Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 430
Temps de recherche: 0.0609s

recherche fondamentale

Personne ne prenait au sérieux les expériences quantiques de John F. Clauser. 50 ans plus tard, il reçoit un prix Nobel.

Le 4 octobre, John F. Clauser, 80 ans, s'est réveillé dans sa maison californienne pour apprendre qu'il avait reçu le prix Nobel de physique. Il le recevra lors d'une cérémonie à Stockholm, en Suède, le 10 décembre, avec Anton Zeilinger et Alain Aspect, pour leurs travaux sur l'intrication quantique. 

Un moment de fête pour Clauser, dont les expériences révolutionnaires sur les particules de lumière ont contribué à prouver des éléments clés de la mécanique quantique.

"Tout le monde veut gagner un prix Nobel", a déclaré M. Clauser. "Je suis très heureux."

Mais son parcours jusqu'à l'obtention du plus grand prix scientifique n'a pas toujours été simple. 

Dans les années 1960, Clauser était étudiant en physique à l'université Columbia. Par hasard, il découvrit à la bibliothèque de l'université un article qui allait façonner sa carrière et l'amener à poursuivre les travaux expérimentaux qui lui ont valu le prix Nobel.

L'article, écrit par le physicien irlandais John Stewart Bell et publié dans la revue Physics en 1964, se demandait si la mécanique quantique donnait ou non une description complète de la réalité. Le phénomène d'intrication quantique constituant le cœur de la question.

L'intrication quantique se produit lorsque deux ou plusieurs particules sont liées d'une certaine manière, et quelle que soit la distance qui les sépare dans l'espace, leurs états restent liés. 

Par exemple, imaginez une particule A qui s'envole dans une direction et une particule B dans l'autre. Si les deux particules sont intriquées - ce qui signifie qu'elles partagent un état quantique commun - une mesure de la particule A déterminera immédiatement le résultat de la mesure de la particule B. Peu importe que les particules soient distantes de quelques mètres ou de plusieurs années-lumière - leur liaison à longue distance est instantanée. 

Cette possibilité avait été rejetée par Albert Einstein et ses collègues dans les années 1930. Au lieu de cela, ils soutenaient qu'il existe un "élément de réalité" qui n'est pas pris en compte par la mécanique quantique. 

Dans son article de 1964, Bell soutenait qu'il était possible de tester expérimentalement si la mécanique quantique échouait à décrire de tels éléments de la réalité. Il appelait ces éléments non pris en compte des "variables cachées".

Bell pensait en particulier à des variables locales. Ce qui signifie qu'elles n'affectent la configuration physique que dans leur voisinage immédiat. Comme l'explique Clauser, "si vous placez des éléments localement dans une boîte et effectuez une mesure dans une autre boîte très éloignée, les choix de paramètres expérimentaux effectués dans une boîte ne peuvent pas affecter les résultats expérimentaux dans l'autre boîte, et vice versa."

Clauser décida de tester la proposition de Bell. Mais lorsqu'il voulut faire l'expérience, son superviseur l'exhorta à reconsidérer sa décision. 

"Le plus difficile au départ a été d'obtenir l'opportunité", se souvient Clauser. "Tout le monde me disait que ce n'était pas possible, donc à quoi bon !".

Le laboratoire quantique 

En 1972, Clauser a finalement eu l'occasion de tester la proposition de Bell alors qu'il occupait un poste postdoctoral au Lawrence Berkeley National Laboratory en Californie. Il s'associa à un étudiant en doctorat, Stuart Freedman. Ensemble, ils mirent sur pied un laboratoire rempli d'équipement optique. 

"Personne n'avait fait cela auparavant", a déclaré Clauser. "Nous n'avions pas d'argent pour faire quoi que ce soit. Nous avons dû tout construire à partir de rien. Je me suis sali les mains, ai été immergé dans l'huile, il y avait beaucoup de fils et j'ai construit beaucoup d'électronique."

Clauser et Freedman ont réussi à créer des photons intriqués en manipulant des atomes de calcium. Les particules de lumière, ou photons, s'envolaient dans des filtres polarisants que Clauser et Freedman pouvaient faire tourner les uns par rapport aux autres. 

La mécanique quantique prédit qu'une plus grande quantité de photons passerait simultanément les filtres que si la polarisation des photons était déterminée par des variables locales et cachées.

L'expérience de Clauser et Freedman mis en évidence que les prédictions de la mécanique quantique étaient correctes. "Nous considérons ces résultats comme des preuves solides contre les théories de variables cachées locales", ont-ils écrit en 1972 dans Physical Review Letters.

Des débuts difficiles

Les résultats de Clauser et Freedman furent confirmés par d'autres expériences menées par Alain Aspect et Anton Zeilinger. 

"Mes travaux ont eu lieu dans les années 70, ceux d'Aspect dans les années 80 et ceux de Zeilinger dans les années 90", a déclaré Clauser. "Nous avons travaillé de manière séquentielle pour améliorer le domaine".

Mais l'impact de l'expérience révolutionnaire de Clauser n'a pas été reconnu immédiatement.

"Les choses étaient difficiles", se souvient Clauser. "Tout le monde disait : "Belle expérience, mais vous devriez peut-être sortir et mesurer des chiffres et arrêter de perdre du temps et de l'argent et commencer à faire de la vraie physique"."

Il a fallu attendre 50 ans pour que Clauser reçoive le prix Nobel pour son travail expérimental. Son collègue, Stuart Freedman, est décédé en 2012. 

"Mes associés sont morts depuis longtemps. Mon seul titre de gloire est d'avoir vécu assez longtemps". a déclaré Clauser

Lorsqu'on lui a demandé s'il avait des conseils à donner aux jeunes chercheurs compte tenu de sa propre difficulté initiale, Clauser a répondu : "Si vous prouvez quelque chose que tout le monde pense vrai, et que vous êtes le premier à le faire, vous ne serez probablement pas reconnu avant 50 ans. C'est la mauvaise nouvelle. La bonne, c'est que j'ai eu beaucoup de plaisir à faire ce travail." 


Auteur: Internet

Info: https://www.livescience.com, Jonas Enande, 9 déc 2022

[ agrément moteur ] [ délectation ] [ observateur dualisant ]

 

Commentaires: 0

Ajouté à la BD par miguel

décès

Mourir n'est plus ce qu'il était !
Intensiviste à l'Hôpital Saint-Luc et président du Comité du don d'organes et de tissus du CHUM, le Dr Pierre Aslanian considère son travail comme très valorisant, car il contribue à l'effort collectif de sauver des vies.
"Dans les années 50, l'arrêt définitif du coeur constituait le seul critère de la mort. Ce n'est plus le cas aujourd'hui", déclare le Dr Pierre Aslanian, intensiviste à l'Hôpital Saint-Luc et président du Comité du don d'organes et de tissus du Centre hospitalier de l'Université de Montréal (CHUM). "Depuis l'introduction du concept de mort cérébrale, soit l'arrêt complet et définitif de toute activité du cerveau, par un comité de la Harvard Medical School en 1968, c'est l'état du cerveau qui fait pencher la balance."
La peau du patient est rosée et chaude, son coeur bat, même son thorax se soulève à un rythme régulier, puisque sa respiration est maintenue artificiellement par un appareil et, pourtant, le patient est bel et bien mort. Pour confirmer la mort cérébrale, deux médecins indépendants de l'équipe de prélèvement et de transplantation ont reproduit divers tests cliniques selon un protocole bien défini. "D'abord, il faut connaître l'étiologie du dommage au cerveau, indique Pierre Aslanian. Sans la cause, on ne peut pas conclure à une mort cérébrale. Il faut aussi s'assurer qu'il n'y a aucun facteur confondant comme des sédatifs en circulation dans le sang au moment où l'on effectue les tests."
Concrètement, pour évaluer l'état et l'évolution d'un patient, les médecins disposent d'échelles internationales standardisées, comme l'échelle de coma Glasgow et le protocole de diagnostic du décès neurologique (DDN) de Transplant Québec, grâce auxquelles on peut mesurer notamment la réponse motrice à la douleur et les réflexes du tronc cérébral, la partie inférieure du cerveau responsable de la conscience. L'absence de réflexe respiratoire est validée par un test d'apnée. En cas de doute ou s'il y a présence de facteurs confondants, le DDN doit être établi par un examen complémentaire, par exemple une angiographie cérébrale qui permet d'objectiver l'arrêt de la circulation sanguine encéphalique. Le diagnostic est sans équivoque. L'absence de circulation intracrânienne entraîne une destruction totale et irréversible du cerveau.
"La souffrance d'une famille ébranlée par la mort brutale d'un proche l'empêche souvent de comprendre ce qui se passe exactement, souligne le Dr Aslanian. Les médecins doivent bien expliquer que les organes sont maintenus en fonction de manière artificielle, mais que le patient ne peut pas se réveiller d'un décès neurologique. Son cerveau est mort !"
Toutes les semaines, l'intensiviste, qui possède 20 ans de pratique à l'unité des soins intensifs du centre hospitalier, est confronté à cette dure réalité. Cela est d'autant plus difficile que parfois le patient en état de mort cérébrale peut avoir des réflexes spinaux, mentionne le Dr Aslanian. "On le pince et il y a un mouvement, mais celui-ci n'est pas provoqué par le cerveau. Ce sont les nerfs périphériques reliés à la moelle épinière qui en sont responsables." Le professeur de clinique de la Faculté de médecine de l'Université de Montréal donne régulièrement à l'intention des infirmières et résidents en médecine du CHUM des ateliers sur ce qu'est la mort cérébrale. "Pour offrir l'option du don d'organes aux familles, il faut d'abord savoir reconnaître les donneurs potentiels, signale-t-il. Malheureusement, encore de nos jours, environ 20 % des donneurs potentiels ne le sont pas dans les hôpitaux du Québec."
L'histoire de la mort
Longtemps on a déterminé la mort d'une personne par un acte rudimentaire. Le croquemort se contentait de mordre le gros orteil du défunt pour vérifier qu'il avait réellement trépassé. L'absence de réaction de sa part confirmait définitivement son état. Jusqu'aux années 50, les médecins tâtaient le pouls et cherchaient à voir si de la condensation se formait sur un miroir placé près de la bouche et du nez. La présence ou l'absence de battements du coeur décidait du classement définitif du patient du côté des morts ou des vivants. Puis, avec la venue de la ventilation mécanique qui maintient artificiellement la respiration, on commence à suspendre l'instant de la mort. En 1968, la mort cardiovasculaire cède la place au concept de mort cérébrale, soit "la perte irrémédiable de toutes les fonctions de l'ensemble du cerveau, du tronc cérébral et des deux hémisphères", comme la définit pour la première fois le comité de l'Université Harvard.
"Le premier article scientifique sur la question présenté à la communauté médicale a été publié dans une revue neurologique française en 1959. Les médecins y décrivaient le dommage cérébral important associé à un coma profond duquel les patients ne se réveillaient pas. C'est de cette publication qu'est né le concept de mort cérébrale que les experts de Harvard ont fait connaître internationalement", raconte le Dr Aslanian en précisant que cette époque correspond aussi aux débuts de la transplantation d'organes.
"La notion du décès neurologique a complètement changé notre rapport à la mort", estime le Dr Aslanian. Bien reçu et adopté par divers organismes à l'échelle de la planète, le DDN a néanmoins été contesté sans succès à plusieurs reprises devant les tribunaux américains. "Une commission présidentielle relative aux problèmes bioéthiques et aux aspects biomédicaux en recherche a voulu en 1981 légiférer pour une définition encore plus claire du DDN", rappelle l'intensiviste. En 1995, l'Académie américaine de neurologie constate pour sa part que beaucoup de médecins retiennent des critères différents et insiste pour standardiser les pratiques.
"Même si l'on reconnaît l'intérêt d'uniformiser les façons de faire, les politiques de déclaration de mort cérébrale varient non seulement d'un pays à l'autre, mais aussi d'un État à l'autre", note Pierre Aslanian. Au Canada, en France, en Angleterre et aux États-Unis, le DDN est fait conformément aux pratiques médicales reconnues. Mais il y a certaines nuances. Ainsi, en France, le recours à l'électroencéphalogramme ou à l'angiographie est obligatoire pour attester le caractère irréversible de l'arrêt des fonctions cérébrales. Chez nous et chez nos voisins du Sud, ces tests auxiliaires sont réalisés seulement en cas de doute ou lorsque l'examen clinique ne peut être effectué.
Et puis, il y a les exceptions comme le Japon, où il se pratique très peu de transplantations à partir de donneurs cadavériques. Car, dans l'empire du Soleil-Levant, un grand malaise persiste quant au concept de mort cérébrale.

Auteur: http://www.techno-science.net/

Info: 19.04.2016

[ vérification ] [ validation ] [ historique ]

 

Commentaires: 0

chronos

Comment les physiciens explorent et repensent le temps

Le temps est inextricablement lié à ce qui pourrait être l’objectif le plus fondamental de la physique : la prédiction. Qu'ils étudient des boulets de canon, des électrons ou l'univers entier, les physiciens visent à recueillir des informations sur le passé ou le présent et à les projeter vers l'avant pour avoir un aperçu de l'avenir. Le temps est, comme l’a dit Frank Wilczek, lauréat du prix Nobel, dans un récent épisode du podcast The Joy of Why de Quanta, " la variable maîtresse sous laquelle le monde se déroule ".  Outre la prédiction, les physiciens sont confrontés au défi de comprendre le temps comme un phénomène physique à part entière. Ils développent des explications de plus en plus précises sur la caractéristique la plus évidente du temps dans notre vie quotidienne : son écoulement inexorable. Et des expériences récentes montrent des façons plus exotiques dont le temps peut se comporter selon les lois de la mécanique quantique et de la relativité générale. Alors que les chercheurs approfondissent leur compréhension du temps dans ces deux théories chères, ils se heurtent à des énigmes qui semblent surgir de niveaux de réalité plus obscurs et plus fondamentaux. Einstein a dit en plaisantant que le temps est ce que mesurent les horloges. C'est une réponse rapide. Mais alors que les physiciens manipulent des horloges de plus en plus sophistiquées, on leur rappelle fréquemment que mesurer quelque chose est très différent de le comprendre. 

Quoi de neuf et remarquable

Une réalisation majeure a été de comprendre pourquoi le temps ne s'écoule qu'en avant, alors que la plupart des faits physiques les plus simples peuvent être faits et défaits avec la même facilité.  La réponse générale semble provenir des statistiques des systèmes complexes et de la tendance de ces systèmes à passer de configurations rares et ordonnées à des configurations désordonnées plus courantes, qui ont une entropie plus élevée. Les physiciens ont ainsi défini une " flèche du temps " classique dans les années 1800, et dans les temps modernes, les physiciens ont remanié cette flèche probabiliste en termes d’intrication quantique croissante. En 2021, ma collègue Natalie Wolchover a fait état d’une nouvelle description des horloges comme de machine qui ont besoin du désordre pour fonctionner sans problème, resserrant ainsi le lien entre emps et entropie. 

Simultanément, les expérimentateurs se sont fait un plaisir d'exposer les bizarres courbures et crépitements du temps que nous ne connaissons pas, mais qui sont autorisés par les lois contre-intuitives de la relativité générale et de la mécanique quantique. En ce qui concerne la relativité, Katie McCormick a décrit en 2021 une expérience mesurant la façon dont le champ gravitationnel de la Terre ralentit le tic-tac du temps sur des distances aussi courtes qu'un millimètre. En ce qui concerne la mécanique quantique, j'ai rapporté l'année dernière comment des physiciens ont réussi à faire en sorte que des particules de lumière fassent l'expérience d'un écoulement simultané du temps vers l'avant et vers l'arrière.

C'est lorsque les physiciens sont confrontés à la formidable tâche de fusionner la théorie quantique avec la relativité générale que tout ça devient confus ; chaque théorie a sa propre conception du temps, mais les deux notions n’ont presque rien en commun.

En mécanique quantique, le temps fonctionne plus ou moins comme on peut s'y attendre : vous commencez par un état initial et utilisez une équation pour le faire avancer de manière rigide jusqu'à un état ultérieur. Des manigances quantiques peuvent se produire en raison des façons particulières dont les états quantiques peuvent se combiner, mais le concept familier du changement se produisant avec le tic-tac d’une horloge maîtresse reste intact.

En relativité générale, cependant, une telle horloge maîtresse n’existe pas. Einstein a cousu le temps dans un tissu espace-temps qui se plie et ondule, ralentissant certaines horloges et en accélérant d’autres. Dans ce tableau géométrique, le temps devient une dimension au même titre que les trois dimensions de l'espace, bien qu'il s'agisse d'une dimension bizarroïde qui ne permet de voyager que dans une seule direction.

Et dans ce contexte, les physiciens dépouillent souvent le temps de sa nature à sens unique. Bon nombre des découvertes fondamentales de Hawking sur les trous noirs – cicatrices dans le tissu spatio-temporel créées par l’effondrement violent d’étoiles géantes – sont nées de la mesure du temps avec une horloge qui marquait des nombres imaginaires, un traitement mathématique qui simplifie certaines équations gravitationnelles et considère le temps comme apparié à l'espace. Ses conclusions sont désormais considérées comme incontournables, malgré la nature non physique de l’astuce mathématique qu’il a utilisée pour y parvenir.

Plus récemment, des physiciens ont utilisé cette même astuce du temps imaginaire pour affirmer que notre univers est l'univers le plus typique, comme je l'ai rapporté en 2022. Ils se demandent encore pourquoi l'astuce semble fonctionner et ce que signifie son utilité. "Il se peut qu'il y ait ici quelque chose de profond que nous n'avons pas tout à fait compris", a écrit le célèbre physicien Anthony Zee à propos du jeu imaginaire du temps dans son manuel de théorie quantique des champs.

Mais qu’en est-il du temps réel et à sens unique dans notre univers ? Comment les physiciens peuvent-ils concilier les deux images du temps alors qu’ils se dirigent sur la pointe des pieds vers une théorie de la gravité quantique qui unit la théorie quantique à la relativité générale ? C’est l’un des problèmes les plus difficiles de la physique moderne. Même si personne ne connaît la réponse, les propositions intrigantes abondent.

Une suggestion, comme je l’ai signalé en 2022, est d’assouplir le fonctionnement restrictif du temps en mécanique quantique en permettant à l’univers de générer apparemment une variété d’avenirs à mesure qu’il grandit – une solution désagréable pour de nombreux physiciens. Natalie Wolchover a écrit sur la suspicion croissante selon laquelle le passage du temps résulte de l'enchevêtrement de particules quantiques, tout comme la température émerge de la bousculade des molécules. En 2020, elle a également évoqué une idée encore plus originale : que la physique soit reformulée en termes de nombres imprécis et abandonne ses ambitions de faire des prévisions parfaites de l’avenir.

Tout ce que les horloges mesurent continue de s’avérer insaisissable et mystérieux. 

Auteur: Internet

Info: https://www.quantamagazine.org/ - Charlie Wood, 1 avril 2024

 

Commentaires: 0

Ajouté à la BD par miguel

cheptel humain

Malgré tout le bonheur que m’a procuré, à titre personnel, chaque voyage entrepris ces dernières années, une impression tenace s’est imprimée dans mon esprit : une horreur silencieuse devant la monotonie du monde. Les modes de vie finissent par se ressembler, à tous se conformer à un schéma culturel homogène. Les coutumes propres à chaque peuple disparaissent, les costumes s’uniformisent, les mœurs prennent un caractère de plus en plus international. Les pays semblent, pour ainsi dire, ne plus se distinguer les uns des autres, les hommes s’activent et vivent selon un modèle unique, tandis que les villes paraissent toutes identiques. Paris est aux trois quarts américanisée, Vienne est budapestisée : l’arôme délicat de ce que les cultures ont de singulier se volatilise de plus en plus, les couleurs s’estompent avec une rapidité sans précédent et, sous la couche de vernis craquelé, affleure le piston couleur acier de l’activité mécanique, la machine du monde moderne. Ce processus est en marche depuis fort longtemps déjà : avant la guerre, Rathenau avait annoncé de manière prophétique cette mécanisation de l’existence, la prépondérance de la technique, comme étant le phénomène le plus important de notre époque. Or, jamais cette déchéance dans l’uniformité des modes de vie n’a été aussi précipitée, aussi versatile, que ces dernières années. Soyons clairs ! C’est sans doute le phénomène le plus brûlant, le plus capital de notre temps.

[…]

Conséquences : la disparition de toute individualité, jusque dans l’apparence extérieure. Le fait que les gens portent tous les mêmes vêtements, que les femmes revêtent toutes la même robe et le même maquillage n’est pas sans danger : la monotonie doit nécessairement pénétrer à l’intérieur. Les visages finissent par tous se ressembler, parce que soumis aux mêmes désirs, de même que les corps, qui s’exercent aux mêmes pratiques sportives, et les esprits, qui partagent les mêmes centres d’intérêt. Inconsciemment, une âme unique se crée, une âme de masse, mue par le désir accru d’uniformité, qui célèbre la dégénérescence des nerfs en faveur des muscles et la mort de l’individu en faveur d’un type générique. La conversation, cet art de la parole, s’use dans la danse et s’y disperse, le théâtre se galvaude au profit du cinéma, les usages de la mode, marquée par la rapidité, le “succès saisonnier”, imprègnent la littérature. Déjà, comme en Angleterre, la littérature populaire disparaît devant le phénomène qui va s’amplifiant du “livre de la saison”, de même que la forme éclair du succès se propage à la radio, diffusée simultanément sur toutes les stations européennes avant de s’évaporer dans la seconde qui suit. Et comme tout est orienté vers le court terme, la consommation augmente : ainsi, l’éducation, qui se poursuivait de manière patiente et rationnelle, et prédominait tout au long d’une vie, devient un phénomène très rare à notre époque, comme tout ce qui s’acquiert grâce à un effort personnel.

[…]

Toutes ces choses, que j’ai seulement évoquées, le cinéma, la radio, la danse, tous ces nouveaux moyens de mécanisation de l’humanité, exercent un pouvoir énorme qui ne peut être dépassé. Toutes répondent en effet à l’idéal le plus élevé de la moyenne : offrir du plaisir sans exiger d’effort. Et leur force imbattable réside en cela : elles sont incroyablement confortables. La nouvelle danse peut être apprise en trois heures par la femme de ménage la plus maladroite, le cinéma ravit les analphabètes, desquels on n’exige pas une grande éducation pour profiter de la radio ; il suffit de mettre les écouteurs sur la tête, pour déjà l’entendre rouler dans l’oreille – même les dieux luttent en vain contre un tel confort. Ce qui n’exige que le minimum d’effort, mental et physique, et le minimum de force morale doit nécessairement l’emporter auprès des masses, dans la mesure où cela suscite la passion de la majorité. Et ce qui aujourd’hui encore réclame l’indépendance, l’autodétermination ou la personnalité dans le plaisir paraît dérisoire face à un pouvoir aussi surdimensionné. À vrai dire, au moment où l’humanité s’ennuie toujours davantage et devient de plus en plus monotone, il ne lui arrive rien d’autre que ce qu’elle désire au plus profond d’elle-même. L’indépendance dans le mode de vie et même dans la jouissance de la vie ne constitue plus, désormais, un objectif, tant la plupart des gens ne s’aperçoivent pas à quel point ils sont devenus des particules, des atomes d’une violence gigantesque. Ils se laissent ainsi entraîner par le courant qui les happe vers le vide ; comme le disait Tacite : “ruere in servitium”, ils se jettent dans l’esclavage […].

Ainsi, aucune résistance ! Ce serait une présomption scandaleuse que d’essayer d’éloigner les gens de ces petits plaisirs (intérieurement vides). Parce que nous – pour être honnêtes – qu’avons-nous d’autre à leur donner ? Nos livres ne les touchent plus, car ils ont cessé depuis longtemps de procurer les sueurs froides ou les excitations fébriles, que le sport et le cinéma prodiguent à foison. Ils ont même l’impudence d’exiger au préalable de nos livres, de notre effort mental et de notre éducation, une coopération des sentiments et une tension de l’âme. Nous sommes devenus – admettons-le – terriblement étrangers à tous ces plaisirs et passions de masse et donc à l’esprit de l’époque, nous, dont la culture spirituelle est une passion pour la vie, nous, qui ne nous ennuyons jamais, pour qui chaque jour est trop court de six heures, nous, qui n’avons besoin ni de dispositifs pour tuer le temps ni de machines d’arcade, ni de danse, ni de cinéma, ni de radio, ni de bridge, ni de défilés de mode. Il nous suffit de passer devant un panneau d’affichage dans une grande ville ou de lire un journal qui décrit en détail les batailles homériques des matchs de football pour sentir que nous sommes déjà devenus des outsiders, tels les derniers encyclopédistes pendant la Révolution française, une espèce aussi rare et menacée d’extinction aujourd’hui en Europe que les chamois et les edelweiss. Peut-être qu’un jour un parc naturel sera créé pour nous, derniers spécimens d’une espèce rare, pour nous préserver et nous conserver respectueusement en tant que curiosités de l’époque, mais nous devons avoir conscience que nous manquons depuis longtemps d’un quelconque pouvoir pour tenter la moindre chose contre cette uniformité croissante du monde. Devant cette lumière éblouissante de fête foraine, nous ne pouvons que demeurer dans l’ombre et, tels les moines des monastères pendant les grandes guerres et les grands bouleversements, consigner dans des chroniques et des descriptions un état de choses que, comme eux, nous tenons pour une déroute de l’esprit.

Auteur: Zweig Stefan

Info: L'uniformisation du monde

[ indifférenciation ] [ loisirs ] [ industrialisation ] [ normalisation ]

 
Commentaires: 9
Ajouté à la BD par Coli Masson

taylorisme

Quoique Taylor ait baptisé son système "Organisation scientifique du travail", ce n’était pas un savant. Sa culture correspondait peut-être au baccalauréat, et encore ce n’est pas sûr. Il n’avait jamais fait d’études d’ingénieur. Ce n’était pas non plus un ouvrier à proprement parler, quoiqu’il ait travaillé en usine. Comment donc le définir ? C’était un contremaître, mais non pas de l’espèce de ceux qui sont venus de la classe ouvrière et qui en ont gardé le souvenir. C’était un contremaître du genre de ceux dont on trouve des types actuellement dans les syndicats professionnels de maîtrise et qui se croient nés pour servir de chiens de garde au patronat. Ce n’est ni par curiosité d’esprit, ni par besoin de logique qu’il a entrepris ses recherches. C’est son expérience de contremaître chien de garde qui l’a orienté dans toutes ses études et qui lui a servi d’inspiratrice pendant trente-cinq années de recherches patientes. C’est ainsi qu’il a donné à l’industrie, outre son idée fondamentale d’une nouvelle organisation des usines, une étude admirable sur le travail des tours à dégrossir.

Taylor était né dans une famille relativement riche et aurait pu vivre sans travailler, n’étaient les principes puritains de sa famille et de lui-même, qui ne lui permettaient pas de rester oisif. Il fit ses études dans un lycée, mais une maladie des yeux les lui fit interrompre à 18 ans. Une singulière fantaisie le poussa alors à entrer dans une usine où il fit un apprentissage d’ouvrier mécanicien. Mais le contact quotidien avec la classe ouvrière ne lui donna à aucun degré l’esprit ouvrier. Au contraire, il semble qu’il y ait pris conscience d’une manière plus aiguë de l’opposition de classe qui existait entre ses compagnons de travail et lui-même, jeune bourgeois, qui ne travaillait pas pour vivre, qui ne vivait pas de son salaire, et qui, connu de la direction, était traité en conséquence.

Après son apprentissage, à l’âge de 22 ans, il s’embaucha comme tourneur dans une petite usine de mécanique, et dès le premier jour il entra tout de suite en conflit avec ses camarades d’atelier qui lui firent comprendre qu’on lui casserait la figure s’il ne se conformait pas à la cadence générale du travail ; car à cette époque régnait le système du travail aux pièces organisé de telle manière que, dès que la cadence augmentait, on diminuait les tarifs. Les ouvriers avaient compris qu’il ne fallait pas augmenter la cadence pour que les tarifs ne diminuent pas ; de sorte que chaque fois qu’il entrait un nouvel ouvrier, on le prévenait d’avoir à ralentir sa cadence sous peine d’avoir la vie intenable.

Au bout de deux mois, Taylor est arrivé à devenir contremaître. En racontant cette histoire, il explique que le patron avait confiance en lui parce qu’il appartenait à une famille bourgeoise. Il ne dit pas comment le patron l’avait distingué si rapidement, puisque ses camarades l’empêchaient de travailler plus vite qu’eux, et on peut se demander s’il n’avait pas gagné sa confiance en lui racontant ce qui s’était dit entre ouvriers.

Quand il est devenu contremaître, les ouvriers lui ont dit : "On est bien content de t’avoir comme contremaître, puisque tu nous connais et que tu sais que si tu essaies de diminuer les tarifs on te rendra la vie impossible." À quoi Taylor répondit en substance : "Je suis maintenant de l’autre côté de la barricade, je ferai ce que je dois faire." Et en fait, ce jeune contremaître fit preuve d’une aptitude exceptionnelle pour faire augmenter la cadence et renvoyer les plus indociles.

Cette aptitude particulière le fit monter encore en grade jusqu’à devenir directeur de l’usine. Il avait alors vingt-quatre ans.

Une fois directeur, il a continué à être obsédé par cette unique préoccupation de pousser toujours davantage la cadence des ouvriers. Évidemment, ceux-ci se défendaient, et il en résultait que ses conflits avec les ouvriers allaient en s’aggravant. Il ne pouvait exploiter les ouvriers à sa guise parce qu’ils connaissaient mieux que lui les meilleures méthodes de travail. Il s’aperçut alors qu’il était gêné par deux obstacles : d’un côté il ignorait quel temps était indispensable pour réaliser chaque opération d’usinage et quels procédés étaient susceptibles de donner les meilleurs temps ; d’un autre côté, l’organisation de l’usine ne lui donnait pas le moyen de combattre efficacement la résistance passive des ouvriers. Il demanda alors à l’administrateur de l’entreprise l’autorisation d’installer un petit laboratoire pour faire des expériences sur les méthodes d’usinage. Ce fut l’origine d’un travail qui dura vingt-six ans et amena Taylor à la découverte des aciers rapides, de l’arrosage de l’outil, de nouvelles formes d’outil à dégrossir, et surtout il a découvert, aidé d’une équipe d’ingénieurs, des formules mathématiques donnant les rapports les plus économiques entre la profondeur de la passe, l’avance et la vitesse des tours ; et pour l’application de ces formules dans les ateliers, il a établi des règles à calcul permettant de trouver ces rapports dans tous les cas particuliers qui pouvaient se présenter.

Ces découvertes étaient les plus importantes à ses yeux parce qu’elles avaient un retentissement immédiat sur l’organisation des usines. Elles étaient toutes inspirées par son désir d’augmenter la cadence des ouvriers et par sa mauvaise humeur devant leur résistance. Son grand souci était d’éviter toute perte de temps dans le travail. Cela montre tout de suite quel était l’esprit du système. Et pendant vingt-six ans il a travaillé avec cette unique préoccupation. Il a conçu et organisé progressivement le bureau des méthodes avec les fiches de fabrication, le bureau des temps pour l’établissement du temps qu’il fallait pour chaque opération, la division du travail entre les chefs techniques et un système particulier de travail aux pièces avec prime.

[...]

La méthode de Taylor consiste essentiellement en ceci : d’abord, on étudie scientifiquement les meilleurs procédés à employer pour n’importe quel travail, même le travail de manœuvres (je ne parle pas de manœuvres spécialisés, mais de manœuvres proprement dits), même la manutention ou les travaux de ce genre ; ensuite, on étudie les temps par la décomposition de chaque travail en mouvements élémentaires qui se reproduisent dans des travaux très différents, d’après des combinaisons diverses ; et une fois mesuré le temps nécessaire à chaque mouvement élémentaire, on obtient facilement le temps nécessaire à des opérations très variées. Vous savez que la méthode de mesure des temps, c’est le chronométrage. Il est inutile d’insister là-dessus. Enfin, intervient la division du travail entre les chefs techniques. Avant Taylor, un contremaître faisait tout ; il s’occupait de tout. Actuellement, dans les usines, il y a plusieurs chefs pour un même atelier : il y a le contrôleur, il y a le contremaître, etc.

Auteur: Weil Simone

Info: "La condition ouvrière", Journal d'usine, éditions Gallimard, 2002, pages 310 à 314

[ biographie ] [ résumé ]

 

Commentaires: 0

Ajouté à la BD par Coli Masson

self-contrôle

Orgasme sans éjaculer : un raffinement qui demande un peu d'entraînement
Il est surnommé "Koussek" (comme "coup sec") par ses amis et leur apprend sa technique de non-éjaculation. Selon lui, il suffit de presser un point situé derrière les testicules. En termes médicaux, on appelle ça une éjaculation rétrograde. Ronald Virag, sexologue et chirurgien cardio-vasculaire, est l'auteur d'un livre numérique, "Erection, mode d'emploi".
Joint au téléphone, à la question : Est-ce que "le coup sec" existe vraiment, il répond :
- Oui, ça existe. Ça n'est pas un mythe du tout.
Il tient à préciser que ça n'est certainement pas une méthode contraceptive, car il peut rester un tout petit peu de semence dans un orgasme "sec". Puis, il en explique la mécanique : - Le sperme se recueille entre deux sphincters, dans l'urètre, avant d'être éjaculé. Au moment de l'éjaculation, le sphincter le plus inférieur va s'ouvrir avec les contractures musculaires et envoyer le sperme à l'extérieur. Donc, on peut, en se contrôlant au maximum, supprimer cette contraction et faire en sorte que le sperme ne soit pas éjaculé.
Que devient donc ce sperme ? Cou-couche panier. Il rentre dans la vessie. La pratique ne présente pas de risque, mais pour parvenir à ce résultat, ce n'est pas simple. Sauf si, comme Koussek, on appuie derrière ses testicules, sur son périnée, au moment d'éjaculer, explique Ronald Virag : - Quand on fait ça, on empêcher le sperme de passer dans le canal de l'urètre et il fait le chemin inverse, vers la vessie.
Arriver à l'orgasme "sec" sans toucher à ce point, c'est autre chose. C'est un dressage, selon Ronald Virag. Il faut gérer sa respiration, sa tête, connaître les différentes étapes de l'excitation. Pour vraiment apprendre, il faut approcher du "point de non-retour" et alors stopper les caresses ou les va-et-vient. - On va se servir de cette musculature qu'il y a autour de la verge, celle qu'on contracte pour arrêter de faire pipi ou qu'on demande aux femmes de mobiliser pour l'accouchement. On a les mêmes muscles ! Les hommes ne savent simplement les utiliser que pour s'arrêter de pisser.
Et pif ! L'orgasme
Un ami a découvert ce qu'il appelle l'orgasme sec tout seul, complètement par hasard, comme un branleur en somme, parce qu'il voulait ne pas jouir trop vite.
- Je laisse monter et au dernier moment, je retiens l'éjaculation. Parfois - pas tout le temps - c'est tellement limite que j'en arrive à ressentir l'orgasme sans éjaculer. C'est très étrange et assez jubilatoire, parce que je peux avoir un second orgasme juste après...
Pour lui, c'est naturel. Il n'en n'a même jamais parlé à ses potes et dit : - Un orgasme sans éjaculer c'est une jolie surprise, en fait. Tu penses juste réussir à te retenir de jouir, et pif ! L'orgasme.
Il n'a pas inventé la technique. Elle est bien connue des religions et philosophies taoïstes et tantristes. A Grenoble, Philippe Fréquelin anime des ateliers tantra (de 55 à 320 euros). Il tient à préciser que les participants sont habillés, et qu'il n'y a pas de relations sexuelles.
C'est "l'orgasme de la vallée". Sur son site, il dit vouloir favoriser les liens entre les êtres, propose un regard amoureux sur le monde et explique que le Tantra est un chemin initiatique enraciné dans la sagesse de l'Inde.
" Le Tantra considère l'harmonie entre l'homme et la femme comme l'union la plus sacrée et la plus puissante de l'existence humaine. " Quand je lui parle éjaculation rétrograde, il répond "orgasme de la vallée".
"En tantra, l'orgasme ordinaire est un sommet. L'homme monte assez vite et redescend assez vite. Et puis, il y a l'orgasme de la vallée qui n'est pas éjaculatoire. Il peut durer plusieurs heures. "
Faire monter l'énergie au-dessus de la ceinture
Quand je lui parle de sexe, Philippe Fréquelin me parle de "coeur", de "méditation", de "chakras". Il y a ceux de la gorge, qu'on mobilise pour faire des sons et accompagner l'énergie sexuelle dans sa montée, ou ceux du haut qui sont ceux de la spiritualité.
Clairement, il ne s'agit pas de tirer son coup. En retardant l'éjaculation et en prolongeant cet état, le but est de jouir en même temps que sa partenaire, mais aussi de transformer l'énergie sexuelle.
- Justement, le but du tantra c'est de faire monter cette énergie au-dessus de la ceinture. On part de cette énergie, et on la fait monter dans les chakras.
Il dit qu'on associe toujours la sexualité à la pénétration et à l'éjaculation, et qu'avec cet "orgasme de la vallée" on sort de ce schéma. Et à l'entendre l'orgasme de la vallée, c'est un ailleurs.
- On n'attend plus rien, on est immergé dans l'instant. On ne pense plus du tout à ce qui s'est passé avant ou à ce qui se passera après. "C'est comme apprendre à conduire"
Même discours du côté de Michel Riu. Lui a appris ça par le yoga, le Kundalini yoga très exactement. Il préfère parler de multi-orgasmie et compare la sensation ressentie (dans la vallée) à des vagues orgasmiques. Il veut donner aux hommes la liberté de sortir d'une sexualité pulsionnelle, qu'ils puissent prendre le contrôle d'eux-mêmes.
L'"orgasme sec" est-il mieux ? Michel Riu répond sans hésiter : - Y a pas photo ! C'est un état extatique. On est dans une approche mystique de l'extase qui nous ramène à l'expérience de l'unité.
Il anime des ateliers de tantrisme : Sexualité alchimique (250 euros le stage) ou L'homme libre qui dure six week-ends et une semaine (1800 euros). Dans ces stages, on danse, on se masse, on parle de soi. Quand il travaille en atelier la technique de l'éjaculation rétrograde, les élèves rentrent chez eux avec des devoirs, "des séances d'auto-plaisir".
- On travaille sur le souffle, le mouvement, le son, la posture. Au début c'est comme apprendre à conduire, il faut penser à plein de choses en même temps.
Quand j'éjacule, c'est une offrande.
Quand on a joui ainsi, éjacule-t-on encore parfois ou jamais plus ? Michel Riu parle de son sperme comme d'un "nectar" :
- Mes éjaculations sont choisies. Quand j'éjacule, c'est une offrande. Donner sa vraie valeur au sperme, c'est dommage de le perdre dans des mouchoirs.
Je lui fais remarquer qu'on est finalement proches des interdits catholiques sur la masturbation. Il répond qu'au contraire la sexualité est une fête (qui peut durer des heures), qu'il s'agit de sortir des tabous et de 2 000 ans de joug catholique. Ok, mais pourquoi l'énergie serait-elle dans le sperme ?
Après avoir éjaculé on ressent une perte d'énergie, c'est physiologique et mental. On se sent épuisé.
Sur cette question précise de l'énergie, Ronald Virag parle, lui, de mythes. Pour rappel, comme les femmes ont un cycle menstruel, les hommes ont des cycles de fabrication du sperme. Quand il n'y en a plus, y en a encore. Mais de tout temps et partout, on l'a pensé magique. La conclusion, donc, à Flaubert qui disait : - Une once de sperme perdu, c'est plus que deux litres de sang.

Auteur: Greusard Renée

Info: Rue89, fév. 2014

[ érotisme ] [ Inde ]

 

Commentaires: 0

nano-monde relatif

Une expérience quantique montre que la réalité objective n'existe pas

Les faits alternatifs se répandent comme un virus dans la société. Aujourd'hui, il semble qu'ils aient même infecté la science, du moins le domaine quantique. Ce qui peut sembler contre-intuitif. Après tout, la méthode scientifique est fondée sur les notions de fiabilité d'observation, de mesure et de répétabilité. Un fait, tel qu'établi par une mesure, devrait être objectif, de sorte que tous les observateurs puissent en convenir.

Mais dans un article récemment publié dans Science Advances, nous montrons que, dans le micro-monde des atomes et des particules régi par les règles étranges de la mécanique quantique, deux observateurs différents ont droit à leurs propres faits. En d'autres termes, selon nos  meilleures théories des éléments constitutifs de la nature elle-même, les faits peuvent en fait être subjectifs.

Les observateurs sont des acteurs puissants dans le monde quantique. Selon la théorie, les particules peuvent se trouver dans plusieurs endroits ou états à la fois - c'est ce qu'on appelle une superposition. Mais curieusement, ce n'est le cas que lorsqu'elles ne sont pas observées. Dès que vous observez un système quantique, il choisit un emplacement ou un état spécifique, ce qui rompt la superposition. Le fait que la nature se comporte de cette manière a été prouvé à de multiples reprises en laboratoire, par exemple dans la célèbre expérience de la double fente.

En 1961, le physicien Eugene Wigner a proposé une expérience de pensée provocante. Il s'est demandé ce qui se passerait si l'on appliquait la mécanique quantique à un observateur qui serait lui-même observé. Imaginez qu'un ami de Wigner lance une pièce de monnaie quantique - qui se trouve dans une superposition de pile ou face - dans un laboratoire fermé. Chaque fois que l'ami lance la pièce, il obtient un résultat précis. On peut dire que l'ami de Wigner établit un fait : le résultat du lancer de la pièce est définitivement pile ou face.

Wigner n'a pas accès à ce fait de l'extérieur et, conformément à la mécanique quantique, il doit décrire l'ami et la pièce comme étant dans une superposition de tous les résultats possibles de l'expérience. Tout ça parce qu'ils sont " imbriqués " - connectés de manière effrayante au point que si vous manipulez l'un, vous manipulez également l'autre. Wigner peut maintenant vérifier en principe cette superposition à l'aide d'une "expérience d'interférence", un type de mesure quantique qui permet de démêler la superposition d'un système entier, confirmant ainsi que deux objets sont intriqués.

Lorsque Wigner et son ami compareront leurs notes par la suite, l'ami insistera sur le fait qu'ils ont observé des résultats précis pour chaque lancer de pièce. Wigner, cependant, ne sera pas d'accord lorsqu'il observera l'ami et la pièce dans une superposition. 

Voilà l'énigme. La réalité perçue par l'ami ne peut être réconciliée avec la réalité extérieure. À l'origine, Wigner ne considérait pas qu'il s'agissait d'un paradoxe, il affirmait qu'il serait absurde de décrire un observateur conscient comme un objet quantique. Cependant, il s'est ensuite écarté de cette opinion. De plus et, selon les canons officiels de mécanique quantique, la description est parfaitement valide.

L'expérience

Le scénario demeura longtemps une expérience de pensée intéressante. Mais reflètait-t-il la réalité ? Sur le plan scientifique, peu de progrès ont été réalisés à ce sujet jusqu'à très récemment, lorsque Časlav Brukner, de l'université de Vienne, a montré que, sous certaines hypothèses, l'idée de Wigner peut être utilisée pour prouver formellement que les mesures en mécanique quantique sont subjectives aux observateurs.

Brukner a proposé un moyen de tester cette notion en traduisant le scénario de l'ami de Wigner dans un cadre établi pour la première fois par le physicien John Bell en 1964.

Brukner a ainsi conçu deux paires de Wigner et de ses amis, dans deux boîtes distinctes, effectuant des mesures sur un état partagé - à l'intérieur et à l'extérieur de leur boîte respective. Les résultats pouvant  être récapitulés pour être finalement utilisés pour évaluer une "inégalité de Bell". Si cette inégalité est violée, les observateurs pourraient avoir des faits alternatifs.

Pour la première fois, nous avons réalisé ce test de manière expérimentale à l'université Heriot-Watt d'Édimbourg sur un ordinateur quantique à petite échelle, composé de trois paires de photons intriqués. La première paire de photons représente les pièces de monnaie, et les deux autres sont utilisées pour effectuer le tirage au sort - en mesurant la polarisation des photons - à l'intérieur de leur boîte respective. À l'extérieur des deux boîtes, il reste deux photons de chaque côté qui peuvent également être mesurés.

Malgré l'utilisation d'une technologie quantique de pointe, il a fallu des semaines pour collecter suffisamment de données à partir de ces seuls six photons afin de générer suffisamment de statistiques. Mais finalement, nous avons réussi à montrer que la mécanique quantique peut effectivement être incompatible avec l'hypothèse de faits objectifs - nous avions violé l'inégalité.

La théorie, cependant, repose sur quelques hypothèses. Notamment que les résultats des mesures ne sont pas influencés par des signaux se déplaçant à une vitesse supérieure à celle de la lumière et que les observateurs sont libres de choisir les mesures à effectuer. Ce qui peut être le cas ou non.

Une autre question importante est de savoir si les photons uniques peuvent être considérés comme des observateurs. Dans la proposition de théorie de Brukner, les observateurs n'ont pas besoin d'être conscients, ils doivent simplement être capables d'établir des faits sous la forme d'un résultat de mesure. Un détecteur inanimé serait donc un observateur valable. Et la mécanique quantique classique ne nous donne aucune raison de croire qu'un détecteur, qui peut être conçu comme aussi petit que quelques atomes, ne devrait pas être décrit comme un objet quantique au même titre qu'un photon. Il est également possible que la mécanique quantique standard ne s'applique pas aux grandes échelles de longueur, mais tester cela reste un problème distinct.

Cette expérience montre donc que, au moins pour les modèles locaux de la mécanique quantique, nous devons repenser notre notion d'objectivité. Les faits dont nous faisons l'expérience dans notre monde macroscopique semblent ne pas être menacés, mais une question majeure se pose quant à la manière dont les interprétations existantes de la mécanique quantique peuvent tenir compte des faits subjectifs.

Certains physiciens considèrent que ces nouveaux développements renforcent les interprétations qui autorisent plus d'un résultat pour une observation, par exemple l'existence d'univers parallèles dans lesquels chaque résultat se produit. D'autres y voient une preuve irréfutable de l'existence de théories intrinsèquement dépendantes de l'observateur, comme le bayésianisme quantique, dans lequel les actions et les expériences d'un agent sont au cœur de la théorie. D'autres encore y voient un indice fort que la mécanique quantique s'effondrera peut-être au-delà de certaines échelles de complexité.

Il est clair que nous avons là de profondes questions philosophiques sur la nature fondamentale de la réalité.

Quelle que soit la réponse, un avenir intéressant nous attend.

Auteur: Internet

Info: https://www.livescience.com/objective-reality-not-exist-quantum-physicists.html. Massimiliano Proietti et Alessandro Fedrizzi, 19 janvier 2022

 

Commentaires: 0

Ajouté à la BD par miguel

bio-mathématiques

C’est confirmé : vous êtes constitué de cristaux liquides

Une équipe de chercheurs a réussi à prouver l’existence d’une double symétrie dans les tissus organiques, qui permet de les appréhender comme des cristaux liquides. Cette découverte pourrait faire émerger une nouvelle façon d’étudier le fonctionnement du vivant, à la frontière de la biologie et de la mécanique des fluides.

Dans une étude parue dans le prestigieux journal Nature et repérée par Quanta Magazine, des chercheurs ont montré que les tissus épithéliaux, qui constituent la peau et les enveloppes des organes internes, ne sont pas que des amas de cellules réparties de façon aléatoire. Ils présentent en fait deux niveaux de symétrie bien définis qui leur donnent des propriétés fascinantes; fonctionnellement, on peut désormais les décrire comme des cristaux liquides. Une découverte qui pourrait avoir des retombées potentiellement très importantes en médecine.

Ces travaux tournent entièrement autour de la notion de cristal liquide. Comme leur nom l’indique, il s’agit de fluides; techniquement, ils peuvent donc s’écouler comme de l’eau – mais avec une différence importante. Contrairement aux liquides classiques, où les atomes se déplacent les uns par rapport aux autres de façon complètement chaotique, les constituants d’un cristal liquide présentent tout de même un certain degré d’organisation.

Il ne s’agit pas d’une vraie structure cristalline comme on en trouve dans presque tous les minéraux, par exemple. Les cristaux liquides ne sont pas arrangés selon un motif précis qui se répète dans l’espace. En revanche, ils ont tendance à s’aligner dans une direction bien spécifique lorsqu’ils sont soumis à certains facteurs, comme une température ou un champ électrique.

C’est cette directionnalité, appelée anisotropie, qui est à l’origine des propriétés des cristaux liquides. Par exemple, ceux qui sont utilisés dans les écrans LCD (pour Liquid Crystal Display) réfractent la lumière différemment en fonction de leur orientation. Cela permet d’afficher différentes couleurs en contrôlant localement l’orientation du matériau grâce à de petites impulsions électriques.

Du tissu biologique au cristal liquide

Mais les cristaux liquides n’existent pas seulement dans des objets électroniques. Ils sont aussi omniprésents dans la nature ! Par exemple, la double couche de lipides qui constitue la membrane de nos cellules peut être assimilée à un cristal liquide. Et il ne s’agit pas que d’une anecdote scientifique ; cette organisation est très importante pour maintenir à la fois l’intégrité structurelle et la flexibilité de ces briques fondamentales. En d’autres termes, la dynamique des cristaux liquides est tout simplement essentielle à la vie telle qu’on la connaît.

Pour cette raison, des chercheurs essaient d’explorer plus profondément le rôle biologique des cristaux liquides. Plus spécifiquement, cela fait quelques années que des chercheurs essaient de montrer que les tissus, ces ensembles de cellules organisées de façon à remplir une mission bien précise, peuvent aussi répondre à cette définition.

Vu de l’extérieur, l’intérêt de ces travaux est loin d’être évident. Mais il ne s’agit pas seulement d’un casse-tête très abstrait ; c’est une question qui regorge d’implications pratiques très concrètes. Car si l’on parvient à prouver que les tissus peuvent effectivement être assimilés à des cristaux liquides, cela débloquerait immédiatement un nouveau champ de recherche particulièrement vaste et fascinant. Les outils mathématiques que les physiciens utilisent pour prédire le comportement des cristaux pourraient soudainement être appliqués à la biologie cellulaire, avec des retombées considérables pour la recherche fondamentale et la médecine clinique.

Mais jusqu’à présent, personne n’a réussi à le prouver. Tous ces efforts se sont heurtés au même mur mathématique — ou plus précisément géométrique ; les théoriciens et les expérimentateurs ne sont jamais parvenus à se mettre d’accord sur la symétrie intrinsèque des tissus biologiques. Regrettable, sachant qu’il s’agit de LA caractéristique déterminante d’un cristal liquide.

Les deux concepts enfin réconciliés

Selon Quanta Magazine, certains chercheurs ont réussi à montrer grâce à des simulations informatiques que les groupes de cellules pouvaient présenter une symétrie dite " hexatique ". C’est ce que l’on appelle une symétrie d’ordre six, où les éléments sont arrangés par groupe de six. Mais lors des expériences en laboratoire, elles semblent plutôt adopter une symétrie dite " nématique* ". Pour reprendre l’analogie de Quanta, selon ce modèle, les cellules se comportent comme un fluide composé de particules en forme de barres, un peu comme des allumettes qui s’alignent spontanément dans leur boîte. Il s’agit alors d’une symétrie d’ordre deux. 

C’est là qu’interviennent les auteurs de ces travaux, affiliés à l’université néerlandaise de Leiden. Ils ont suggéré qu’il serait possible d’établir un lien solide entre les tissus biologiques et le modèle des cristaux liquides, à une condition : il faudrait prouver que les tissus présentent les deux symétries à la fois, à des échelles différentes. Plus spécifiquement, les cellules devraient être disposées selon une symétrie d’ordre deux à grande échelle, avec une symétrie d’ordre six cachée à l’intérieur de ce motif qui apparaît lorsque l’on zoome davantage.

L’équipe de recherche a donc commencé par cultiver des couches très fines de tissus dont les contours ont été mis en évidence grâce à un marqueur. Mais pas question d’analyser leur forme à l’œil nu ; la relation qu’ils cherchaient à établir devait impérativement être ancrée dans des données objectives, et pas seulement sur une impression visuelle. Selon Quanta, ils ont donc eu recours à un objet mathématique appelé tenseur de forme grâce auquel ils ont pu décrire mathématiquement la forme et l’orientation de chaque unité.

Grâce à cet outil analytique, ils ont pu observer expérimentalement cette fameuse double symétrie. À grande échelle, dans des groupes de quelques cellules, ils ont observé la symétrie nématique qui avait déjà été documentée auparavant. Et en regardant de plus près, c’est une symétrie hexatique qui ressortait — exactement comme dans les simulations informatiques. " C’était assez incroyable à quel point les données expérimentales et les simulations concordaient ", explique Julia Eckert, co-autrice de ces travaux citée par Quanta.

Une nouvelle manière d’appréhender le fonctionnement du vivant

C’est la première fois qu’une preuve solide de cette relation est établie, et il s’agit incontestablement d’un grand succès expérimental. On sait désormais que certains tissus peuvent être appréhendés comme des cristaux liquides. Et cette découverte pourrait ouvrir la voie à un tout nouveau champ de recherche en biologie.

Au niveau fonctionnel, les implications concrètes de cette relation ne sont pas encore parfaitement claires. Mais la bonne nouvelle, c’est qu’il sera désormais possible d’utiliser des équations de mécanique des fluides qui sont traditionnellement réservées aux cristaux liquides pour étudier la dynamique des cellules.

Et cette nouvelle façon de considérer les tissus pourrait avoir des implications profondes en médecine. Par exemple, cela permettra d’étudier la façon dont certaines cellules migrent à travers les tissus. Ces observations pourraient révéler des mécanismes importants sur les premières étapes du développement des organismes, sur la propagation des cellules cancéreuses qui génère des métastases, et ainsi de suite.

Mais il y a encore une autre perspective encore plus enthousiasmante qui se profile à l’horizon. Il est encore trop tôt pour l’affirmer, mais il est possible que cette découverte représente une petite révolution dans notre manière de comprendre la vie.

En conclusion de l’article de Quanta, un des auteurs de l’étude résume cette idée en expliquant l’une des notions les plus importantes de toute la biologie. On sait depuis belle lurette que l’architecture d’un tissu est à l’origine d’un certain nombre de forces qui définissent directement ses fonctions physiologiques. Dans ce contexte, cette double symétrie pourrait donc être une des clés de voûte de la complexité du vivant, et servir de base à des tas de mécanismes encore inconnus à ce jour ! Il conviendra donc de suivre attentivement les retombées de ces travaux, car ils sont susceptibles de transformer profondément la biophysique et la médecine.

 

Auteur: Internet

Info: Antoine Gautherie, 12 décembre 2023. *Se dit de l'état mésomorphe, plus voisin de l'état liquide que de l'état cristallisé, dans lequel les molécules, de forme allongée, peuvent se déplacer librement mais restent parallèles entre elles, formant ainsi un liquide biréfringent.

[ double dualité ] [ tétravalence ]

 

Commentaires: 0

Ajouté à la BD par miguel

femmes-hommes

L'esprit pourrait affecter les machines selon les sexes
Pendant 26 ans, des conversations étranges ont eu lieu dans un laboratoire du sous-sol de l'université de Princeton. On utilise des ordinateurs au rendement aléatoire et les expériences font se concentrer des participants sur le contrôle d'une ou de plusieurs machines. Après plusieurs million d'épreuves on peut détecter de petits signes "statistiquement significatifs" comme quoi les esprits semblent pouvoir agir sur les machines. Cependant les chercheurs font attention à ne pas annoncer que les esprits ont cet effet ou qu'ils connaissent la nature de cette communication.
Les services secrets, la défense et les agences de l'espace ont également montré de l'intérêt pour cette recherche. Le premier support que les chercheurs ont employé était un bruit aléatoire à haute fréquence. Les chercheurs ont branché des circuits au dispositif pour traduire ce bruit en code binaire. Chaque participant, après un protocole pré-enregistré, devait développer une intention dans son esprit pour faire que le générateur ait plus ou moins de zéros. Les effets furent faibles mais mesurables. Depuis les mêmes résultats se sont reproduits avec d'autres expériences, telles qu'en impliquant un pendule relié à un mécanisme commandé par ordinateur. Quand la machine libère le pendule pour qu'il se balance, les participants se concentrent sur modifier le taux avec lequel le pendule ralentit. D'autres expériences impliquent une machine à tambour que les participants essayent de commander et une machine de cascade mécanique dans laquelle un dispositif laisse tomber des milliers de petites boules noires de polystyrène, le but est que ces boules tombent dans une rangée de fentes. Les participants essayent alors de les diriger pour les faire tomber d'un côté de ou de l'autre. Au final les participants ont pu "diriger " un bit sur 10.000 issus des données mesurées dans tous les essais. Ce qui pourrait sembler petit, mais le doyen Radin, scientifique à l'institut des sciences de Noetic et ancien chercheur aux laboratoires Bell et de AT&T, dit que c'était prévisible. Radin compare l'état actuel de cette recherche avec celui où les scientifiques commencèrent à étudier l'électricité statique et ne surent pas, au début, que les niveaux d'humidité pouvaient affecter la quantité de l'électricité statique produite.
Les chercheurs ne comprennent pas grand-chose sur ce phénomène, mais ils savent que les résultats ne sont pas affectés par la distance ou le temps. Les participants, par exemple, peuvent avoir le même impact sur une machine de l'extérieur de la salle ou d'ailleurs dans le pays. Ils peuvent également avoir le même effet s'ils ont une intention avant qu'elle soit allumée ou même s'ils lisent un livre ou écoutent la musique tandis alors que la machine fonctionne. Les conditions environnementales - telles que la température ambiante - n'importent pas, mais l'humeur et l'attitude des gens qui contrôlent l'appareil oui. Cela aide, si par exemple le participant croit qu'il peut affecter la machine. Jahn dit que la résonance avec la machine est un autre facteur important. Il la compare à ce qui se produit quand un grand musicien semble faire un avec son violon. Le sexe importe aussi. Les hommes tendent à obtenir des résultats assortis à leurs intentions, bien que le degré de l'effet soit souvent petit. Les femmes tendent à obtenir un plus grand effet, mais pas nécessairement celui qu'elles prévoient. Par exemple, elles voudraient diriger des boules dans la machine aléatoire de cascade pour une chute vers la gauche, mais elles tombent plutôt vers la droite. Les résultats qui sont également plus grands si un mâle et une femelle travaillent ensemble, les couple de même sexe ne produisent aucun résultat significatif. Les couple de sexe opposé qui sont impliqué de manière romantique donnent de bien meilleurs résultats - souvent sept fois plus grands que quand les mêmes individus sont examinés seuls.
Brenda Dunne, psychologue développementaliste et directrice du laboratoire dit que dans ces cas les résultats reflètent souvent le styles des deux modèles de sexes. Les effets sont plus grands, en accord avec ce que seule la femelle tendrait à produire, et plus ciblés, en accord avec ce que seul le mâle produirait.
"C'est presque comme si il y avait deux modèles ou deux variables et qu'elles étaient complémentaires" dit Dunne." le modèle masculin est associé à l'intention, le modèle féminin est plus associé à la résonance."
Que signifie tout ceci ? Personne ne le sait. Radin et Jahn indiquent que ce n'est pas parce qu'il y a une corrélation entre l'intention du participant et les actions de la machine que cela signifie qu'un cause l'autre. " Il y a une inférence (qui les deux sont connexes) mais aucune évidence directe" dit Radin qui indique que le phénomène pourrait être semblable à l'indétermination d'Heisenberg dans lequel deux particules séparées l'une de l'autre semblent être reliées sans qu'on sache comment... sous quelle forme de communication.
"la différence est nous ne parlons pas en envoyant des signaux du cerveau à la machine par un circuit" dit Jahn au sujet de ces essais. "quoi qu'il se passe, se passe par un itinéraire que nous ne connaissons pas. Nous savons seulement quelque chose au sujet des conditions qui la favorisent.." Bien que les effets produits dans ces expériences soient faibles, ils ont toujours été répétés, cependant pas toujours de façon prévisible. Un participant peut avoir un effet un jour et répéter l'expérience le jour suivant sans résultats.
Le laboratoire a beaucoup de détracteurs qui pointent sur des défauts de la méthode et écartent ce travail le traitant de divertissement, comparant ses résultats aux automobilistes qui souhaitent qu'une lumière rouge passe au vert et pensent que le changement de lumière est causé par eux.
Stanley Jeffers, professeur de physique à l'université d'York à Toronto, a tenté des expériences semblables, mais il ne put pas répliquer les résultats. Les chercheurs de deux laboratoires allemands, fonctionnant en coopération avec Pegg, ne purent également pas répliquer ces résultats à l'aide du même équipement utilisé par Pegg.
"Si leurs annonces veulent être prises au sérieux par la science elles doivent être répliquées" dit Jeffers. "Si elles ne peuvent pas être répliquées, cela ne signifie pas qu'elles sont fausses, mais la science y perdra rapidement son intérêt."
Dunne, psychologue développementaliste dit que Pegg a répété ses propres expériences et a obtenu des résultats significatifs. Et ces méta-analyses - une douzaine - faites depuis les années 80 ont donné une base pour les résultats de Pegg dans les expériences faites par d'autres chercheurs. La Méta-analyse utilise de grands stocks de données à travers de beaucoup d'expériences et les combine statistiquement pour voir si les effets répètent la même combinaison. "Nous analysons les déviations statistiques par rapport à la chance au travers de cette batterie d'expériences" dit Jahn... "quand on fait assez de ces expériences, les effets analysés ont un poids statistique. Il n'y a aucun doute sur la validité de ces effets."
Radin, qui n'est pas affilié au Pegg, écarte les critiques qui disent que ce groupe ne pratique pas de science solide. "Ce domaine a reçu bien plus d'examen minutieux et critique que beaucoup d'autres, ordinaires... les personnes qui font ce genre de recherche sont bien conscientes du fait que leur recherche doit être faite au mieux. Le laboratoire de Pegg a pris les meilleurs principes de science rigoureuse et s'est appliqué a des questions extrêmement difficiles et a proposé quelques jolies réponses intéressantes."
Jahn pense que les critiques s'attendent à ce que les phénomènes suivent les règles habituelles de la cause et de l'effet. Au lieu de cela, il pense qu'ils appartiennent à la catégorie de ce que Karl Jung a appelé "des phénomènes acausal," qui incluent des choses comme la synchronicité. "Cela se joue par des règles plus compliquées, plus lunatiques, évasives... ... mais cela joue." dit Jahn
Jeffers est sceptique " cela ne peut se passer de deux manières - dire qu'on est des scientifiques honorables et avoir des affirmations pour un effet particulier dans des conditions contrôlées, et ensuite quand les résultats ne marchent pas, dire que les méthodes scientifiques rigoureuses ne s'appliquent pas." Mais Jahn dit que justement que puisque que les scientifiques ne peuvent pas expliquer ces phénomènes cela ne signifie pas qu'ils ne sont pas vrais. "si ces choses existent... je pense que notre société a le droit de demander à la science d'y faire attention et de fournir un certain outillage pour avoir affaire avec de manière constructive.

Auteur: Zetter Kim

Info: Juillet 2005, Fortean Times

[ mâles-femelles ] [ vus-scientifiquement ] [ parapsychologie ] [ femmes-hommes ]

 

Commentaires: 0

subatomique

Des scientifiques font exploser des atomes avec un laser de Fibonacci pour créer une dimension temporelle "supplémentaire"

Cette technique pourrait être utilisée pour protéger les données des ordinateurs quantiques contre les erreurs.

(Photo avec ce texte : La nouvelle phase a été obtenue en tirant des lasers à 10 ions ytterbium à l'intérieur d'un ordinateur quantique.)

En envoyant une impulsion laser de Fibonacci à des atomes à l'intérieur d'un ordinateur quantique, des physiciens ont créé une phase de la matière totalement nouvelle et étrange, qui se comporte comme si elle avait deux dimensions temporelles.

Cette nouvelle phase de la matière, créée en utilisant des lasers pour agiter rythmiquement un brin de 10 ions d'ytterbium, permet aux scientifiques de stocker des informations d'une manière beaucoup mieux protégée contre les erreurs, ouvrant ainsi la voie à des ordinateurs quantiques capables de conserver des données pendant une longue période sans les déformer. Les chercheurs ont présenté leurs résultats dans un article publié le 20 juillet dans la revue Nature.

L'inclusion d'une dimension temporelle "supplémentaire" théorique "est une façon complètement différente de penser les phases de la matière", a déclaré dans un communiqué l'auteur principal, Philipp Dumitrescu, chercheur au Center for Computational Quantum Physics de l'Institut Flatiron, à New York. "Je travaille sur ces idées théoriques depuis plus de cinq ans, et les voir se concrétiser dans des expériences est passionnant.

Les physiciens n'ont pas cherché à créer une phase dotée d'une dimension temporelle supplémentaire théorique, ni à trouver une méthode permettant d'améliorer le stockage des données quantiques. Ils souhaitaient plutôt créer une nouvelle phase de la matière, une nouvelle forme sous laquelle la matière peut exister, au-delà des formes standard solide, liquide, gazeuse ou plasmatique.

Ils ont entrepris de construire cette nouvelle phase dans le processeur quantique H1 de la société Quantinuum, qui se compose de 10 ions d'ytterbium dans une chambre à vide, contrôlés avec précision par des lasers dans un dispositif connu sous le nom de piège à ions.

Les ordinateurs ordinaires utilisent des bits, c'est-à-dire des 0 et des 1, pour constituer la base de tous les calculs. Les ordinateurs quantiques sont conçus pour utiliser des qubits, qui peuvent également exister dans un état de 0 ou de 1. Mais les similitudes s'arrêtent là. Grâce aux lois étranges du monde quantique, les qubits peuvent exister dans une combinaison, ou superposition, des états 0 et 1 jusqu'au moment où ils sont mesurés, après quoi ils s'effondrent aléatoirement en 0 ou en 1.

Ce comportement étrange est la clé de la puissance de l'informatique quantique, car il permet aux qubits de se lier entre eux par l'intermédiaire de l'intrication quantique, un processus qu'Albert Einstein a baptisé d'"action magique à distance". L'intrication relie deux ou plusieurs qubits entre eux, connectant leurs propriétés de sorte que tout changement dans une particule entraîne un changement dans l'autre, même si elles sont séparées par de grandes distances. Les ordinateurs quantiques sont ainsi capables d'effectuer plusieurs calculs simultanément, ce qui augmente de manière exponentielle leur puissance de traitement par rapport à celle des appareils classiques.

Mais le développement des ordinateurs quantiques est freiné par un gros défaut : les Qubits ne se contentent pas d'interagir et de s'enchevêtrer les uns avec les autres ; comme ils ne peuvent être parfaitement isolés de l'environnement extérieur à l'ordinateur quantique, ils interagissent également avec l'environnement extérieur, ce qui leur fait perdre leurs propriétés quantiques et l'information qu'ils transportent, dans le cadre d'un processus appelé "décohérence".

"Même si tous les atomes sont étroitement contrôlés, ils peuvent perdre leur caractère quantique en communiquant avec leur environnement, en se réchauffant ou en interagissant avec des objets d'une manière imprévue", a déclaré M. Dumitrescu.

Pour contourner ces effets de décohérence gênants et créer une nouvelle phase stable, les physiciens se sont tournés vers un ensemble spécial de phases appelées phases topologiques. L'intrication quantique ne permet pas seulement aux dispositifs quantiques d'encoder des informations à travers les positions singulières et statiques des qubits, mais aussi de les tisser dans les mouvements dynamiques et les interactions de l'ensemble du matériau - dans la forme même, ou topologie, des états intriqués du matériau. Cela crée un qubit "topologique" qui code l'information dans la forme formée par de multiples parties plutôt que dans une seule partie, ce qui rend la phase beaucoup moins susceptible de perdre son information.

L'une des principales caractéristiques du passage d'une phase à une autre est la rupture des symétries physiques, c'est-à-dire l'idée que les lois de la physique sont les mêmes pour un objet en tout point du temps ou de l'espace. En tant que liquide, les molécules d'eau suivent les mêmes lois physiques en tout point de l'espace et dans toutes les directions. Mais si vous refroidissez suffisamment l'eau pour qu'elle se transforme en glace, ses molécules choisiront des points réguliers le long d'une structure cristalline, ou réseau, pour s'y disposer. Soudain, les molécules d'eau ont des points préférés à occuper dans l'espace et laissent les autres points vides ; la symétrie spatiale de l'eau a été spontanément brisée.

La création d'une nouvelle phase topologique à l'intérieur d'un ordinateur quantique repose également sur la rupture de symétrie, mais dans cette nouvelle phase, la symétrie n'est pas brisée dans l'espace, mais dans le temps.

En donnant à chaque ion de la chaîne une secousse périodique avec les lasers, les physiciens voulaient briser la symétrie temporelle continue des ions au repos et imposer leur propre symétrie temporelle - où les qubits restent les mêmes à travers certains intervalles de temps - qui créerait une phase topologique rythmique à travers le matériau.

Mais l'expérience a échoué. Au lieu d'induire une phase topologique à l'abri des effets de décohérence, les impulsions laser régulières ont amplifié le bruit provenant de l'extérieur du système, le détruisant moins d'une seconde et demie après sa mise en marche.

Après avoir reconsidéré l'expérience, les chercheurs ont réalisé que pour créer une phase topologique plus robuste, ils devaient nouer plus d'une symétrie temporelle dans le brin d'ion afin de réduire les risques de brouillage du système. Pour ce faire, ils ont décidé de trouver un modèle d'impulsion qui ne se répète pas de manière simple et régulière, mais qui présente néanmoins une sorte de symétrie supérieure dans le temps.

Cela les a conduits à la séquence de Fibonacci, dans laquelle le nombre suivant de la séquence est créé en additionnant les deux précédents. Alors qu'une simple impulsion laser périodique pourrait simplement alterner entre deux sources laser (A, B, A, B, A, B, etc.), leur nouveau train d'impulsions s'est déroulé en combinant les deux impulsions précédentes (A, AB, ABA, ABAAB, ABAABAB, ABAABABA, etc.).

Cette pulsation de Fibonacci a créé une symétrie temporelle qui, à l'instar d'un quasi-cristal dans l'espace, est ordonnée sans jamais se répéter. Et tout comme un quasi-cristal, les impulsions de Fibonacci écrasent également un motif de dimension supérieure sur une surface de dimension inférieure. Dans le cas d'un quasi-cristal spatial tel que le carrelage de Penrose, une tranche d'un treillis à cinq dimensions est projetée sur une surface à deux dimensions. Si l'on examine le motif des impulsions de Fibonacci, on constate que deux symétries temporelles théoriques sont aplaties en une seule symétrie physique.

"Le système bénéficie essentiellement d'une symétrie bonus provenant d'une dimension temporelle supplémentaire inexistante", écrivent les chercheurs dans leur déclaration. Le système apparaît comme un matériau qui existe dans une dimension supérieure avec deux dimensions de temps, même si c'est physiquement impossible dans la réalité.

Lorsque l'équipe l'a testé, la nouvelle impulsion quasi-périodique de Fibonacci a créé une phase topographique qui a protégé le système contre la perte de données pendant les 5,5 secondes du test. En effet, ils ont créé une phase immunisée contre la décohérence pendant beaucoup plus longtemps que les autres.

"Avec cette séquence quasi-périodique, il y a une évolution compliquée qui annule toutes les erreurs qui se produisent sur le bord", a déclaré Dumitrescu. "Grâce à cela, le bord reste cohérent d'un point de vue mécanique quantique beaucoup plus longtemps que ce à quoi on s'attendrait.

Bien que les physiciens aient atteint leur objectif, il reste un obstacle à franchir pour que leur phase devienne un outil utile pour les programmeurs quantiques : l'intégrer à l'aspect computationnel de l'informatique quantique afin qu'elle puisse être introduite dans les calculs.

"Nous avons cette application directe et alléchante, mais nous devons trouver un moyen de l'intégrer dans les calculs", a déclaré M. Dumitrescu. "C'est un problème ouvert sur lequel nous travaillons.

 

Auteur: Internet

Info: livesciences.com, Ben Turner, 17 août 2022

[ anions ] [ cations ]

 

Commentaires: 0

Ajouté à la BD par miguel