Citation
Catégorie
Tag – étiquette
Auteur
Info
Rechercher par n'importe quelle lettre



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 5227
Temps de recherche: 0.0436s

polypeptides

Les biologistes dévoilent les formes moléculaires de la vie

On vous décrit la quête visant à comprendre comment les protéines se plient rapidement et élégamment pour prendre des formes qui leur permettent d'effectuer des tâches uniques.

Pour le hula hoop, vous vous levez et faites pivoter vos hanches vers la droite et vers la gauche. Pour faire du vélo, on s'accroupit, on tend les bras et on pédale sur les jambes. Pour plonger dans une piscine, vous étendez les bras, rentrez le menton et vous penchez en avant. Ces formes corporelles nous permettent d’entreprendre certaines actions – ou, comme pourrait le dire un biologiste, notre structure détermine notre fonction.

Cela est également vrai au niveau moléculaire. Chaque tâche imaginable effectuée par une cellule possède une protéine conçue pour l'exécuter. Selon certaines estimations, il existe 20 000 types différents de protéines dans le corps humain : certaines protéines des cellules sanguines sont parfaitement conçues pour capter les molécules d'oxygène et de fer, certaines protéines des cellules cutanées fournissent un soutien structurel, etc. Chacun a une forme adaptée à son métier. 

Cependant, si une protéine se replie mal, elle ne peut plus fonctionner, ce qui peut entraîner un dysfonctionnement et une maladie. En comprenant comment les protéines se replient, les biologistes gagneraient non seulement une compréhension plus approfondie des protéines elles-mêmes, mais pourraient également débloquer de nouvelles façons de cibler les protéines liées à la maladie avec de nouveaux médicaments.

Cela s’est avéré être un formidable défi scientifique. Chaque protéine commence par une chaîne de molécules plus petites liées appelées acides aminés. Lorsque les acides aminés s'alignent dans l'ordre dicté par un gène, ils se plient et prennent la forme appropriée de la protéine en quelques microsecondes – un phénomène qui a stupéfié les scientifiques du XXe siècle lorsqu'ils l'ont découvert. 

Dans les années 1950, le biochimiste Christian Anfinsen a émis l’hypothèse qu’il devait y avoir un code interne intégré à la chaîne d’acides aminés qui détermine la manière dont une protéine doit se replier. Si tel était le cas, pensait-il, il devrait exister un moyen de prédire la structure finale d'une protéine à partir de sa séquence d'acides aminés. Faire cette prédiction est devenu connu sous le nom de problème de repliement des protéines. Depuis, certains scientifiques ont redéfini le problème en trois questions liées : Qu'est-ce que le code de pliage ? Quel est le mécanisme de pliage ? Pouvez-vous prédire la structure d’une protéine simplement en regardant sa séquence d’acides aminés ? 

Les biologistes ont passé des décennies à tenter de répondre à ces questions. Ils ont expérimenté des protéines individuelles pour comprendre leurs structures et construit des programmes informatiques pour déduire des modèles de repliement des protéines. Ils ont étudié la physique et la chimie des molécules d’acides aminés jusqu’au niveau atomique pour découvrir les règles du repliement des protéines. Malgré cela, les biologistes n'ont fait que des progrès hésitants dans la compréhension des règles de repliement internes d'une protéine depuis qu'Anfinsen a exposé le problème.

Il y a quelques années, ils ont réalisé une avancée décisive lorsque de nouveaux outils d’intelligence artificielle ont permis de résoudre une partie du problème. Les outils, notamment AlphaFold de Google DeepMind, ne peuvent pas expliquer comment une protéine se replie à partir d'une chaîne d'acides aminés. Mais étant donné une séquence d’acides aminés, ils peuvent souvent prédire la forme finale dans laquelle elle se replie. 

Ce n’est que dans les décennies à venir qu’il deviendra clair si cette distinction – savoir comment une protéine se replie par rapport à ce en quoi elle se replie – fera une différence dans des applications telles que le développement de médicaments. Le magicien doit-il révéler le tour de magie ?

Quoi de neuf et remarquable

Début mai, Google DeepMind a annoncé la dernière itération de son algorithme de prédiction des protéines, appelé AlphaFold3, qui prédit les structures non seulement de protéines individuelles, mais également de protéines liées les unes aux autres et d'autres biomolécules comme l'ADN et l'ARN. Comme je l’ai signalé pour Quanta, cette annonce est intervenue quelques mois seulement après qu’un algorithme concurrent de prédiction des protéines – RosettaFold All-Atom, développé par le biochimiste David Baker de la faculté de médecine de l’Université de Washington et son équipe – a annoncé une mise à niveau similaire. " Vous découvrez désormais toutes les interactions complexes qui comptent en biologie ", m'a dit Brenda Rubenstein, professeure agrégée de chimie et de physique à l'Université Brown. Il reste néanmoins un long chemin à parcourir avant que ces algorithmes puissent déterminer les structures dynamiques des protéines lors de leur déplacement dans les cellules. 

Parfois, les protéines agissent de manière imprévisible, ce qui ajoute une autre difficulté au problème du repliement. La plupart des protéines se replient en une seule forme stable. Mais comme Quanta l’a rapporté en 2021, certaines protéines peuvent se replier sous plusieurs formes pour remplir plusieurs fonctions. Ces protéines à commutation de plis ne sont pas bien étudiées et personne ne sait quelle est leur abondance. Mais grâce aux progrès technologiques tels que la cryomicroscopie électronique et la résonance magnétique nucléaire à l’état solide, les chercheurs y voient plus clairement. De plus, certaines protéines possèdent des régions qui ne se plient pas selon une forme discrète mais qui bougent de manière dynamique. Comme Quanta l'a rapporté en février, ces protéines intrinsèquement désordonnées peuvent avoir des fonctions importantes, comme l'amélioration de l'activité des enzymes, la classe de protéines qui provoquent des réactions chimiques. 

Lorsque les protéines se replient mal, elles peuvent se regrouper et causer des ravages dans l’organisme. Les agrégats de protéines sont caractéristiques des maladies neurodégénératives comme la maladie d'Alzheimer, dans lesquelles des agrégats de protéines potentiellement toxiques appelés plaques amyloïdes s'accumulent entre les neurones et compromettent la signalisation du cerveau. Comme Quanta l’a rapporté en 2022 , l’agrégation des protéines pourrait être répandue dans les cellules vieillissantes ; comprendre pourquoi les protéines se replient mal et s’accumulent pourrait aider au développement de traitements pour les problèmes liés au vieillissement. Parfois, des protéines mal repliées peuvent également favoriser le mauvais repliement et l’agrégation d’autres protéines, déclenchant une cascade d’effets néfastes qui illustrent à quel point il est essentiel qu’une protéine se plie pour prendre sa forme appropriée.



 

Auteur: Internet

Info: https://www.quantamagazine.org/ mai 2024, Mme Yasemin Saplakoglu

[ tridimensionnelles ] [ conformation protéique ]

 

Commentaires: 0

Ajouté à la BD par miguel

neuroscience

Il n'y a pas que les neurones qui jouent un rôle dans la mémoire !Les neurones ne sont pas les seuls protagonistes de la mémoire ! Des chercheurs américains révèlent que d’autres cellules du cerveau en forme d’étoiles, les astrocytes, sont essentiels au stockage des souvenirs et à leur récupération. Un dialogue s’initie entre neurones et astrocytes, qui travaillent de concert pour encoder nos apprentissages. Cette découverte redéfinit la compréhension du processus de mémorisation.

(Image : Les astrocytes assurent des fonctions cruciales pour l’activité neuronale : ils leur fournissent notamment les nutriments nécessaires et régulent leur environnement chimique.)

Se souvenir d’une balade en montagne, ou d’un repas en famille. Chaque expérience est encodée par un circuit neuronal unique qui se réactive quand on se remémore le souvenir. Mais en réalité, les neurones ne sont pas les seules pièces du puzzle. D’autres cellules du cerveau participent à l’activation de ces patterns : les astrocytes. Des chercheurs du Baylor College of Medicine (Texas, Etats-Unis) viennent de révéler une nouvelle fonction de ces cellules dans l’apprentissage.

"Nous avons découvert que les astrocytes jouent un rôle à la fois dans l'encodage et le rappel de la mémoire", synthétise Michael Williamson, auteur de l'étude, lors d’une interview pour Sciences et Avenir. Leurs résultats ont été publiés dans la prestigieuse revue Nature

La mémorisation passe par trois étapes clés

Pour se souvenir d’une leçon par exemple, le cerveau fonctionne en trois phases. D’abord, l’encodage permet de traiter l’information en profondeur. Durant cette étape, le cerveau capte et organise l’information pour qu’elle soit compréhensible, ce qui nécessite une attention soutenue. Ensuite, lors de la consolidation, l’hippocampe, une structure cérébrale, transforme l'évènement en un souvenir durable. Diverses activités répétées, telles que les quiz, permettent de favoriser l'ancrage du souvenir : la mémoire doit être mise à l’épreuve. Enfin, la dernière phase, celle de la récupération, consiste à rappeler activement les connaissances. Plus les rappels sont réguliers, plus ils favorisent la mémoire à long terme.

Ces processus de mémorisation laissent des traces physiques et chimiques dans le cerveau. On parle d’engramme. "Il s’agit de la manifestation physique de la mémoire, simplifie le chercheur. Cette idée est développée par Richard Semon au 20ème siècle, et des preuves solides de son existence ont été révélées durant ces 15 dernières années." Jusqu’à présent, on pensait que les neurones étaient les seules cellules à produire ces marques du souvenir. Mais l’étude de Michael Williamson révèle que les astrocytes sont aussi une composante active de l’engramme. 

Qu’est-ce qu’un astrocyte ?

Mais en parlant d’astrocytes, de quoi s’agit-il exactement ? Ces cellules en forme d’étoiles peuplent le cerveau, et côtoient donc les neurones et d’autres cellules dites " gliales ", comme les astrocytes, dont le rôle est notamment de soutenir les neurones. Les astrocytes assurent ainsi des fonctions cruciales pour l’activité neuronale : ils leur fournissent les nutriments nécessaires et régulent leur environnement chimique. D’après les résultats des chercheurs du Baylor College of Medicine, les astrocytes joueraient même le rôle de médiateur dans le stockage et la récupération de souvenirs. Ils pourraient influencer les circuits neuronaux qui encodent et rappellent nos expériences.

Mais comment ? Chaque évènement active un groupe spécifique d’astrocytes, "environ 3% de tous les astrocytes de l’hippocampe, une structure cérébrale essentielle dans la mémoire", précise Michael Williamson. "Nous pensons que chaque souvenir est représenté par un ensemble distinct d'astrocytes qui régulent collectivement la consolidation et le rappel de ce souvenir particulier." Un astrocyte donné serait donc responsable du stockage de plusieurs souvenirs, chaque souvenir étant réparti sur un ensemble unique d'astrocytes (et de neurones).

Les astrocytes réactivent le souvenir de peur 

Pour étudier le rôle des astrocytes dans la mémoire, les chercheurs ont mis en place un protocole expérimental sur des souris, qu’ils ont soumises à un conditionnement à la peur. Celles-ci ont été exposées à un environnement particulier dans lequel elles ont appris à associer un stimulus à un événement effrayant. Dans ce contexte de peur, les souris réagissent en se figeant, ce qui a permis aux chercheurs d'identifier clairement quand elles se souvenaient de l'événement traumatique. 

Ensuite, les chercheurs ont utilisé des systèmes génétiques complexes pour identifier et manipuler les ensembles d’astrocytes associés à l'apprentissage de la peur. Pour cela, ils se sont basés sur le gène c-Fos. Ce gène est exprimé en réponse à des apprentissages, dans des groupes d’astrocytes propres à chaque évènement. Grâce à un outil (appelé DREADD), l’équipe de Michael Williamson a réussi à réactiver spécifiquement le groupe d’astrocytes associés à l’apprentissage de la peur. "L'ensemble des astrocytes activés pendant l'apprentissage est capable de réactiver les neurones, activant ainsi les circuits associés à la mémoire", précise Michael Williamson. 

Ainsi, les chercheurs ont pu tester l’impact de l'activation des astrocytes sur le comportement des souris dans différents contextes. Résultat : la réactivation simple des astrocytes a ravivé le souvenir de peur chez les souris, qui se sont figées instantanément, sans stimulus. Les astrocytes ne se contentent donc pas de soutenir les neurones, mais interagissent physiquement et fonctionnellement avec eux pour former et réactiver des souvenirs. Ils participent directement à la communication synaptique dans les circuits de la mémoire et sont capables d’activer ou de réactiver ces circuits de manière ciblée. 

Une avancée dans la recherche sur la maladie d’Alzheimer

A cette première conclusion, les chercheurs révèlent un second résultat fascinant. Un autre gène, nommé NFIA, est très exprimé dans les astrocytes activés lors d’un apprentissage. Ce qui donne lieu à un taux élevé de la protéine du même nom. Plus étonnant encore : inhiber l’expression du gène NFIA efface complètement le souvenir. En effet, sans la protéine associée à ce gène, les souris n’ont pas réagi au stimulus : elles ne se souvenaient pas de l'événement traumatique. 

Ces découvertes lèvent le voile sur de nouveaux mécanismes du processus complexe de la mémoire. Elles ouvrent de nouvelles perspectives pour mieux comprendre la maladie d’Alzheimer par exemple, qui entraîne une perte de mémoire, ou le syndrome de stress post-traumatique, qui conduit à un rappel inapproprié des souvenirs. "Nos résultats indiquent que les astrocytes jouent un rôle essentiel dans ces maladies complexes, conclut l’auteur. Le ciblage des astrocytes pourrait donc être une voie thérapeutique utile."

Auteur: Internet

Info: Marie Parra, 6 novembre 2024

[ bio-mémorisation ] [ triade ] [ itérations ] [ dendrites ] [ réseaux ]

 

Commentaires: 0

Ajouté à la BD par miguel

prospective technologique

9 Tendances de l'intelligence artificielle que vous devriez surveiller en 2019

1) Les puces activées par l'intelligence artificielle seront généralisées
Contrairement à d'autres technologies et outils logiciels, l'IA dépend fortement de processeurs spécialisés. Pour répondre aux exigences complexes de l'IA, les fabricants de puces créeront des puces spécialisées capables d'exécuter des applications compatibles avec l'IA.
Même les géants de la technologie comme Google, Facebook et Amazon dépenseront plus d'argent pour ces puces spécialisées. Ces puces seraient utilisées à des fins comme le traitement du langage naturel, la vision par ordinateur et la reconnaissance vocale.

2) L'IA et l'IdO (Internet des objets) se rencontrent
2019 sera l'année de la convergence des différentes technologies avec l'IA. L'IdO se joindra à l'IA sur la couche informatique de pointe. L'IdO industriel exploitera la puissance de l'IA pour l'analyse des causes profondes, la maintenance prédictive des machines et la détection automatique des problèmes.
Nous verrons la montée de l'IA distribuée en 2019. Le renseignement sera décentralisé et situé plus près des biens et des dispositifs qui effectuent les vérifications de routine. Des modèles d'apprentissage machine hautement sophistiqués, alimentés par des réseaux neuronaux, seront optimisés pour fonctionner à la fine pointe de la technologie.

3) Dites "Bonjour" à AutoML.
L'une des plus grandes tendances qui domineront l'industrie de l'IA en 2019 sera l'apprentissage automatique automatisé (AutoML). Grâce à ces capacités les développeurs seront en mesure de modifier les modèles d'apprentissage machine et de créer de nouveaux modèles prêts à relever les défis futurs de l'IA.
AutoML (Cloud AutoMLB, modèles de machine learning personnalisés de haute qualité) trouvera le juste milieu entre les API cognitives et les plates-formes d'apprentissage sur mesure. Le plus grand avantage de l'apprentissage automatique sera d'offrir aux développeurs les options de personnalisation qu'ils exigent sans les forcer à passer par un flux de travail complexe. Lorsque vous combinez les données avec la portabilité, AutoML peut vous donner la flexibilité que vous ne trouverez pas avec d'autres technologies AI.

4) Bienvenue chez AIOps (intelligence artificielle pour les opérations informatiques)
Lorsque l'intelligence artificielle est appliquée à la façon dont nous développons les applications, elle transforme la façon dont nous gérions l'infrastructure. DevOps sera remplacé par AIOps et permettra au personnel de votre service informatique d'effectuer une analyse précise des causes profondes. De plus, cela vous permettra de trouver facilement des idées et des modèles utiles à partir d'un vaste ensemble de données en un rien de temps. Les grandes entreprises et les fournisseurs de cloud computing bénéficieront de la convergence de DevOps avec AI.

5) Intégration du réseau neuronal
L'un des plus grands défis auxquels les développeurs d'IA seront confrontés lors du développement de modèles de réseaux neuronaux sera de choisir le meilleur framework. Mais, avec des douzaines d'outils d'IA disponibles sur le marché, choisir le meilleur outil d'IA pourrait ne pas être aussi facile qu'avant. Le manque d'intégration et de compatibilité entre les différentes boîtes à outils des réseaux de neurones entrave l'adoption de l'IA. Des géants technologiques tels que Microsoft et Facebook travaillent déjà au développement d'un réseau neuronal ouvert (ONNX). Cela permettra aux développeurs de réutiliser les modèles de réseaux neuronaux sur plusieurs frameworks.

6) Les systèmes d'IA spécialisés deviennent une réalité.
La demande de systèmes spécialisés augmentera de façon exponentielle en 2019. Les organisations ont peu de données à leur disposition, mais ce qu'elles veulent, ce sont des données spécialisées.
Cela obligera les entreprises à se doter d'outils qui peuvent les aider à produire des données d'IA de grande qualité à l'interne. En 2019, l'accent sera mis sur la qualité des données plutôt que sur la quantité. Cela jettera les bases d'une IA qui pourra fonctionner dans des situations réelles. Les entreprises se tourneront vers des fournisseurs de solutions d'IA spécialisés qui ont accès à des sources de données clés et qui pourraient les aider à donner du sens à leurs données non structurées.

7) Les compétences en IA détermineront votre destin.
Même si l'IA a transformé toutes les industries auxquelles vous pouvez penser, il y a une pénurie de talents avec des compétences en IA. Pat Calhoun, PDG d'Espressive a déclaré : " La plupart des organisations souhaitent intégrer l'IA dans leur transformation numérique, mais n'ont pas les développeurs, les experts en IA et les linguistes pour développer leurs propres solutions ou même former les moteurs des solutions préconçues pour tenir leurs promesses ".
Rahul Kashyap, PDG d'Awake Security, ajoute : "Avec autant de solutions'AI-powered' disponibles pour répondre à une myriade de préoccupations commerciales, il est temps que les entreprises deviennent plus intelligentes sur ce qui se passe dans la 'boîte noire' de leurs solutions AI". La façon dont les algorithmes d'IA sont formés, structurés ou informés peut conduire à des différences significatives dans les résultats, poursuit-il. La bonne équation pour une entreprise ne sera pas la bonne pour une autre."

8) L'IA tombera dans de mauvaises mains
Tout comme une pièce de monnaie à deux faces, l'IA a un côté positif et un côté négatif. Les professionnels de la sécurité informatique utiliseront l'intelligence artificielle pour détecter rapidement les activités malveillantes. Vous pouvez réduire les faux positifs de 90 % à l'aide d'algorithmes de réponse et d'apprentissage machine pilotés par l'intelligence artificielle.
L'intelligence artificielle tombera entre de mauvaises mains et les cybercriminels aux desseins malveillants en abuseront pour réaliser leurs objectifs. Avec l'automatisation, les armées de cyberattaquants peuvent lancer des attaques mortelles avec plus de succès. Cela obligera les entreprises à combattre le feu par le feu et à investir dans des solutions de sécurité alimentées par l'IA capables de les protéger contre de telles attaques.

9) Transformation numérique alimentée par l'IA
En 2019, l'IA sera partout. Des applications Web aux systèmes de soins de santé, des compagnies aériennes aux systèmes de réservation d'hôtels et au-delà, nous verrons des nuances de l'IA partout et elle sera à l'avant-garde de la transformation numérique.
Tung Bui, président du département informatique et professeur à l'Université d'Hawaii a déclaré : "Contrairement à la plupart des prédictions et des discussions sur la façon dont les véhicules et les robots autonomes finiront par affecter le marché du travail - ceci est vrai mais prendra du temps pour des raisons institutionnelles, politiques et sociales - je soutiens que la tendance principale en IA sera une accélération dans la transformation numérique, rendant plus intelligent les systèmes commerciaux existants".

Auteur: Internet

Info: zero hedge, 1 mars 2019

 
Mis dans la chaine

Commentaires: 0

Ajouté à la BD par miguel

paliers évolutionnaires

Des chercheurs découvrent une extinction de masse jusqu’alors inconnue de l’histoire de la Terre

Une extinction de masse désigne un événement ayant entraîné la disparition d’au moins 75 % des espèces présentes sur Terre. Les paléobiologistes affirment que notre planète a déjà connu cinq principaux épisodes de ce type ; certains estiment que nous sommes en train de vivre la sixième extinction. Mais la liste ne s’arrête pas là : des chercheurs de Virginia Tech ont découvert que la Terre aurait subi une extinction de masse il y a environ 550 millions d’années. Ce serait ainsi la toute première extinction que notre planète ait connu.

À ce jour, l’extinction de l’Ordovicien-Silurien, survenue il y a environ 440 millions d’années, est considérée comme la première extinction massive de notre planète. Celle-ci s’est vraisemblablement produite à la suite d’une grande glaciation, à laquelle auraient succombé près de 85% des espèces, faute de réussir à s’adapter à ces nouvelles conditions. Mais des preuves suggèrent aujourd’hui qu’un autre événement d’extinction l’aurait précédée : une diminution de la disponibilité mondiale d’oxygène aurait entraîné la perte d’une majorité d’animaux présents vers la fin de l’Édiacarien, il y a environ 550 millions d’années.

La première extinction de l’histoire de la Terre

Le déclin soudain de la diversité fossile il y a 550 millions d’années est connu depuis longtemps, mais les scientifiques n’avaient pas pu en déterminer la cause avec certitude. Il était possible que les espèces en présence soient entrées en compétition pour la survie, s’éliminant les unes les autres, ou simplement que les conditions environnementales de l’époque n’étaient pas propices à la préservation des fossiles édiacariens. Une nouvelle étude publiée dans Proceedings of the National Academy of Sciences permet aujourd’hui d’affirmer que ce déclin résulte bel et bien d’une extinction de masse.

Notre planète compte cinq extinctions de masse connues, les "Big Five", selon Shuhai Xiao, professeur de géobiologie à Virginia Tech : l’extinction de l’Ordovicien-Silurien (il y a 440 millions d’années), l’extinction du Dévonien tardif (il y a 370 millions d’années), l’extinction du Permien-Trias (il y a 250 millions d’années), l’extinction du Trias-Jurassique (il y a 200 millions d’années) et enfin, l’extinction du Crétacé-Paléogène (il y a 65 millions d’années), qui a anéanti environ 75 % des plantes et des animaux, y compris les dinosaures non aviens.

Toutes sont liées à des changements environnementaux majeurs et à grande échelle. Un changement climatique ou un événement de désoxygénation peuvent entraîner une extinction massive d’animaux, ainsi qu’une perturbation et une réorganisation profondes des écosystèmes. Ce premier événement d’extinction survenu lors de l’Édiacarien n’échappe pas à la règle : lui aussi a été induit par une modification significative de l’environnement.

Près de 80 % des animaux vivant sur Terre auraient disparu lors de cette première extinction massive. "Cela comprenait la perte de nombreux types d’animaux différents, mais ceux dont les plans corporels et les comportements indiquent qu’ils dépendaient d’importantes quantités d’oxygène semblent avoir été particulièrement touchés", explique Scott Evans, chercheur postdoctoral au Département des géosciences de Virginia Tech et premier auteur de l’étude décrivant l’événement.

Un "coup de pouce" à l’évolution ?

Les fossiles à corps mou du biote d’Ediacara – du nom des collines situées au sud de l’Australie où ont été découverts ces fossiles en 1946 – font partie des plus anciens organismes pluricellulaires complexes connus. Les empreintes fossiles datant de la période édiacarienne – soit d’environ -635 à -539 millions d’années – montrent que les animaux qui ont péri lors de cette extinction de masse avaient une apparence très étrange, en forme de feuille, de plume ou de tube.

Selon Evans, les organismes de l’époque semblaient expérimenter différentes façons de construire leurs grands corps multicellulaires. Par conséquent, les fossiles mis au jour datant d’avant l’extinction, ne correspondent pas toujours aux classifications actuelles des animaux. "Cette extinction a peut-être contribué à ouvrir la voie à l’évolution des animaux tels que nous les connaissons", conclut le chercheur. À savoir que la plupart des plans d’organisation animaux existant aujourd’hui sont apparus au cours du Cambrien (soit la période qui succède à l’Édiacarien).

Evans et ses collègues ont scrupuleusement examiné et catalogué l’ensemble des fossiles de la période édiacarienne décrits dans la littérature. Ils ont ainsi identifié 70 genres d’animaux, dont seuls 14 existaient encore quelque 10 millions d’années plus tard. L’équipe n’a toutefois trouvé aucun signe suggérant que ces animaux étaient en concurrence avec les premiers animaux du Cambrien, ni rien qui pouvait expliquer la non-préservation des fossiles.

En revanche, les animaux qui ont survécu arboraient tous un plan d’organisation favorisant la survie en cas d’anoxie : une surface corporelle relativement élevée par rapport à leur volume. Des preuves géochimiques confirment par ailleurs une faible disponibilité d’oxygène dans les océans il y a 550 millions d’années.

Une anoxie dont la cause reste à éclaircir

Qu’est-ce qui a causé cette baisse de la disponibilité globale de l’oxygène ? "La réponse courte à la façon dont cela s’est produit est que nous ne savons pas vraiment", a déclaré Evans. En réalité, plusieurs événements, individuels ou combinés, pourraient être à l’origine du phénomène explique le scientifique : éruptions volcaniques, mouvements de plaques tectoniques, impact d’astéroïde, etc. Des changements dans les niveaux de nutriments des océans pourraient être une autre cause possible. 

 Dans tous les cas, cette extinction a largement influencé l’évolution de la vie sur Terre et cette étude nous donne un aperçu de l’impact à long terme du manque d’oxygène sur la vie aquatique. Il se trouve que dans une autre étude, les scientifiques de Virginia Tech ont récemment découvert que les lacs d’eaux douces du monde perdaient actuellement rapidement de l’oxygène.

Ce phénomène est lié non seulement au réchauffement des eaux induit par le changement climatique, mais aussi à l’excès de ruissellement de substances polluantes (phosphore, azote) lié aux pratiques agricoles : "le réchauffement des eaux diminue la capacité de l’eau douce à retenir l’oxygène, tandis que la dégradation des nutriments dans le ruissellement par les microbes d’eau douce engloutit l’oxygène", expliquent les chercheurs.

En d’autres termes, la découverte de cette nouvelle extinction donne un aperçu des dangers de la crise climatique actuelle pour la vie animale.

Auteur: Internet

Info: https://www.science-et-vie.com, 7 déc 2022  Fleur Brosseau

[ stases ] [ Gaïa ]

 

Commentaires: 0

Ajouté à la BD par miguel

élément irréductible de l'anneau des entiers relatifs

Comment les nombres premiers révèlent la structure cachée des mathématiques

1, 2, 3, 4, 5 — les mathématiques commencent par compter. Viennent ensuite l’addition, puis la multiplication. À première vue, elles semblent assez similaires. Après tout, la multiplication n’est qu’une simple addition répétée : 7 × 5 est une façon plus courte d’écrire 5 + 5 + 5 + 5 + 5 + 5 + 5.

Mais si vous regardez à l'intérieur des nombres pour voir de quoi ils sont faits, cette similitude initiale s'effondre. Essayez de partitionner n'importe quel nombre entier en parties plus petites en utilisant l'addition, et vous aurez un riche éventail d'options. Par exemple, 11 = 5 + 6 = 4 + 7 = 3 + 3 + 3 + 2. (Il existe 56 façons de diviser 11.) Au fur et à mesure que les nombres deviennent plus grands, le nombre de partitions augmente régulièrement . Mais si vous essayez plutôt de diviser les nombres en utilisant la multiplication, une image très différente émerge. Il existe de nombreuses façons de diviser 30 : il y a 3 × 10, 5 × 6 et 2 × 15. Mais 31 ne peut pas du tout être divisé. Il est premier. Ses seuls facteurs sont lui-même et 1.

Cette distinction entre addition et multiplication est l'un des passages les plus doux vers le désert des mathématiques abstraites. La définition des nombres premiers implique la multiplication. Mais les nombres premiers forment également des motifs additifs à la texture mystérieuse.

Beaucoup de ces modèles ont motivé les plus grands problèmes mathématiques en suspens. Par exemple, les mathématiciens soupçonnent qu'il existe une infinité de nombres premiers jumeaux — des nombres premiers (multiplicatifs) qui diffèrent de 2 (additifs), comme 29 et 31 ou 41 et 43. Mais personne n'a pu le démontrer avec certitude. De même, les mathématiciens pensent que tout nombre pair supérieur à 2 peut s'écrire comme la somme de deux nombres premiers, un problème appelé la conjecture de Goldbach. Cela aussi reste à prouver.

Mais de nombreux autres faits sont bien établis. Il existe une infinité de nombres premiers. Les mathématiciens continuent d' apporter de nouvelles preuves de ce fait, même si c'est l'un des résultats les plus anciens des mathématiques. On sait aussi que les nombres premiers se raréfient le long de la droite numérique. En 1896, Jacques Hadamard et Charles-Jean de la Vallée Poussin ont prouvé indépendamment le théorème des nombres premiers, qui établit une très bonne estimation de leur rareté. Ce théorème est l'un des résultats fondamentaux de la théorie analytique des nombres, une branche des mathématiques qui relie l'étude des nombres entiers à celle des fonctions à évolution régulière.

Quoi de neuf et d'intéressant

À première vue, les nombres entiers et les fonctions n’ont pas grand-chose à voir les uns avec les autres. Pourtant, le lien qui les unit est profond. L’un de ses aspects les plus fascinants est l’hypothèse de Riemann, sans doute la question ouverte la plus importante (et la plus difficile à résoudre) des mathématiques modernes.

En apparence, l'hypothèse n'a rien à voir avec les nombres premiers : elle concerne le comportement d'une somme infinie qui n'implique pas directement de nombres premiers. Mais si elle est vraie, les mathématiciens auront un moyen de rendre compte des écarts par rapport aux prédictions du théorème des nombres premiers. Les nombres premiers semblent être dispersés au hasard parmi les entiers, mais l'hypothèse de Riemann fournit une sorte de clé gnomique qui explique pourquoi ils apparaissent à ce moment-là.

En mai, James Maynard et Larry Guth ont prouvé une nouvelle limite sur les exceptions possibles à l'hypothèse. (Les physiciens ont aussi des idées sur la façon de s'y prendre.) L'année dernière, trois étudiants de Maynard ont prouvé un nouveau résultat sur la façon dont les nombres premiers sont distribués dans différents types de compartiments mathématiques. D'autres axes de travail examinent encore la façon dont les nombres premiers sont distribués dans des intervalles plus courts .

On sait depuis longtemps que les nombres premiers forment des amas, parfois ils laissent de grands espaces entre eux, parfois de petits. En 2013, Yitang Zhang, alors mathématicien inconnu, a prouvé qu'il existe un nombre infini de nombres premiers séparés par moins de 70 millions de nombres. Ce fut la première étape importante vers la démonstration qu'il existe un nombre infini de nombres premiers jumeaux : 70 millions, bien que ce soit un nombre important, est fini.

Quelques mois plus tard, une collaboration incluant Maynard a montré qu'il était possible de faire un peu mieux : ils ont réduit l'écart de 70 millions à 600 .

Tout aussi intéressante pour les mathématiciens est la question de savoir à quelle distance peuvent se trouver les nombres premiers. (Même si certains nombres premiers sont très proches les uns des autres, d'autres paires de nombres premiers adjacents sont très éloignées.) L'espacement moyen tend vers l'infini pour les grands nombres, mais les mathématiciens tentent de caractériser la vitesse à laquelle les écarts peuvent se creuser .

Les nombres premiers créent de nombreux modèles au-delà de la simple façon dont ils sont distribués. À l'exception de 2, tous les nombres premiers sont impairs. Cela signifie que certains, comme 5, laissent un reste de 1 lorsqu'ils sont divisés par 4, tandis que d'autres, comme 11, laissent un reste de 3. Il s'avère que ces deux types différents de nombres premiers ont des comportements fondamentalement différents, un fait appelé réciprocité quadratique , qui a été prouvé pour la première fois par Carl Gauss au 19e siècle. La réciprocité est un outil de base pour les mathématiciens d'aujourd'hui. Par exemple, elle a joué un rôle clé dans une preuve l'été dernier sur la façon dont les cercles peuvent être regroupés.

La notion de nombre premier, ou indivisible, ne se limite pas aux nombres. Des expressions appelées polynômes, comme x ⁵ + 3 x ² + 1, peuvent également être premières. En 2018, deux mathématiciens ont montré que presque tous les polynômes d'une classe particulière sont premiers.

Au premier abord, il n'est pas évident de comprendre à quel point les nombres premiers sont spéciaux. En comptant, on a l'impression que 7 et 11 sont indivisibles, alors que les autres nombres ne le sont pas. Mais le simple fait de compter crée des structures subtiles et complexes qui permettent à chacun d'entrevoir la grandeur inexorable de la vérité mathématique.

Auteur: Internet

Info: https://us1.campaign-archive.com/?u=0d6ddf7dc1a0b7297c8e06618&id=1afb830f9a, Konstantin Kakaes, 19 aout 2024

[ tour d'horizon ]

 
Commentaires: 1
Ajouté à la BD par Le sous-projectionniste

chronos

Comment les physiciens explorent et repensent le temps

Le temps est inextricablement lié à ce qui pourrait être l’objectif le plus fondamental de la physique : la prédiction. Qu'ils étudient des boulets de canon, des électrons ou l'univers entier, les physiciens visent à recueillir des informations sur le passé ou le présent et à les projeter vers l'avant pour avoir un aperçu de l'avenir. Le temps est, comme l’a dit Frank Wilczek, lauréat du prix Nobel, dans un récent épisode du podcast The Joy of Why de Quanta, " la variable maîtresse sous laquelle le monde se déroule ".  Outre la prédiction, les physiciens sont confrontés au défi de comprendre le temps comme un phénomène physique à part entière. Ils développent des explications de plus en plus précises sur la caractéristique la plus évidente du temps dans notre vie quotidienne : son écoulement inexorable. Et des expériences récentes montrent des façons plus exotiques dont le temps peut se comporter selon les lois de la mécanique quantique et de la relativité générale. Alors que les chercheurs approfondissent leur compréhension du temps dans ces deux théories chères, ils se heurtent à des énigmes qui semblent surgir de niveaux de réalité plus obscurs et plus fondamentaux. Einstein a dit en plaisantant que le temps est ce que mesurent les horloges. C'est une réponse rapide. Mais alors que les physiciens manipulent des horloges de plus en plus sophistiquées, on leur rappelle fréquemment que mesurer quelque chose est très différent de le comprendre. 

Quoi de neuf et remarquable

Une réalisation majeure a été de comprendre pourquoi le temps ne s'écoule qu'en avant, alors que la plupart des faits physiques les plus simples peuvent être faits et défaits avec la même facilité.  La réponse générale semble provenir des statistiques des systèmes complexes et de la tendance de ces systèmes à passer de configurations rares et ordonnées à des configurations désordonnées plus courantes, qui ont une entropie plus élevée. Les physiciens ont ainsi défini une " flèche du temps " classique dans les années 1800, et dans les temps modernes, les physiciens ont remanié cette flèche probabiliste en termes d’intrication quantique croissante. En 2021, ma collègue Natalie Wolchover a fait état d’une nouvelle description des horloges comme de machine qui ont besoin du désordre pour fonctionner sans problème, resserrant ainsi le lien entre emps et entropie. 

Simultanément, les expérimentateurs se sont fait un plaisir d'exposer les bizarres courbures et crépitements du temps que nous ne connaissons pas, mais qui sont autorisés par les lois contre-intuitives de la relativité générale et de la mécanique quantique. En ce qui concerne la relativité, Katie McCormick a décrit en 2021 une expérience mesurant la façon dont le champ gravitationnel de la Terre ralentit le tic-tac du temps sur des distances aussi courtes qu'un millimètre. En ce qui concerne la mécanique quantique, j'ai rapporté l'année dernière comment des physiciens ont réussi à faire en sorte que des particules de lumière fassent l'expérience d'un écoulement simultané du temps vers l'avant et vers l'arrière.

C'est lorsque les physiciens sont confrontés à la formidable tâche de fusionner la théorie quantique avec la relativité générale que tout ça devient confus ; chaque théorie a sa propre conception du temps, mais les deux notions n’ont presque rien en commun.

En mécanique quantique, le temps fonctionne plus ou moins comme on peut s'y attendre : vous commencez par un état initial et utilisez une équation pour le faire avancer de manière rigide jusqu'à un état ultérieur. Des manigances quantiques peuvent se produire en raison des façons particulières dont les états quantiques peuvent se combiner, mais le concept familier du changement se produisant avec le tic-tac d’une horloge maîtresse reste intact.

En relativité générale, cependant, une telle horloge maîtresse n’existe pas. Einstein a cousu le temps dans un tissu espace-temps qui se plie et ondule, ralentissant certaines horloges et en accélérant d’autres. Dans ce tableau géométrique, le temps devient une dimension au même titre que les trois dimensions de l'espace, bien qu'il s'agisse d'une dimension bizarroïde qui ne permet de voyager que dans une seule direction.

Et dans ce contexte, les physiciens dépouillent souvent le temps de sa nature à sens unique. Bon nombre des découvertes fondamentales de Hawking sur les trous noirs – cicatrices dans le tissu spatio-temporel créées par l’effondrement violent d’étoiles géantes – sont nées de la mesure du temps avec une horloge qui marquait des nombres imaginaires, un traitement mathématique qui simplifie certaines équations gravitationnelles et considère le temps comme apparié à l'espace. Ses conclusions sont désormais considérées comme incontournables, malgré la nature non physique de l’astuce mathématique qu’il a utilisée pour y parvenir.

Plus récemment, des physiciens ont utilisé cette même astuce du temps imaginaire pour affirmer que notre univers est l'univers le plus typique, comme je l'ai rapporté en 2022. Ils se demandent encore pourquoi l'astuce semble fonctionner et ce que signifie son utilité. "Il se peut qu'il y ait ici quelque chose de profond que nous n'avons pas tout à fait compris", a écrit le célèbre physicien Anthony Zee à propos du jeu imaginaire du temps dans son manuel de théorie quantique des champs.

Mais qu’en est-il du temps réel et à sens unique dans notre univers ? Comment les physiciens peuvent-ils concilier les deux images du temps alors qu’ils se dirigent sur la pointe des pieds vers une théorie de la gravité quantique qui unit la théorie quantique à la relativité générale ? C’est l’un des problèmes les plus difficiles de la physique moderne. Même si personne ne connaît la réponse, les propositions intrigantes abondent.

Une suggestion, comme je l’ai signalé en 2022, est d’assouplir le fonctionnement restrictif du temps en mécanique quantique en permettant à l’univers de générer apparemment une variété d’avenirs à mesure qu’il grandit – une solution désagréable pour de nombreux physiciens. Natalie Wolchover a écrit sur la suspicion croissante selon laquelle le passage du temps résulte de l'enchevêtrement de particules quantiques, tout comme la température émerge de la bousculade des molécules. En 2020, elle a également évoqué une idée encore plus originale : que la physique soit reformulée en termes de nombres imprécis et abandonne ses ambitions de faire des prévisions parfaites de l’avenir.

Tout ce que les horloges mesurent continue de s’avérer insaisissable et mystérieux. 

Auteur: Internet

Info: https://www.quantamagazine.org/ - Charlie Wood, 1 avril 2024

 

Commentaires: 0

Ajouté à la BD par miguel

déresponsabilisation industrielle

Un documentaire consacré aux désastres de Tchernobyl et de Fukushima a été présenté par Arte le 26 avril dernier, lançant une pernicieuse invitation à "vivre avec" la contamination radioactive, "défi" que prétendent, en ces jours sombres, relever les missionnaires de l’accommodation à la vie en zones contaminées par la radioactivité.



L’"Initiative de Dialogue pour la réhabilitation des conditions de vie après l’accident de Fukushima", présentée dans ce film, a été pilotée par de supposés, et néanmoins dangereux experts à l’œuvre à Tchernobyl hier, à Fukushima aujourd’hui, et en France demain.



[...] Un des principaux objectifs − atteint − de ces programmes, a été d’évincer du terrain de Tchernobyl les initiatives de protection sanitaire développées par des médecins et des physiciens après l’accident de la centrale, et de ne pas ralentir, en conséquence, la détérioration continue de la santé des populations, faute d’apporter une véritable prophylaxie.



Les faits de traîtrise de Gilles Hériard-Dubreuil à l’encontre des spécialistes de santé du Belarus ne semblent toutefois pas avoir dissuadé la députée européenne Europe Écologie-Les Verts Michèle Rivasi et l’avocate Corinne Lepage, "antinucléaires" déclarées, de collaborer avec ce dernier, de le nommer "secrétaire" et "expert qualifié" de leur association européenne Nuclear Transparency Watch, qu’elles ont créée et qu’elles président depuis 2013, appelant à rien moins qu’"une implication systématique des citoyens et de la société civile dans la préparation et la réponse aux situations d’urgence nucléaire en Europe", situations dont on aura suffisamment compris qu’elles ne tarderont plus à "survenir".



[...] 



Voici leurs cinq recettes, qui, pour être bien concoctées, n’en sont pas moins empoisonnées de cette mort qui enverra les gens moisir à plat.



1. Inciter chacun à rester vivre dans les zones contaminées, tout en "optimisant" son exposition à la radioactivité à proportion du coût économique et social de sa protection. Ainsi, maximisent-ils le nombre de personnes contraintes de suivre un protocole de contrôle et de mesure permettant de survivre dans la contamination à moindre coût. À défaut de les soigner.



2. Considérer la réalité radioactive comme un problème psychologique. Il s’agit de transformer une réalité scientifique et sociale – la contamination radioactive et ses dégâts –, en phénomène faisant l’objet d’un "ressenti" individuel, lui-même tributaire de l’état mental, ou psychologique, de chacun.



Le rapport à la radioactivité ne relèverait ainsi que d’une gestion personnalisée de l’angoisse. À dire d’experts, ce ne serait alors plus la situation de contamination qui serait irrationnelle, mais la perception qu’on en aurait.



3. Recourir à un jargon d’"authenticité", pontifiant et illusoirement concret dans lequel les appels à l’autonomie, à la dignité, à la communauté et à l’humain ne font qu’emprunter à la théologie de pâles reflets de transcendance, afin de mieux assujettir l’individu au fonctionnement, ici du tout radioactif, ailleurs du tout sécurisé.



Or, conforter les gens dans le délire selon lequel ils sont des sujets autonomes dans la "gestion de leur contamination", alors qu’ils savent bien qu’il leur est seulement impossible de ne pas se plier aux rapports techno-sociaux dont ils sont prisonniers, c’est vouer à l’échec toute possibilité d’échappée.



On conditionne les populations à la cogestion du désastre, en les encourageant à stimuler, et a minima à simuler, les réflexes et les comportements induits par les modifications du monde environnant. Cette recherche de l’adaptation parfaite passe par l’intériorisation de toutes les formes de pressions que la contamination radioactive fait naître.



4. Promouvoir la résilience, nouvel horizon de l’homme adaptable, censé ne compter que sur lui-même et ses insondables capacités de "rebond". Au nom d’un relativisme pragmatique, d’un primat de "la vie quotidienne", ces médiateurs du désastre insufflent la défiance, voire la décrédibilisation, des connaissances scientifiques les moins contestables, distillent le doute et propagent l’ignorance sur les effets sanitaires de l’exposition durable aux dites "faibles doses" de rayonnement ionisant, tout en déplorant "la montée de la défiance des populations vis-à-vis des différentes sortes d’autorités."



Résilience aidant, c’est à nous qu’ils assignent ensuite la tâche de recoller les morceaux de ce qu’ils contribuent à détruire. Ils préconisent de remplacer les normes de protection par de simples recommandations destinées à faciliter l’action des individus. "Les gens passent ainsi de la résignation à la créativité", s’enthousiasme Jacques Lochard.



Ainsi, chacun n’aurait plus qu’à mobiliser ses propres réserves de résistance à l’irrésistible et devenir "partie prenante" de sa propre irradiation. On reconnaît là le choix de l’État japonais : maintenir les populations sur place et diminuer d’autant, à court terme du moins, le coût d’un accident nucléaire.



5. Banaliser la radioactivité, cet obstacle que l’on apprend à contourner au quotidien dans la recherche de "solutions" immédiates, ponctuelles et individuelles. La radioactivité ne poserait alors problème que dans la seule mesure où les pratiques de vie des habitants les amèneraient à la "croiser" sur le chemin de l’école, du travail, ou de la promenade.



Au Japon, se mène désormais une chasse quotidienne aux hotspots de contamination radioactive, réduits à des incidents facilement résolus en grattant le sol et en stockant la terre dans des sacs poubelle, ou en installant des rideaux de plomb aux fenêtres des chambres d’enfants afin d’"éviter la contamination venant de la forêt."



[...] 



Ces aménageurs de la vie mutilée, relayés par Arte et tant d’autres représentants d’instances étatiques ou associatives, telles que Nuclear Transparency Watch de Mmes Rivasi et Lepage, et M. Hériard-Dubreuil, défendent haut et fort l’irrationalité selon laquelle il existerait un entre-deux de la contamination, où l’exposition au rayonnement ne serait dangereuse qu’en principe, mais s’avèrerait inoffensive dans la réalité. Véritable irrationalité, cette extrême violence du "vivre avec" est une insulte aux survivants.



Il s’agirait donc d’endiguer l’horreur de la contamination en la coulant dans les formes pseudo-rationnelles d’un "tous ensemble, nous vaincrons la radioactivité" ? C’est à quoi se vouent ces prêcheurs de soumission en expliquant, sans foi ni loi, qu’on peut échapper au danger en s’y confrontant, qu’on peut gratter la terre, mais en croisant les doigts.



[...] Proclamant qu’il faut "gérer" sa peur, ils prétendent réduire à néant toute possibilité de mise en cause de la déraison nucléaire, enjoignant à chacun d’en tirer au contraire parti, plutôt que de se hasarder à en rechercher les responsables.



Il fallait dire ce qu’est l’objectif de ces rédempteurs du "vivre avec", qui n’en paieront pas le prix, eux qui ont choisi d’emplir les hôpitaux de malades plutôt que de rendre inhabitées des terres inhabitables.

Auteur: Internet

Info: 3 août 2016, https://sciences-critiques.fr/tchernobyl-fukushima-les-amenageurs-de-la-vie-mutilee/

[ sacrifice différé ] [ minimisation des conséquences ] [ propagande cynique ]

 
Mis dans la chaine

Commentaires: 0

Ajouté à la BD par Coli Masson

palier évolutif

Découverte d’une nouvelle forme de vie née de la fusion d’une bactérie avec une algue

Ayant eu lieu il y a 100 millions d’années, il s’agit seulement du troisième cas connu de ce phénomène.

(Image - La forme de vie née de la fusion entre l'algue Braarudosphaera bigelowii et la cyanobactérie UCYN-A."

Des chercheurs ont découvert une forme de vie de nature extrêmement rare née de la fusion d’une algue avec une bactérie fixatrice d’azote il y a 100 millions d’années. Appelé endosymbiose primaire, le phénomène se produit lorsqu’un organisme en engloutit un autre pour faire de celui-ci un organite, à l’instar des mitochondries et des chloroplastes. Il s’agit du troisième cas recensé d’endosymbiose. Il pourrait ouvrir la voie à une production plus durable d’azote pour l’agriculture.

Au cours des 4 milliards d’années de vie sur Terre, seulement deux cas d’endosymbiose primaire étaient connus jusqu’ici. La première s’est produite il y a 2,2 milliards d’années, lorsqu’une archée a absorbé une bactérie pour l’intégrer dans son arsenal métabolique en la convertissant en mitochondrie. Cette étape constitue une phase majeure dans l’évolution de tous les organismes sur Terre, leur permettant notamment d’évoluer vers des formes plus complexes.

(Photo : Des mitochondries dans une cellule.)

La seconde endosymbiose primaire connue s’est produite il y a 1,6 milliard d’années, lorsque des organismes unicellulaires ont absorbé des cyanobactéries capables de convertir la lumière en énergie (photosynthèse). Ces bactéries sont devenues les chloroplastes que les plantes chlorophylliennes utilisent encore à ce jour pour convertir la lumière du Soleil en énergie.

D’un autre côté, on pensait que seules les bactéries pouvaient extraire l’azote atmosphérique et le convertir en une forme utilisable (en ammoniac) pour le métabolisme cellulaire. Les plantes pouvant fixer l’azote (comme les légumineuses) effectuent ce processus en hébergeant ces bactéries au niveau de leurs nodules racinaires.

La découverte de l’équipe du Berkeley Lab bouleverse cette notion avec le premier organite capable de fixer de l’azote et intégré dans une cellule eucaryote (une algue marine). " Il est très rare que des organites résultent de ce genre de choses ( endosymbiose primaire ) ", explique Tyler Coale de l’Université de Californie à Santa Cruz, dans un communiqué du Berkeley Lab. " La première fois que cela s’est produit à notre connaissance, cela a donné naissance à toute vie complexe. Tout ce qui est plus compliqué qu’une cellule bactérienne doit son existence à cet événement ", a-t-il déclaré, en faisant référence aux origines des mitochondries. Le nouvel organite, décrit dans deux études publiées dans les revues Cell Press et Science, est baptisé " nitroplaste ".

Un organite à part entière

La découverte de l’organite a nécessité plusieurs décennies de travail. En 1998, les chercheurs ont identifié une courte séquence d’ADN qui semblait provenir d’une cyanobactérie fixatrice d’azote (UCYN-A) abondante dans le Pacifique. D’un autre côté, une autre équipe de l’Université de Kochi (au Japon) a identifié une algue marine (Braarudosphaera bigelowii) qui semblait être l’hôte symbiotique de la bactérie. En effet, l’ADN de cette dernière a été découvert en importante quantité dans les cellules de l’algue.

Alors que les chercheurs considéraient l’UCYN-A comme un simple endosymbiote de l’algue, les deux nouvelles études suggèrent qu’elle a co-évolué avec son hôte de sorte à devenir un organite à part entière. En effet, après plus de 300 expéditions, l’équipe japonaise est parvenue à isoler et cultiver l’algue en laboratoire. Cela a permis de montrer que le rapport de taille entre les UCYN-A et leurs algues hôtes est similaire d’une espèce à l’autre.

D’autre part, les chercheurs ont utilisé un modèle informatique pour analyser la croissance de la cellule hôte et de la bactérie par le biais des échanges de nutriments. Ils ont constaté que leurs métabolismes sont parfaitement synchronisés, ce qui leur permettrait de coordonner leur croissance. " C’est exactement ce qui se passe avec les organites ", explique Jonathan Zehr, de l’Université de Californie à Santa Cruz et coauteur des deux études. " Si vous regardez les mitochondries et le chloroplaste, c’est la même chose : ils évoluent avec la cellule ", ajoute-t-il.

Les experts ont également montré que la bactérie UCYN-A repose sur sa cellule hôte pour sa réplication protéique et sa multiplication. Pour ce faire, ils ont utilisé une technique d’imagerie à rayons X et une tomographie permettant d’observer les processus cellulaires en temps réel. " Nous avons montré grâce à l’imagerie à rayons X que le processus de réplication et de division de l’hôte algal et de l’endosymbiote est synchronisé ", indique Carolyn Larabell, du Berkeley Lab.

(Illustrations montrant les algues à différents stades de division cellulaire. UCYN-A, l’entité fixatrice d’azote désormais considérée comme un organite, est visible en cyan ; le noyau des algues est représenté en bleu, les mitochondries en vert et les chloroplastes en violet.)

Une quantification des protéines des deux organismes a aussi été réalisée. Il a été constaté qu’environ la moitié des protéines de l’UCYN-A est synthétisée par sa cellule hôte, qui les marque avec une séquence protéinique spécifique. Ce marquage permet ensuite à la cellule de les envoyer au nitroplaste, qui les importe et les utilise pour son propre métabolisme. " C’est l’une des caractéristiques de quelque chose qui passe d’un endosymbionte à un organite ", explique Zehr. " Ils commencent à éjecter des morceaux d’ADN, et leurs génomes deviennent de plus en plus petits, et ils commencent à dépendre de la cellule mère pour que ces produits génétiques soient transportés dans la cellule ".

Un potentiel pour une production d’azote plus durable

Les chercheurs estiment que les nitroplastes ont évolué il y a environ 100 millions d’années. Comme l’UCYN-A est présente dans presque tous les océans du monde, elle est probablement impliquée dans le cycle de l’azote atmosphérique. Cette découverte pourrait avoir d’importantes implications pour l’agriculture, le procédé industriel utilisé actuellement pour convertir l’azote atmosphérique en ammoniac (procédé Haber-Bosch) étant très énergivore. Ce dernier permet notamment d’assurer 50 % de la production alimentaire mondiale et est responsable d’environ 1,4 % des émissions carbone.

Toutefois, de nombreuses questions restent sans réponse concernant le nitroplaste et son hôte algal. En prochaine étape, les chercheurs prévoient ainsi de déterminer s’il est présent dans d’autres cellules ainsi que les effets que cela pourrait avoir. Cela pourrait permettre d’intégrer directement la fixation de l’azote dans les plantes de sorte à améliorer les récoltes. 



 

Auteur: Internet

Info: https://trustmyscience.com/ - Valisoa Rasolofo & J. Paiano·19 avril 2024

[ symbiogénétique ]

 

Commentaires: 0

Ajouté à la BD par miguel

solipsismes

Personnages derrière la biologie 

En août dernier, j’ai discuté avec Jane Richardson, biologiste structurale à l’université Duke, sur Zoom. Elle m’a raconté comment, dans les années 1970, elle a commencé à dessiner des protéines sous forme de rubans et de feuilles tourbillonnant et s’enroulant les unes autour des autres – une représentation des molécules qui est rapidement devenue aussi omniprésente que belle.

Richardson s'est exprimée depuis son logis dans la Sierra Nevada, qu'elle et son mari ont remplie d'œuvres d'art. Elle m'a parlé des œuvres qui l'entourent. Certaines étaient des cadeaux, m'a-t-elle dit, de sa sœur, qui a voyagé dans le monde entier pour son travail. D'autres venaient de sa belle-mère, une artiste professionnelle (bien qu'ils aient perdu beaucoup de leurs œuvres préférées dans un incendie de forêt). Parmi elles se trouvaient ses propres photographies et des diagrammes en ruban colorés, dessinés à la main.

 Au cours de nos entretiens, j'ai vraiment appris à apprécier la personne derrière la science. Richardson est une biologiste structurale, oui, mais aussi une philosophe, une artiste et une photographe. Elle est l'un des personnages fascinants derrière mes histoires, des personnes qui intègrent leurs passions dans le travail de leur vie et font avancer la science de manière surprenante.

 De nombreux détails, comme la galerie murale de Richardson, ne figurent pas dans mes articles. Mais en coulisses, ils m'aident à développer mes personnages et à décrire leurs personnalités. Cette année, en rendant compte des avancées scientifiques majeures pour  Quanta , j'ai été ému à maintes reprises, non seulement par la passion de mes sources, mais aussi par le côté geek contagieux avec lequel elles abordent leur travail.

J'ai adoré les voir s'enthousiasmer et faire des gestes insensés en décrivant ce qu'elles avaient appris sur le monde, la vie et nous. Et j'ai adoré entrevoir leur personnalité, la façon dont elles voient le monde et à quoi ressemble leur propre monde. Nous avons parlé de tout et de rien.

 Mes moments forts du reportage

 Pendant la majeure partie de l’année, les protéines ont occupé mon esprit alors que je rédigeais un article sur le " problème du repliement des protéines ". Les protéines sont les molécules à l’origine de tous les processus biologiques, du transport de l’oxygène dans le sang à l’identification des envahisseurs dans le corps. La fonction d’une protéine est déterminée par sa forme, mais comment trouve-t-elle la bonne forme ? Cette question hante les biologistes depuis les années 1950 et a finalement donné lieu à un concours biannuel dans lequel biologistes et informaticiens rivalisent pour prédire la forme 3D d’une protéine à partir de sa séquence moléculaire. Puis, en 2020, Google a sorti un outil d’intelligence artificielle connu sous le nom d’AlphaFold2, résolvant ainsi une grande partie du problème et laissant le domaine de la science des protéines dans un mélange d’exaltation et de confusion. J’ai passé la majeure partie de l’année 2024 à discuter avec des scientifiques de l’impact d’AlphaFold2 sur eux et leur processus scientifique. J’ai appris que le chagrin ressenti par les biologistes structurels face à cet algorithme, qui pouvait résoudre en quelques instants des problèmes qui demandaient auparavant des années de travail, s’est transformé en appréciation pour un outil qui pouvait accélérer leur travail. Cette histoire a été un tourbillon à raconter et une joie à écrire. Vous pouvez donc imaginer mon enthousiasme lorsque, en octobre, je me suis réveillé avec la nouvelle que certains des personnages de mon histoire – John Jumper, David Baker et Demis Hassabis – avaient reçu le prix Nobel de chimie. En général, lorsque des prix sont annoncés, on entend les noms, puis on lit leurs découvertes et on passe à autre chose. Mais cette fois, c’était personnel. Ce n’étaient pas que des noms, c’étaient des personnes.

Puis, après six mois de protéines dans le cerveau, j’ai eu l’occasion de ne penser à rien. " Le zéro est, pour de nombreux mathématiciens, certainement considéré comme l’une des plus grandes – ou peut-être la plus grande – réalisation de l’humanité ", m’a dit Andreas Nieder, neuroscientifique à l’université de Tübingen en Allemagne. Le zéro a conduit aux lois de l’univers, à la théorie des nombres et aux mathématiques modernes. Mais ce n’est qu’au VIIe siècle en Inde, relativement tard dans l’histoire des nombres, que le zéro a acquis une valeur et est devenu un nombre. Aujourd’hui, plus de mille ans plus tard, des neuroscientifiques comme Nieder et Benjy Barnett de l’University College de Londres sondent le cerveau pour comprendre comment il saisit un concept aussi étrange : un objet numérique qui représente l’absence. Nieder est toujours ravi de parler des nombres. Je lui ai parlé pour la première fois en 2023 de la façon dont le cerveau traite les petits et les grands nombres. Même à l’époque, le zéro était dans son esprit : " Le nombre zéro est le plus fascinant de tous. C’est l’oncle excentrique de la famille des nombres." Cette citation est restée gravée dans ma tête depuis lors. C’était satisfaisant de pouvoir enfin la publier.

Et puis ça : saviez-vous que certaines personnes n’ont pas d’œil mental ? Lorsqu’on leur demande d’imaginer une pomme, les personnes atteintes d’aphantasie déclarent ne rien voir du tout. Lorsque j’ai fait un reportage sur ce phénomène, j’ai raconté ce que j’apprenais à ma famille et à mes amis – et ce faisant, j’ai appris des choses sur leurs diverses expériences du monde. En buvant un verre et en buvant du chocolat, j’ai vu ma mère se rendre compte qu’elle souffrait d’aphantasie. Deux de mes rédacteurs en chef souffrent également d’une forme ou d’une autre de cette maladie. Ces discussions informelles m’ont fait penser que l’aphantasie semble être assez courante, ou du moins plus courante qu’on ne le pense. Mais étudier l’imagerie mentale est difficile car nous devons nous fier à des auto-évaluations. Lorsque je " vois" une pomme dans mon œil mental, est-ce que je la vois de la même manière que n’importe qui d’autre ? " Nous pensons savoir ce que nous voulons dire lorsque nous parlons de ce qu’est l’imagerie mentale ", m’a expliqué Nadine Dijkstra, qui étudie la perception à l’University College de Londres. " Mais quand on creuse vraiment, tout le monde ressent quelque chose de complètement différent. " En racontant cette histoire, j’ai réalisé à quel point le monde est une construction de notre esprit : mon monde, ton monde, celui de ton ennemi et celui de ton meilleur ami – ils sont tous très différents.



 

Auteur: Internet

Info: https://www.quantamagazine.org/, Yasemin Saplakoglu, décembre 2024

[ non-valeur ] [ sans imagination ] [ esprit aveugle ]

 

Commentaires: 0

Ajouté à la BD par miguel

dictature modèle

Mort de Navalny: entre hommage et répression sévère en Russie

(photo) Des Russes rendent hommage à Navalny, Moscou.keystone

Alexeï Navalny était sans doute le plus connu des opposants de Poutine. Les Russes se remettent de la mort de celui que certains considèrent comme un héros. Mais lui rendre hommage n'est pas évident dans ce pays à la répression sévère: même déposer des fleurs peut valoir la prison.

" Je veux au moins lui rendre un dernier hommage», dit une femme âgée enroulée dans une écharpe chamarrée près de la pierre de Solovki, samedi à Moscou. Un flot sans fin de personnes traverse le passage souterrain de la Loubianka. La police tente de diriger le flux – et de capturer chaque visage dans leurs vidéos. Femmes et hommes, jeunes et vieux, et même des familles entières viennent déposer leurs fleurs sur la montagne de bouquets près du bloc de pierre du monument.

Certains veulent s'arrêter un instant, peut-être pour rendre un hommage silencieux. " Jeune femme, continuez à avancer, ne vous arrêtez pas ", hurle un policier dans le mégaphone. " Dégagez le chemin ", crie un autre en indiquant à un couple âgé de quitter le périmètre.

Dans la nuit, les fleurs et les bougies sont enlevées, toujours sous la surveillance de la police. Des milliers de personnes – en larmes pour les unes, en silence pour les autres – ont déposé ces offrandes pour rendre hommage à Alexeï Navalny, mort en détention derrière le cercle polaire: leur idole. Cet homme de 47 ans s'est battu pour rendre possible la contestation dans un pays où exprimer une position contradictoire était devenu impossible – et il a payé cet affront de sa vie.

Mais les fleurs, elles, sont à nouveau là le lendemain. Des œillets et des roses fraîches, rouges, blanches, jaunes, accompagnées d'un ruban noir ou de petits messages. Des montagnes de fleurs sont érigées à Moscou et à Saint-Pétersbourg, à Novossibirsk et à Samara, à Tcheliabinsk et à Tomsk et à Oulan-Oudé.

(photo) Un homme qui a déposé des fleurs en l'honneur de Navalny est arrêté, comme 400 autres en l'espace de deux jours.

La police saisit parfois brutalement les supporters de Navalny avant de les jeter dans les fourgons stationnés au bord de la route. Selon l'organisation russe de défense des droits de l'homme OWD-Info, plus de 400 personnes auraient été arrêtées à travers la Russie alors qu'elles déposaient des fleurs durant le week-end. Certaines d'entre elles ont déjà reçu leur sentence: quinze jours de détention.

(photo) Des fleurs sur le monument du Goulag

Près de la pierre Solovki à Moscou, quelqu'un a écrit " n'ayez pas peur " au marqueur bleu sur une feuille de papier quadrillé posée à côté de la mer de fleurs. En face trône le bloc ocre-brun de la Loubianka, l'imposant siège des services secrets russes (FSB).

Autrefois, lorsque le service s'appelait encore Tchéka puis KGB, c'est ici que les bourreaux prononçaient les sentences qui expédieraient des millions de personnes au Goulag. Le monument Solovki et son lourd bloc de pierre rappellent ainsi les crimes du stalinisme.

Septante ans après la mort de Staline, rien n'a changé en Russie. La colonie pénitentiaire de Charp, dans laquelle Navalny est mort – du " syndrome de la mort subite ", comme l'ont annoncé avec le plus grand sérieux les agents pénitentiaires à sa mère et à son avocat – date de l'époque du Goulag. 

Un soulèvement populaire reste trop dangereux

C'est Navalny qui a montré au peuple russe ce qu'est la politique. Il leur a fait sentir ce qui fait d'un homme un citoyen. Mais il a perdu ce combat contre un Etat qui joue au chat et à la souris – et qui continue ce jeu avec son cadavre.

Celui-ci serait, selon le journal russophone Novaïa Gazeta Europe, à l'hôpital régional de Salekhard. Un témoin affirme que le corps présentait des bleus qui pourraient être dus à des convulsions. Navalny serait apparemment mort d'un arrêt cardiaque, mais on ne sait pas pourquoi son cœur a cessé de battre.

En ligne aussi, les Russes expriment leurs pensées pour celui qui était la figure de proue de l'opposition russe. Sur son canal Telegram, un Moscovite estime:

" Un soulèvement populaire secouerait le Kremlin. Il faudrait au moins 100 000 personnes "

Mais est-ce que lui-même y participerait? " Non, c'est trop dangereux ". Ceux qui auraient eu le courage de résister se sont exilés par centaines de milliers. Des lois de plus en plus répressives ôtent à ceux qui sont restés dans le pays toute possibilité d'influer sur la politique. Il n'y a pas d'exutoire, pas de parti qui puisse être une alternative. Il n'y a pas d'opposition.

Les pseudo-opposants parlementaires acquiescent à tout, se courbent, et font au final partie de ce régime qui utilise tout son pouvoir pour faire taire les critiques. La persécution politique de Navalny a montré jusqu'où l'Etat russe était prêt à aller. Sa mort, qui n'est pas simplement un décès, mais bel et bien un assassinat politique, le montre également.

" On ne nous laisse même pas faire notre deuil en paix. Regarde, à Amsterdam, les gens peuvent se réunir et pleurer ensemble. Mais ici? Ce type nous chasse avec sa matraque. Et nous partons, bien sûr. "

Un homme âgé à sa voisine près de la pierre de Solovki à Moscou.

Deux amies plus jeunes, qui se sont arrêtées après avoir déposé des fleurs au musée d'à côté et regardent désormais le bloc de pierre au loin, concluent: " Résister ? Sans Navalny ? Qui va le faire ? Nous n'avons pas tous son courage. "

Est-ce que Ioulia Navalnaïa, son épouse, ou Daria Navalnaïa, sa fille, ont ce courage? Elles ont porté les idées d'Alexeï Navalny dans le monde, surtout après son empoisonnement et pendant sa détention, elles ont fait tout ce qu'elles pouvaient pour obtenir sa libération.

Ioulia Navalnaïa a évoqué la mort de son mari vendredi dernier lors de la conférence sur la sécurité à Munich.

L'apparition de Ioulia Navalnaïa à la conférence sur la sécurité de Munich, peu après l'annonce par les autorités russes de la mort de son mari, était à la fois oppressante et impressionnante. L'ancienne banquière se battra pour que sa mort soit élucidée, comme elle l'a toujours fait. D'autres devront assumer l'héritage politique de Navalny – s'ils parviennent à sortir de leur torpeur. 

Auteur: Internet

Info: https://www.watson.ch/ - Inna hartwich, moscou / ch media, 19.02.2024, Traduit et adapté de l'allemand par Léa Krejci

[ autocratie ] [ pouvoir intransigeant ] [ contradicteur exemplaire ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste