.com,  11 mai 2023. *algorithme d'optimisation utilisé dans l'apprentissage automatique et les problèmes d'optimisation. Il vise à minimiser ou à maximiser une fonction en ajustant ses paramètres de manière itérative. L'algorithme part des valeurs initiales des paramètres et calcule le gradient de la fonction au point actuel. Les paramètres sont ensuite mis à jour dans la direction du gradient négatif (pour la minimisation) ou positif (pour la maximisation), multiplié par un taux d'apprentissage. Ce processus est répété jusqu'à ce qu'un critère d'arrêt soit rempli. La descente de gradient est largement utilisée dans la formation des modèles d'apprentissage automatique pour trouver les valeurs optimales des paramètres qui minimisent la différence entre les résultats prédits et les résultats réels. Trad et adaptation Mg

[ singularité technologique ] [ versatilité sémantique ]

 

Commentaires: 0

Ajouté à la BD par miguel

psychosomatique

Nous avons 2 cerveaux.

On se demande souvent pourquoi les gens ont des "boules" dans l'estomac avant d'aller sur scène ? Ou pourquoi un entretien d'emploi imminent peut causer des crampes intestinales ? Ainsi que : pourquoi les antidépresseur qui visent le cerveau causent la nausée ou un bouleversement abdominal chez des millions de personnes qui prennent de telles drogues ?

Les scientifiques disent que la raison de ces réactions est que notre corps a deux cerveaux : le familier, dans le crâne et, moins connus, mais extrêmement importants un autre dans l'intestin humain- Tout comme des jumeaux siamois, les deux cerveaux sont reliés ensemble ; quand l'un est affecté, l'autre aussi. Le cerveau de l'intestin, connu sous le nom de système nerveux entérique, est situé dans les gaines du tissu qui tapissent l'oesophage, l'estomac, le petit intestin et le colon. Si on le considère comme une simple entité, c'est un réseau de neurones, de neurotransmetteurs et de protéines qui zappent des messages entre eux, soutiennent des cellules comme celles du cerveau proprement dit et offrent des circuits complexes qui lui permettent d'agir indépendamment, d'apprendre, de se rappeler et, selon le dicton, de produire des sensations dans les intestins.

Le cerveau de l'intestin joue un rôle important dans le bonheur et la misère humains. Mais peu de gens savent qu'il existe indique le Dr. Michael Gershon, professeur d'anatomie et de biologie des cellules au centre médical presbytérien de Colombia à New York. Pendant des années, on a dit aux gens qui ont des ulcères, des problèmes pour avaler ou des douleurs abdominales chroniques que leurs problèmes étaient imaginaires ou, émotifs, c'est à dire simplement dans leurs têtes. Ces gens ont donc faits la navette entre divers psychiatres pour le traitement. Les médecins avaient raison en attribuant ces problèmes au cerveau dit le DR. Gershon, mais ils blâment le faux. Beaucoup de désordres gastro-intestinaux, comme le syndrome d'entrailles irritable proviennent des problèmes dans le propre cerveau de l'intestin, affirme-t'il. Les symptômes provenant des deux cerveaux - tendent à être confus : " Comme le cerveau peut déranger l'intestin, l'intestin peut également déranger le cerveau... si tu es enchaîné aux toilette avec un serre joint, tu seras aussi affecté."

Les détails de la façon dont le système nerveux entérique reflète le système nerveux central ont émergé ces dernières années, dit le Dr. Gershon, et c'est considéré comme un nouveau champ d'investigation appelé neuro-gastro-enterologie par la médecine. Ainsi, presque chaque substance qui aide à faire fonctionner et à commander le cerveau a donné des résultat dans l'intestin, dit Gershon. Les neurotransmetteurs principaux comme la sérotonine, dopamine, glutamate, nopépinéphrine et l'oxyde nitrique sont là. Deux douzaine de petites protéines cervicales, appelées les neuropeptides, sont dans l'intestin, comme les cellules principales du système immunitaire. Les Enkephalins, une classe d'opiacés normaux du corps, sont dans l'intestin et, constatation qui laisse les chercheurs perplexe, l'intestin est une riche source de benzodiazépines - la famille des produits chimiques psycho-actifs qui inclut des drogues toujours populaires telles que le Valium et le Xanax.

En termes évolutionnistes, il est assez clair que le corps a deux cerveaux, dit le Dr. David Wingate, professeur de science gastro-intestinale à l'université de Londres et conseiller à l'hôpital royal de Londres. Les premiers systèmes nerveux étaient des animaux non tubulaires qui collaient aux roches et attendaient le passage de nourriture. Le système limbique est souvent désignée sous le nom de "cerveau reptilien". Alors que la vie évoluait, les animaux ont eu besoin d'un cerveau plus complexe pour trouver la nourriture et un partenaire sexuel et ainsi ont développé un système nerveux central. Mais le système nerveux de l'intestin était trop important pour l'intégrer à cette nouvelle tête, même avec de longs raccordements sur tout le corps. Un rejeton à toujours besoin de manger et digérer de la nourriture à la naissance. Par conséquent, la nature semble avoir préservé le système nerveux entérique en tant que circuit indépendant.

Chez de plus grands animaux, il est simplement relié de manière vague au système nerveux central et peut la plupart du temps fonctionner seul, sans instructions de l'extérieur. C'est en effet l'image vue par les biologistes développementalistes. Une motte de tissus appelée la "crête neurale" se forme tôt dans l'embryogenese dit le DR.Gershon. Une section se transforme en système nerveux central. Un autre morceau émigre pour devenir le système nerveux entérique. Et postérieurieurement seulement les deux systèmes nerveux seront relié par l'intermédiaire d'une sorte de câble appelé le nerf "vagus". Jusque à relativement récemment, les gens ont pensé que les muscles et les nerfs sensoriels de l'intestin étaient câblés directement au cerveau et que le cerveau commandait l'intestin par deux voies qui augmentaient ou diminuaient les taux de l'activité. L'intestin étant un simple tube avec des réflexes. L'ennui est que personne ne pris la peine de compter les fibres de nerf dans l'intestin. Quand on l'a fait on fut étonné de constater que l'intestin contient 100 millions de neurones - plus que la moelle épinière.

Pourtant le conduit vagus n'envoie qu'environ deux mille fibres de nerf vers l'intestin. Le cerveau envoie des signaux à l'intestin en parlant à un nombre restreint de'"neurones de commande", qui envoient à leur tour des signaux aux neurones internes de l'intestin qui diffusent les messages. Les neurones et les inter neurones de commande sont dispersées dans deux couches de tissu intestinal appelées le plexus myenteric et le plexus subrmuscosal. ("le plexus solaire" est en fait un terme de boxe qui se réfère simplement aux nerfs de l'abdomen.) Ces neurones commandent et contrôlent le modèle de l'activité de l'intestin. Le nerf vagus modifie seulement le volume en changeant le taux de mise à feu. Les plexus contiennent également les cellules gliales qui nourrissent les neurones, les cellules pylônes impliquées dans des immuno-réactions, et "une barrière de sang cervical " qui maintient ces substances nocives loin des neurones importants. Ils ont des sondes pour les protéines de sucre, d'acidité et d'autres facteurs chimiques qui pourraient aider à surveiller le progrès de la digestion, déterminant comment l'intestin mélange et propulse son contenu. "Ce n'est pas une voie simple", Y sont employés des circuits intégrés complexes, pas différents du cerveau." Le cerveau de l'intestin et le cerveau de la tête agissent de la même manière quand ils sont privés d'informations venant du monde extérieur.

Pendant le sommeil, le cerveau de la tête produit des cycles de 90-minutes de sommeil lent, ponctué par des périodes de sommeil avec des mouvement d'oeil rapide (REM) où les rêves se produisent. Pendant la nuit, quand il n'a aucune nourriture, le cerveau de l'intestin produit des cycles 90-minute de lentes vagues de contractions des muscles, ponctuées par de courts gerbes de mouvements rapides des muscles, dit le Dr. Wingate. Les deux cerveaux peuvent donc s'influencer dans cet état. On a trouvé des patients présentant des problèmes d'entrailles ayant un sommeil REM anormal. Ce qui n'est pas contradictoire avec la sagesse folklorique qui voudrait que l'indigestion pousse au cauchemar. Alors que la lumière se fait sur les connexions entre les deux cerveaux, les chercheurs commencent à comprendre pourquoi les gens agissent et se sentent de telle manière.

Quand le cerveau central rencontre une situation effrayante, il libère les hormones d'effort qui préparent le corps combattre ou à se sauver dit le DR.Gershon. L'estomac contient beaucoup de nerfs sensoriels qui sont stimulés par cette montée chimique subite - ainsi surviennent les ballonnements. Sur le champ de bataille, le cerveau de la tête indique au cerveau d'intestin arrêter dit le DR.Gershon " Effrayé un animal en train de courir ne cesse pas de déféquer ". La crainte fait aussi que le nerf vagus au "monte le volume" des circuits de sérotonine dans l'intestin. Ainsi, trop stimulé, l'intestin impulse des vitesse élevés et, souvent, de la diarrhée. De même, des gens s'étouffent avec l'émotion. Quand des nerfs dans l'oesophage sont fortement stimulés, les gens peuvent éprouver des problèmes d'ingestion. Même le prétendu " Moment de Maalox " d'efficacité publicitaire peut être expliqué par les deux cerveaux agissant en interaction, dit le Dr. Jackie D. Wood, président du département de physiologie à l'université de l'Etat de l'Ohio à Columbus. Les signaux d'effort du cerveau de la tête peuvent changer la fonction de nerf entre l'estomac et l'oesophage, ayant pour résultat la brûlure d'estomac.

Dans les cas d'efforts extrême. le cerveau dominant semble protéger l'intestin en envoyant des signaux aux cellules pylônes immunologiques dans le plexus. Les cellules pylônes sécrètent l'histamine, la prostaglandine et d'autres agents qui aident à produire l'inflammation. "C'est protecteur. Si un animal est en danger et sujet au trauma, la substance sale dans les intestins est seulement à quelques cellules du reste du corps. En enflammant l'intestin, le cerveau amorce l'intestin pour la surveillance. Si la barrière se casse, l'intestin est prêt à faire les réparations ". Dit le DR. Wood. Malheureusement, ces produits chimiques libérés causent également la diarrhée et les crampes. Ceci explique également beaucoup d'interactions.."quand tu prends une drogue pour avoir des effets psychiques sur le cerveau, il est très probable que tu auras aussi des effets sur l'intestin. Réciproquement, les drogues développées pour le cerveau ont des utilisations pour l'intestin.

Par exemple, l'intestin est chargé avec la sérotonine des neurotransmetteur. Quand des récepteurs de pression de la doublure de l'intestin sont stimulés, la sérotonine est libérée et commence le mouvement réflexe du péristaltisme. Maintenant un quart des personnes prenant du Prozac ou des antidépresseur semblables ont des problèmes gastro- intestinaux comme la nausée, diarrhée et constipation. Ces drogues agissent sur la sérotonine, empêchant sa prise par les cellules cible de sorte qu'elle demeure plus abondante dans le système nerveux central. Dans une étude le DR.Gershon et ses collègues expliquent les effets secondaires du Prozac sur l'intestin. Ils ont monté une section de colon du cobaye sur un stand et ont mis un petit granule à l'extrémité de la "bouche". Le colon isolé fouette le granule vers le bas vers l'extrémité "anale" de la colonne, juste comme il le ferai à l'intérieur de l'animal. Quand les chercheurs ont mis un peu de Prozac dans le colon, le granule " y est entré dans la haute vitesse". La drogue a doublé la vitesse à laquelle le granule a traversé le colon, ce qui expliqueraient pourquoi certains ont la diarrhée. Le Prozac a été parfois utilisé à petites doses pour traiter la constipation chronique, a il ajouté. Mais quand les chercheurs ont augmenté la quantité de Prozac dans le colon du cobaye, le granule a cessé de se déplacer. Le DR Gershon dit que c'est pourquoi certains deviennent constipé avec cette drogue. Et parce que les nerfs sensoriels stimulés par Prozac peuvent également causer la nausée. Certains antibiotiques comme la crythromycine agissent sur des récepteurs d'intestin et produisent des oscillations. Certaines ont alors des crampes et des nausées. Des drogues comme la morphine et l'héroïne s'attachent aux récepteurs des opiacé de l'intestin, produisant la constipation. En effet, les deux cerveaux peuvent être intoxiqués aux opiacés. Les victimes des maladies d'Alzheimer et de Parkinson souffrent de constipation. Les nerfs dans leur intestin sont aussi malades que les cellules de nerf dans leurs cerveaux. Juste comme le cerveau central affecte l'intestin, le cerveau de l'intestin peut parler à la tête. La plupart des sensations d'intestin qui entrent dans la part consciente sont des choses négatives comme la douleur et le ballonnement.

Les gens ne s'attendent pas à sentir "du bon" venant de l'intestin... mais cela ne signifie pas que de tels signaux sont absents. Par conséquent, il y a la question intrigante : pourquoi l'intestin produit-il de la benzodiazépine ? Le cerveau humain contient des récepteurs pour la benzodiazépine, une drogue qui soulage l'inquiétude, suggérant que le corps produise sa propre source interne de la drogue, dit le Dr. Anthony Basile, neurochimiste au laboratoire de neurologie aux instituts nationaux de la santé a Bethesda. Il y a plusieurs années, dit-il, un scientifique italien a fait une découverte plus effrayante. Les patients présentant un disfonctionnement du foie tombèrent dans un coma profond. Le coma put être renversé, en quelques minutes, en donnant aux patients une drogue qui bloque la benzodiazépine. Quand le foie s'arrête, les substances habituellement neutralisées par le foie vont au cerveau. Certaines sont mauvaises, comme l'ammoniaque et les mercaptans, qui sont "les composés puants que les putois pulvérisent pour se défendre ". Mais une série de composés est également identique à la benzodiazépine. " Nous ne savons pas s'ils viennent de l'intestin lui-même, de bactéries dans l'intestin ou de la nourriture". dit. Le Dr Basile. Mais quand le foie s'arrête la benzodiazépine de l'intestin va directement au cerveau, mettant le patient dans le coma.

L'intérêt pour de telles interactions entre le cerveau d'intestin et celui de tête est énorme... Par exemple, beaucoup de personnes sont allergiques à certaines nourritures, comme les mollusques et les crustacés. C'est parce que les cellules pylônes dans l'intestin deviennent mystérieusement sensibilisées aux antigènes de la nourriture. La prochaine fois que l'antigène apparaît dans l'intestin ; les cellules pylônes appellent un programme, libérant des modulateurs chimiques, qui essaye d'éliminer la menace. La personne allergique se retrouve donc avec de la diarrhée et des crampes. Beaucoup de maladies auto-immunes comme la maladie de Krohn et les colites ulcérative peuvent impliquer le cerveau de l'intestin. Les conséquences peuvent être horribles, comme dans la maladie de Chagas, qui est provoquée par un parasite trouvé en Amérique du sud. Les infectés développent une réponse auto-immune des neurones de leur intestin. Leurs systèmes immunitaires détruit alors lentement leurs propres neurones intestinales. Quand assez de neurones sont mortes, les intestins éclatent littéralement.

Restent ces questions : Est ce que le cerveau de l'intestin apprend ? Pense - il pour lui-même ? L'intestin humain a été longtemps vu comme le réceptacle des bons et des mauvais sentiments. Des états peut-être émotifs du cerveau de la tête sont reflétés dans le cerveau de l'intestin, ou sont-ils ressentis que par ceux qui prêtent l'attention à elles. Le cerveau de l'intestin prend la forme de deux réseaux de raccordements neuraux dans la doublure de l'appareil gastro-intestinal, appelée le plexus myenteric et le plexus subrnucosal. Les nerfs sont fortement reliés ensemble et ont une influence directe sur des choses comme la vitesse de la digestion, le mouvement et des sécrétions de la muqueuses "comme-des-doigts" qui ligne les intestins et les contractions des différents genres de muscle dans les parois de l'intestin. Autoroute cerveau intestin à 2 voies : RUE Bidirectionnelle : L'intestin a son propre esprit, le système nerveux entérique. Juste comme le cerveau dans la tête, disent les chercheurs. Ce système envoie et reçoit des impulsions, enregistre, fait des expériences et répond aux émotions. Ses cellules nerveuse sont baignées et influencées par les mêmes neurotransmetteurs. L'intestin peut déranger le cerveau juste comme le cerveau peut déranger l'intestin. Diagramme des parois du petit intestin : un plan de coupe montre deux réseaux de nerfs qui composent le système nerveux entérique, ou "cerveau dans l'intestin". Le premier réseau, appelé le plexus submucosal, est juste sous la doublure muqueuse. le second, le plexus myenteric, se trouve entre les deux manteaux de muscle.

Auteur: Blakeslee Sandra

Info: New York Times 23 Janvier 1996

[ dyspepsie ] [ tourista ]

 

Commentaires: 0