Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 765
Temps de recherche: 0.0483s

paliers évolutionnaires

Des chercheurs découvrent une extinction de masse jusqu’alors inconnue de l’histoire de la Terre

Une extinction de masse désigne un événement ayant entraîné la disparition d’au moins 75 % des espèces présentes sur Terre. Les paléobiologistes affirment que notre planète a déjà connu cinq principaux épisodes de ce type ; certains estiment que nous sommes en train de vivre la sixième extinction. Mais la liste ne s’arrête pas là : des chercheurs de Virginia Tech ont découvert que la Terre aurait subi une extinction de masse il y a environ 550 millions d’années. Ce serait ainsi la toute première extinction que notre planète ait connu.

À ce jour, l’extinction de l’Ordovicien-Silurien, survenue il y a environ 440 millions d’années, est considérée comme la première extinction massive de notre planète. Celle-ci s’est vraisemblablement produite à la suite d’une grande glaciation, à laquelle auraient succombé près de 85% des espèces, faute de réussir à s’adapter à ces nouvelles conditions. Mais des preuves suggèrent aujourd’hui qu’un autre événement d’extinction l’aurait précédée : une diminution de la disponibilité mondiale d’oxygène aurait entraîné la perte d’une majorité d’animaux présents vers la fin de l’Édiacarien, il y a environ 550 millions d’années.

La première extinction de l’histoire de la Terre

Le déclin soudain de la diversité fossile il y a 550 millions d’années est connu depuis longtemps, mais les scientifiques n’avaient pas pu en déterminer la cause avec certitude. Il était possible que les espèces en présence soient entrées en compétition pour la survie, s’éliminant les unes les autres, ou simplement que les conditions environnementales de l’époque n’étaient pas propices à la préservation des fossiles édiacariens. Une nouvelle étude publiée dans Proceedings of the National Academy of Sciences permet aujourd’hui d’affirmer que ce déclin résulte bel et bien d’une extinction de masse.

Notre planète compte cinq extinctions de masse connues, les "Big Five", selon Shuhai Xiao, professeur de géobiologie à Virginia Tech : l’extinction de l’Ordovicien-Silurien (il y a 440 millions d’années), l’extinction du Dévonien tardif (il y a 370 millions d’années), l’extinction du Permien-Trias (il y a 250 millions d’années), l’extinction du Trias-Jurassique (il y a 200 millions d’années) et enfin, l’extinction du Crétacé-Paléogène (il y a 65 millions d’années), qui a anéanti environ 75 % des plantes et des animaux, y compris les dinosaures non aviens.

Toutes sont liées à des changements environnementaux majeurs et à grande échelle. Un changement climatique ou un événement de désoxygénation peuvent entraîner une extinction massive d’animaux, ainsi qu’une perturbation et une réorganisation profondes des écosystèmes. Ce premier événement d’extinction survenu lors de l’Édiacarien n’échappe pas à la règle : lui aussi a été induit par une modification significative de l’environnement.

Près de 80 % des animaux vivant sur Terre auraient disparu lors de cette première extinction massive. "Cela comprenait la perte de nombreux types d’animaux différents, mais ceux dont les plans corporels et les comportements indiquent qu’ils dépendaient d’importantes quantités d’oxygène semblent avoir été particulièrement touchés", explique Scott Evans, chercheur postdoctoral au Département des géosciences de Virginia Tech et premier auteur de l’étude décrivant l’événement.

Un "coup de pouce" à l’évolution ?

Les fossiles à corps mou du biote d’Ediacara – du nom des collines situées au sud de l’Australie où ont été découverts ces fossiles en 1946 – font partie des plus anciens organismes pluricellulaires complexes connus. Les empreintes fossiles datant de la période édiacarienne – soit d’environ -635 à -539 millions d’années – montrent que les animaux qui ont péri lors de cette extinction de masse avaient une apparence très étrange, en forme de feuille, de plume ou de tube.

Selon Evans, les organismes de l’époque semblaient expérimenter différentes façons de construire leurs grands corps multicellulaires. Par conséquent, les fossiles mis au jour datant d’avant l’extinction, ne correspondent pas toujours aux classifications actuelles des animaux. "Cette extinction a peut-être contribué à ouvrir la voie à l’évolution des animaux tels que nous les connaissons", conclut le chercheur. À savoir que la plupart des plans d’organisation animaux existant aujourd’hui sont apparus au cours du Cambrien (soit la période qui succède à l’Édiacarien).

Evans et ses collègues ont scrupuleusement examiné et catalogué l’ensemble des fossiles de la période édiacarienne décrits dans la littérature. Ils ont ainsi identifié 70 genres d’animaux, dont seuls 14 existaient encore quelque 10 millions d’années plus tard. L’équipe n’a toutefois trouvé aucun signe suggérant que ces animaux étaient en concurrence avec les premiers animaux du Cambrien, ni rien qui pouvait expliquer la non-préservation des fossiles.

En revanche, les animaux qui ont survécu arboraient tous un plan d’organisation favorisant la survie en cas d’anoxie : une surface corporelle relativement élevée par rapport à leur volume. Des preuves géochimiques confirment par ailleurs une faible disponibilité d’oxygène dans les océans il y a 550 millions d’années.

Une anoxie dont la cause reste à éclaircir

Qu’est-ce qui a causé cette baisse de la disponibilité globale de l’oxygène ? "La réponse courte à la façon dont cela s’est produit est que nous ne savons pas vraiment", a déclaré Evans. En réalité, plusieurs événements, individuels ou combinés, pourraient être à l’origine du phénomène explique le scientifique : éruptions volcaniques, mouvements de plaques tectoniques, impact d’astéroïde, etc. Des changements dans les niveaux de nutriments des océans pourraient être une autre cause possible. 

 Dans tous les cas, cette extinction a largement influencé l’évolution de la vie sur Terre et cette étude nous donne un aperçu de l’impact à long terme du manque d’oxygène sur la vie aquatique. Il se trouve que dans une autre étude, les scientifiques de Virginia Tech ont récemment découvert que les lacs d’eaux douces du monde perdaient actuellement rapidement de l’oxygène.

Ce phénomène est lié non seulement au réchauffement des eaux induit par le changement climatique, mais aussi à l’excès de ruissellement de substances polluantes (phosphore, azote) lié aux pratiques agricoles : "le réchauffement des eaux diminue la capacité de l’eau douce à retenir l’oxygène, tandis que la dégradation des nutriments dans le ruissellement par les microbes d’eau douce engloutit l’oxygène", expliquent les chercheurs.

En d’autres termes, la découverte de cette nouvelle extinction donne un aperçu des dangers de la crise climatique actuelle pour la vie animale.

Auteur: Internet

Info: https://www.science-et-vie.com, 7 déc 2022  Fleur Brosseau

[ stases ] [ Gaïa ]

 

Commentaires: 0

Ajouté à la BD par miguel

onomasiologie algébrique

Critique réciproque de l’intelligence artificielle et des sciences humaines

Je me souviens d’avoir participé, vers la fin des années 1980, à un Colloque de Cerisy sur les sciences cognitives auquel participaient quelques grands noms américains de la discipline, y compris les tenants des courants neuro-connexionnistes et logicistes. Parmi les invités, le philosophe Hubert Dreyfus (notamment l’auteur de What Computers Can’t Do, MIT Press, 1972) critiquait vertement les chercheurs en intelligence artificielle parce qu’ils ne tenaient pas compte de l’intentionnalité découverte par la phénoménologie. Les raisonnements humains réels, rappelait-il, sont situés, orientés vers une fin et tirent leur pertinence d’un contexte d’interaction. Les sciences de la cognition dominées par le courant logico-statistique étaient incapables de rendre compte des horizons de conscience qui éclairent l’intelligence. Dreyfus avait sans doute raison, mais sa critique ne portait pas assez loin, car ce n’était pas seulement la phénoménologie qui était ignorée. L’intelligence artificielle (IA) n’intégrait pas non plus dans la cognition qu’elle prétendait modéliser la complexité des systèmes symboliques et de la communication humaine, ni les médias qui la soutiennent, ni les tensions pragmatiques ou les relations sociales qui l’animent. A cet égard, nous vivons aujourd’hui dans une situation paradoxale puisque l’IA connaît un succès pratique impressionnant au moment même où son échec théorique devient patent.

Succès pratique, en effet, puisqu’éclate partout l’utilité des algorithmes statistiques, de l’apprentissage automatique, des simulations d’intelligence collective animale, des réseaux neuronaux et d’autres systèmes de reconnaissance de formes. Le traitement automatique du langage naturel n’a jamais été aussi populaire, comme en témoigne par exemple l’usage de Google translate. Le Web des données promu par le WWW consortium (dirigé par Sir Tim Berners-Lee). utilise le même type de règles logiques que les systèmes experts des années 1980. Enfin, les algorithmes de computation sociale mis en oeuvre par les moteurs de recherche et les médias sociaux montrent chaque jour leur efficacité.

Mais il faut bien constater l’échec théorique de l’IA puisque, malgré la multitude des outils algorithmiques disponibles, l’intelligence artificielle ne peut toujours pas exhiber de modèle convaincant de la cognition. La discipline a prudemment renoncé à simuler l’intelligence dans son intégralité. Il est clair pour tout chercheur en sciences humaines ayant quelque peu pratiqué la transdisciplinarité que, du fait de sa complexité foisonnante, l’objet des sciences humaines (l’esprit, la pensée, l’intelligence, la culture, la société) ne peut être pris en compte dans son intégralité par aucune des théories computationnelles de la cognition actuellement disponible. C’est pourquoi l’intelligence artificielle se contente dans les faits de fournir une boîte à outils hétéroclite (règles logiques, syntaxes formelles, méthodes statistiques, simulations neuronales ou socio-biologiques…) qui n’offrent pas de solution générale au problème d’une modélisation mathématique de la cognition humaine.

Cependant, les chercheurs en intelligence artificielle ont beau jeu de répondre à leurs critiques issus des sciences humaines : "Vous prétendez que nos algorithmes échouent à rendre compte de la complexité de la cognition humaine, mais vous ne nous en proposez vous-mêmes aucun pour remédier au problème. Vous vous contentez de pointer du doigt vers une multitude de disciplines, plus complexes les unes que les autres (philosophie, psychologie, linguistique, sociologie, histoire, géographie, littérature, communication…), qui n’ont pas de métalangage commun et n’ont pas formalisé leurs objets ! Comment voulez-vous que nous nous retrouvions dans ce bric-à-brac ?" Et cette interpellation est tout aussi sensée que la critique à laquelle elle répond.

Synthèse de l’intelligence artificielle et des sciences humaines

Ce que j’ai appris de Hubert Dreyfus lors de ce colloque de 1987 où je l’ai rencontré, ce n’était pas tant que la phénoménologie serait la clé de tous les problèmes d’une modélisation scientifique de l’esprit (Husserl, le père de la phénoménologie, pensait d’ailleurs que la phénoménologie – une sorte de méta-science de la conscience – était impossible à mathématiser et qu’elle représentait même le non-mathématisable par exellence, l’autre de la science mathématique de la nature), mais plutôt que l’intelligence artificielle avait tort de chercher cette clé dans la seule zone éclairée par le réverbère de l’arithmétique, de la logique et des neurones formels… et que les philosophes, herméneutes et spécialistes de la complexité du sens devaient participer activement à la recherche plutôt que de se contenter de critiquer. Pour trouver la clé, il fallait élargir le regard, fouiller et creuser dans l’ensemble du champ des sciences humaines, aussi opaque au calcul qu’il semble à première vue. Nous devions disposer d’un outil à traiter le sens, la signification, la sémantique en général, sur un mode computationnel. Une fois éclairé par le calcul le champ immense des relations sémantiques, une science de la cognition digne de ce nom pourrait voir le jour. En effet, pour peu qu’un outil symbolique nous assure du calcul des relations entre signifiés, alors il devient possible de calculer les relations sémantiques entre les concepts, entre les idées et entre les intelligences. Mû par ces considérations, j’ai développé la théorie sémantique de la cognition et le métalangage IEML : de leur union résulte la sémantique computationnelle.

Les spécialistes du sens, de la culture et de la pensée se sentent démunis face à la boîte à outils hétérogène de l’intelligence artificielle : ils n’y reconnaissent nulle part de quoi traiter la complexité contextuelle de la signification. C’est pourquoi la sémantique computationnelle leur propose de manipuler les outils algorithmiques de manière cohérente à partir de la sémantique des langues naturelles. Les ingénieurs s’égarent face à la multitude bigarrée, au flou artistique et à l’absence d’interopérabilité conceptuelle des sciences humaines. Remédiant à ce problème, la sémantique computationnelle leur donne prise sur les outils et les concepts foisonnants des insaisissables sciences humaines. En somme, le grand projet de la sémantique computationnelle consiste à construire un pont entre l’ingénierie logicielle et les sciences humaines de telle sorte que ces dernières puissent utiliser à leur service la puissance computationnelle de l’informatique et que celle-ci parvienne à intégrer la finesse herméneutique et la complexité contextuelle des sciences humaines. Mais une intelligence artificielle grande ouverte aux sciences humaines et capable de calculer la complexité du sens ne serait justement plus l’intelligence artificielle que nous connaissons aujourd’hui. Quant à des sciences humaines qui se doteraient d’un métalangage calculable, qui mobiliseraient l’intelligence collective et qui maîtriseraient enfin le médium algorithmique, elles ne ressembleraient plus aux sciences humaines que nous connaissons depuis le XVIIIe siècle : nous aurions franchi le seuil d’une nouvelle épistémè.

Auteur: Lévy Pierre

Info: https://pierrelevyblog.com/2014/10/08/intelligence-artificielle-et-sciences-humaines/

[ mathématification idiomatique ]

 

Commentaires: 0

Ajouté à la BD par miguel

interdépendances

La première idée de Gaïa naît donc du raisonnement suivant  : "Si les humains actuels, par leur industrie, peuvent répandre partout sur Terre des produits chimiques que je détecte par mes instruments, il est bien possible que toute la biochimie terrestre soit, elle aussi, le produit des organismes vivants. Si les humains modifient si radicalement leur environnement en si peu de temps, alors les autres vivants peuvent l’avoir fait, eux aussi, sur des centaines de millions d’années." La Terre est bel et bien une sorte de technosphère artificiellement conçue dont les vivants seraient les ingénieurs aussi aveugles que les termites. Il faut être ingénieur et inventeur comme Lovelock pour comprendre cette intrication.

Gaïa n’a donc rien d’une idée New Age sur l’équilibre millénaire de la Terre, mais émerge au contraire d’une situation industrielle et technologique très particulière : une violente rupture technologique, mêlant la conquête de l’espace, la guerre nucléaire et la guerre froide, que l’on résume désormais par le terme d’ "anthropocène" et qui s’accompagne d’une rupture culturelle symbolisée par la Californie des années 1960. Drogue, sexe, cybernétique, conquête spatiale, guerre du Vietnam, ordinateurs et menace nucléaire, c’est la matrice où naît l’hypothèse Gaïa : dans la violence, l’artifice et la guerre. Toutefois le trait le plus étonnant de cette hypothèse est qu’elle tient au couplage de deux analyses diamétralement opposées. L’analyse de Lovelock imagine la Terre vue de Mars comme un système cybernétique. Et celle de Lynn Margulis regarde la planète par l’autre bout de la lorgnette, à partir des plus minuscules et des plus anciens des organismes vivants.

A l’époque, dans les années 1970, Margulis est l’exemple typique de ce que les Anglais appellent une maverick : une dissidente qui secoue les néodarwiniens alors en plein essor. L’évolution, dans leur esprit, suppose l’existence d’organismes suffisamment séparables les uns des autres pour qu’on leur attribue un degré de réussite inférieur ou supérieur aux autres. Or Margulis conteste l’existence même d’individus séparables : une cellule, une bactérie ou un humain. Pour la simple et excellente raison qu’ils sont "tous entrelacés", comme l’indique le titre d’un livre récent.

Une cellule est une superposition d’êtres indépendants, de même que notre organisme dépend non seulement de nos gènes, mais de ceux des bestioles infiniment plus nombreuses qui occupent notre intestin et couvrent notre peau. Il y a bien évolution, mais sur quel périmètre porte celle-ci et quels sont les participants entrelacés qui en tirent profit, voilà qui n'est pas calculable. Les gènes ont beau être "égoïstes", comme l’avançait naguère Richard Dawkins, le problème est qu’ils ne savent pas où s’arrête exactement leur ego ! Chose intéressante, plus le temps passe, plus les découvertes de Margulis prennent de l’importance, au point qu’elle s’approche aujourd’hui de l’orthodoxie grâce à l’extension foudroyante du concept de holobionte, terme qui résume à lui seul la superposition des vivants pliés les uns dans les autres.

Que se passe-t-il quand on combine l’intuition de Lovelock avec celle de Margulis ? Au cours du séminaire auquel je participe le lendemain avant que la neige ne vienne ensevelir le sud de l’Angleterre, la réponse m’apparaît assez clairement : la théorie Gaïa permet de saisir les "puissances d’agir" de tous les organismes entremêlés sans aussitôt les intégrer dans un tout qui leur serait supérieur et auquel ils obéiraient. En ce sens, et malgré le mot "système", Gaïa n’agit pas de façon systématique, en tout cas ce n'est pas un système unifié. Comme Lenton le démontre, selon les échelles d’espace et de temps, la régulation est très forte ou très lâche : l’homéostasie d’un organisme et la régulation plutôt erratique du climat ne sont pas du même type. C’est que la Terre n'est pas un organisme. Contrairement à tous les vivants, elle se nourrit d’elle-même en quelque sorte, par un recyclage continu avec très peu d’apport extérieur de matière (en dehors bien sûr de l’énergie solaire). On ne peut même pas dire que Gaïa soit synonyme du globe ou du monde naturel puisque, après tout, les vivants, même après plusieurs milliards d’années d’évolution, ne contrôlent qu’une mince pellicule de la Terre, une sorte de biofilm, ce que les chercheurs avec qui je travaille maintenant appellent "zones critiques".

Je comprends alors les erreurs commises dans l’interprétation de la théorie Gaïa par ceux qui l’ont rejetée trop vite comme par ceux qui l’ont embrassée avec trop d’enthousiasme : les premiers autant que les seconds ont projeté une figure de la Terre, du globe, de la nature, de l’ordre naturel, sans prendre en compte le fait qu’il s’agissait d’un objet unique demandant une révision générale des conceptions scientifiques.

Ah mais alors j’avais bien raison d’établir un parallèle avec Galilée ! Bloqué sous ma couette en attendant qu’il pleuve assez pour que les Anglais osent se risquer hors de chez eux, je comprenais cette phrase étonnante de Lovelock : "L’hypothèse Gaïa a pour conséquence que la stabilité de notre planète inclut l’humanité comme une partie ou un partenaire au sein d’un ensemble parfaitement démocratique." Je n’avais jamais compris cette allusion à la démocratie chez un auteur qui ne la défendait pas particulièrement. C’est qu’il ne s’agit pas de la démocratie des humains mais d’un renversement de perspective capital pour la suite.

Avant Gaïa, les habitants des sociétés industrielles modernes, quand ils se tournaient vers la nature, y voyaient le domaine de la nécessité, et, quand ils considéraient la société, ils y voyaient, pour parler comme les philosophes, le domaine de la liberté. Mais, après Gaïa, il n’y a plus littéralement deux domaines distincts : aucun vivant, aucun animé n’obéit à un ordre supérieur à lui et qui le dominerait ou auquel il lui suffirait de s’adapter – cela est vrai des bactéries comme des lions ou des sociétés humaines. Cela ne veut pas dire que tous les vivants soient libres au sens un peu simplet de l’individualisme puisqu’ils sont entrelacés, pliés, intriqués les uns dans les autres. Cela veut dire que la question de la liberté et de la dépendance vaut autant pour les humains que pour les partenaires du ci-devant monde naturel.

Galilée avait inventé un monde d’objets, posés les uns à côté des autres sans s’influencer et entièrement soumis aux lois de la physique. Lovelock et Margulis dessinent un monde d’agents qui interagissent sans cesse entre eux.

Auteur: Latour Bruno

Info: L’OBS/N°2791-03/05/2018

[ interactions ] [ redistribution des rôles ]

 
Commentaires: 2
Ajouté à la BD par miguel

chronos

Comment les physiciens explorent et repensent le temps

Le temps est inextricablement lié à ce qui pourrait être l’objectif le plus fondamental de la physique : la prédiction. Qu'ils étudient des boulets de canon, des électrons ou l'univers entier, les physiciens visent à recueillir des informations sur le passé ou le présent et à les projeter vers l'avant pour avoir un aperçu de l'avenir. Le temps est, comme l’a dit Frank Wilczek, lauréat du prix Nobel, dans un récent épisode du podcast The Joy of Why de Quanta, " la variable maîtresse sous laquelle le monde se déroule ".  Outre la prédiction, les physiciens sont confrontés au défi de comprendre le temps comme un phénomène physique à part entière. Ils développent des explications de plus en plus précises sur la caractéristique la plus évidente du temps dans notre vie quotidienne : son écoulement inexorable. Et des expériences récentes montrent des façons plus exotiques dont le temps peut se comporter selon les lois de la mécanique quantique et de la relativité générale. Alors que les chercheurs approfondissent leur compréhension du temps dans ces deux théories chères, ils se heurtent à des énigmes qui semblent surgir de niveaux de réalité plus obscurs et plus fondamentaux. Einstein a dit en plaisantant que le temps est ce que mesurent les horloges. C'est une réponse rapide. Mais alors que les physiciens manipulent des horloges de plus en plus sophistiquées, on leur rappelle fréquemment que mesurer quelque chose est très différent de le comprendre. 

Quoi de neuf et remarquable

Une réalisation majeure a été de comprendre pourquoi le temps ne s'écoule qu'en avant, alors que la plupart des faits physiques les plus simples peuvent être faits et défaits avec la même facilité.  La réponse générale semble provenir des statistiques des systèmes complexes et de la tendance de ces systèmes à passer de configurations rares et ordonnées à des configurations désordonnées plus courantes, qui ont une entropie plus élevée. Les physiciens ont ainsi défini une " flèche du temps " classique dans les années 1800, et dans les temps modernes, les physiciens ont remanié cette flèche probabiliste en termes d’intrication quantique croissante. En 2021, ma collègue Natalie Wolchover a fait état d’une nouvelle description des horloges comme de machine qui ont besoin du désordre pour fonctionner sans problème, resserrant ainsi le lien entre emps et entropie. 

Simultanément, les expérimentateurs se sont fait un plaisir d'exposer les bizarres courbures et crépitements du temps que nous ne connaissons pas, mais qui sont autorisés par les lois contre-intuitives de la relativité générale et de la mécanique quantique. En ce qui concerne la relativité, Katie McCormick a décrit en 2021 une expérience mesurant la façon dont le champ gravitationnel de la Terre ralentit le tic-tac du temps sur des distances aussi courtes qu'un millimètre. En ce qui concerne la mécanique quantique, j'ai rapporté l'année dernière comment des physiciens ont réussi à faire en sorte que des particules de lumière fassent l'expérience d'un écoulement simultané du temps vers l'avant et vers l'arrière.

C'est lorsque les physiciens sont confrontés à la formidable tâche de fusionner la théorie quantique avec la relativité générale que tout ça devient confus ; chaque théorie a sa propre conception du temps, mais les deux notions n’ont presque rien en commun.

En mécanique quantique, le temps fonctionne plus ou moins comme on peut s'y attendre : vous commencez par un état initial et utilisez une équation pour le faire avancer de manière rigide jusqu'à un état ultérieur. Des manigances quantiques peuvent se produire en raison des façons particulières dont les états quantiques peuvent se combiner, mais le concept familier du changement se produisant avec le tic-tac d’une horloge maîtresse reste intact.

En relativité générale, cependant, une telle horloge maîtresse n’existe pas. Einstein a cousu le temps dans un tissu espace-temps qui se plie et ondule, ralentissant certaines horloges et en accélérant d’autres. Dans ce tableau géométrique, le temps devient une dimension au même titre que les trois dimensions de l'espace, bien qu'il s'agisse d'une dimension bizarroïde qui ne permet de voyager que dans une seule direction.

Et dans ce contexte, les physiciens dépouillent souvent le temps de sa nature à sens unique. Bon nombre des découvertes fondamentales de Hawking sur les trous noirs – cicatrices dans le tissu spatio-temporel créées par l’effondrement violent d’étoiles géantes – sont nées de la mesure du temps avec une horloge qui marquait des nombres imaginaires, un traitement mathématique qui simplifie certaines équations gravitationnelles et considère le temps comme apparié à l'espace. Ses conclusions sont désormais considérées comme incontournables, malgré la nature non physique de l’astuce mathématique qu’il a utilisée pour y parvenir.

Plus récemment, des physiciens ont utilisé cette même astuce du temps imaginaire pour affirmer que notre univers est l'univers le plus typique, comme je l'ai rapporté en 2022. Ils se demandent encore pourquoi l'astuce semble fonctionner et ce que signifie son utilité. "Il se peut qu'il y ait ici quelque chose de profond que nous n'avons pas tout à fait compris", a écrit le célèbre physicien Anthony Zee à propos du jeu imaginaire du temps dans son manuel de théorie quantique des champs.

Mais qu’en est-il du temps réel et à sens unique dans notre univers ? Comment les physiciens peuvent-ils concilier les deux images du temps alors qu’ils se dirigent sur la pointe des pieds vers une théorie de la gravité quantique qui unit la théorie quantique à la relativité générale ? C’est l’un des problèmes les plus difficiles de la physique moderne. Même si personne ne connaît la réponse, les propositions intrigantes abondent.

Une suggestion, comme je l’ai signalé en 2022, est d’assouplir le fonctionnement restrictif du temps en mécanique quantique en permettant à l’univers de générer apparemment une variété d’avenirs à mesure qu’il grandit – une solution désagréable pour de nombreux physiciens. Natalie Wolchover a écrit sur la suspicion croissante selon laquelle le passage du temps résulte de l'enchevêtrement de particules quantiques, tout comme la température émerge de la bousculade des molécules. En 2020, elle a également évoqué une idée encore plus originale : que la physique soit reformulée en termes de nombres imprécis et abandonne ses ambitions de faire des prévisions parfaites de l’avenir.

Tout ce que les horloges mesurent continue de s’avérer insaisissable et mystérieux. 

Auteur: Internet

Info: https://www.quantamagazine.org/ - Charlie Wood, 1 avril 2024

 

Commentaires: 0

Ajouté à la BD par miguel

palier évolutif

Découverte d’une nouvelle forme de vie née de la fusion d’une bactérie avec une algue

Ayant eu lieu il y a 100 millions d’années, il s’agit seulement du troisième cas connu de ce phénomène.

(Image - La forme de vie née de la fusion entre l'algue Braarudosphaera bigelowii et la cyanobactérie UCYN-A."

Des chercheurs ont découvert une forme de vie de nature extrêmement rare née de la fusion d’une algue avec une bactérie fixatrice d’azote il y a 100 millions d’années. Appelé endosymbiose primaire, le phénomène se produit lorsqu’un organisme en engloutit un autre pour faire de celui-ci un organite, à l’instar des mitochondries et des chloroplastes. Il s’agit du troisième cas recensé d’endosymbiose. Il pourrait ouvrir la voie à une production plus durable d’azote pour l’agriculture.

Au cours des 4 milliards d’années de vie sur Terre, seulement deux cas d’endosymbiose primaire étaient connus jusqu’ici. La première s’est produite il y a 2,2 milliards d’années, lorsqu’une archée a absorbé une bactérie pour l’intégrer dans son arsenal métabolique en la convertissant en mitochondrie. Cette étape constitue une phase majeure dans l’évolution de tous les organismes sur Terre, leur permettant notamment d’évoluer vers des formes plus complexes.

(Photo : Des mitochondries dans une cellule.)

La seconde endosymbiose primaire connue s’est produite il y a 1,6 milliard d’années, lorsque des organismes unicellulaires ont absorbé des cyanobactéries capables de convertir la lumière en énergie (photosynthèse). Ces bactéries sont devenues les chloroplastes que les plantes chlorophylliennes utilisent encore à ce jour pour convertir la lumière du Soleil en énergie.

D’un autre côté, on pensait que seules les bactéries pouvaient extraire l’azote atmosphérique et le convertir en une forme utilisable (en ammoniac) pour le métabolisme cellulaire. Les plantes pouvant fixer l’azote (comme les légumineuses) effectuent ce processus en hébergeant ces bactéries au niveau de leurs nodules racinaires.

La découverte de l’équipe du Berkeley Lab bouleverse cette notion avec le premier organite capable de fixer de l’azote et intégré dans une cellule eucaryote (une algue marine). " Il est très rare que des organites résultent de ce genre de choses ( endosymbiose primaire ) ", explique Tyler Coale de l’Université de Californie à Santa Cruz, dans un communiqué du Berkeley Lab. " La première fois que cela s’est produit à notre connaissance, cela a donné naissance à toute vie complexe. Tout ce qui est plus compliqué qu’une cellule bactérienne doit son existence à cet événement ", a-t-il déclaré, en faisant référence aux origines des mitochondries. Le nouvel organite, décrit dans deux études publiées dans les revues Cell Press et Science, est baptisé " nitroplaste ".

Un organite à part entière

La découverte de l’organite a nécessité plusieurs décennies de travail. En 1998, les chercheurs ont identifié une courte séquence d’ADN qui semblait provenir d’une cyanobactérie fixatrice d’azote (UCYN-A) abondante dans le Pacifique. D’un autre côté, une autre équipe de l’Université de Kochi (au Japon) a identifié une algue marine (Braarudosphaera bigelowii) qui semblait être l’hôte symbiotique de la bactérie. En effet, l’ADN de cette dernière a été découvert en importante quantité dans les cellules de l’algue.

Alors que les chercheurs considéraient l’UCYN-A comme un simple endosymbiote de l’algue, les deux nouvelles études suggèrent qu’elle a co-évolué avec son hôte de sorte à devenir un organite à part entière. En effet, après plus de 300 expéditions, l’équipe japonaise est parvenue à isoler et cultiver l’algue en laboratoire. Cela a permis de montrer que le rapport de taille entre les UCYN-A et leurs algues hôtes est similaire d’une espèce à l’autre.

D’autre part, les chercheurs ont utilisé un modèle informatique pour analyser la croissance de la cellule hôte et de la bactérie par le biais des échanges de nutriments. Ils ont constaté que leurs métabolismes sont parfaitement synchronisés, ce qui leur permettrait de coordonner leur croissance. " C’est exactement ce qui se passe avec les organites ", explique Jonathan Zehr, de l’Université de Californie à Santa Cruz et coauteur des deux études. " Si vous regardez les mitochondries et le chloroplaste, c’est la même chose : ils évoluent avec la cellule ", ajoute-t-il.

Les experts ont également montré que la bactérie UCYN-A repose sur sa cellule hôte pour sa réplication protéique et sa multiplication. Pour ce faire, ils ont utilisé une technique d’imagerie à rayons X et une tomographie permettant d’observer les processus cellulaires en temps réel. " Nous avons montré grâce à l’imagerie à rayons X que le processus de réplication et de division de l’hôte algal et de l’endosymbiote est synchronisé ", indique Carolyn Larabell, du Berkeley Lab.

(Illustrations montrant les algues à différents stades de division cellulaire. UCYN-A, l’entité fixatrice d’azote désormais considérée comme un organite, est visible en cyan ; le noyau des algues est représenté en bleu, les mitochondries en vert et les chloroplastes en violet.)

Une quantification des protéines des deux organismes a aussi été réalisée. Il a été constaté qu’environ la moitié des protéines de l’UCYN-A est synthétisée par sa cellule hôte, qui les marque avec une séquence protéinique spécifique. Ce marquage permet ensuite à la cellule de les envoyer au nitroplaste, qui les importe et les utilise pour son propre métabolisme. " C’est l’une des caractéristiques de quelque chose qui passe d’un endosymbionte à un organite ", explique Zehr. " Ils commencent à éjecter des morceaux d’ADN, et leurs génomes deviennent de plus en plus petits, et ils commencent à dépendre de la cellule mère pour que ces produits génétiques soient transportés dans la cellule ".

Un potentiel pour une production d’azote plus durable

Les chercheurs estiment que les nitroplastes ont évolué il y a environ 100 millions d’années. Comme l’UCYN-A est présente dans presque tous les océans du monde, elle est probablement impliquée dans le cycle de l’azote atmosphérique. Cette découverte pourrait avoir d’importantes implications pour l’agriculture, le procédé industriel utilisé actuellement pour convertir l’azote atmosphérique en ammoniac (procédé Haber-Bosch) étant très énergivore. Ce dernier permet notamment d’assurer 50 % de la production alimentaire mondiale et est responsable d’environ 1,4 % des émissions carbone.

Toutefois, de nombreuses questions restent sans réponse concernant le nitroplaste et son hôte algal. En prochaine étape, les chercheurs prévoient ainsi de déterminer s’il est présent dans d’autres cellules ainsi que les effets que cela pourrait avoir. Cela pourrait permettre d’intégrer directement la fixation de l’azote dans les plantes de sorte à améliorer les récoltes. 



 

Auteur: Internet

Info: https://trustmyscience.com/ - Valisoa Rasolofo & J. Paiano·19 avril 2024

[ symbiogénétique ]

 

Commentaires: 0

Ajouté à la BD par miguel

éloge funèbre

Roland Jaccard a mis fin à ses jours hier, lundi 20 septembre. Nombre de ses amis ont reçu un courriel matinal indiquant qu’il était sur le point de partir, qu’il tirait sa révérence. Pour moi, c’était à 8h09. Avec pour objet "Une leçon de dandysme helvétique" et les phrases suivantes dans le corps du texte : "Tu es un des seuls à m’avoir compris! Amitiés vives !"

Roland m’a fait beaucoup d’honneur. Nous n’étions peut-être pas beaucoup à l’avoir compris, mais il y en avait tout de même quelques-uns. À l’avoir compris et à l’avoir aimé. J’ai trainé un vilain pressentiment, toute la matinée, mais j’étais face à des étudiants et je me suis promis de l’appeler dès la pause de midi. Deux coups de téléphone de Gil Mihaely puis d’Elisabeth Lévy m’ont indiqué que c’était devenu inutile.

J’ai été sidéré mais pas surpris. Sidéré parce que, tout de même, la mort d’un ami, d’une de ces amitiés littéraires transformée en affection réciproque avec le temps, c’est une espèce de bloc d’abîme au creux de l’âme et des tripes, un bloc d’abîme que connaissent tous ceux qui apprennent la disparition brutale d’un être cher. 

Mais je n’ai pas été surpris : qui connaissait Roland savait que le suicide était chez lui un thème récurrent, une obsession, une porte de sortie presque rassurante. Le suicide est cette liberté terrible des stoïciens, et il y avait du stoïcien chez Roland au-delà de son hédonisme élégant, résumé ainsi par Marc-Aurèle dans Pensées pour moi-même : "Il y a trop de fumée ici, je m’en vais". Le suicide, Roland connaissait : en leur temps son père et son grand-père avaient eux aussi choisi la nuit. Il écrivait dans "Les Carnets de mon père", un de ses "Billets du vaurien" qu’il donnait chaque semaine à Causeur : "Soyons francs : nous avons aimé vivre une fois, mais nous n’aimerions pas recommencer. C’était aussi l’opinion de mon père." C’est à 80 ans que son père avait tiré sa révérence. Roland a écrit et dit, souvent, qu’il n’avait pas l’intention de le dépasser en âge. Et de fait, il allait avoir 80 ans, le 22 septembre. Quand vous aimez quelqu’un, vous ne l’écoutez pas, ou vous ne voulez pas le croire. C’est oublier que derrière la désinvolture de Roland, derrière son élégante et éternelle dégaine d’adolescent filiforme, il était d’une terrible rigueur. Il n’épargnait personne de ses sarcasmes et surtout pas lui-même. Mais on se rassure comme on peut, quand on aime. Après tout, un de ses maîtres et amis, Cioran, n’avait-il pas dans toute son œuvre parlé du suicide comme seule solution rationnelle à l’horreur du monde sans jamais passer à l’acte ? 

Non, décidément, malheureux comme les pierres mais pas surpris : lundi 13 septembre, après des mois d’absence puisqu’il avait décidé de revenir vivre dans sa ville natale, à Lausanne, depuis le début de la crise sanitaire, il était apparu à une réunion de rédaction suivie d’un pot célébrant le départ d’un des nôtres. Il paraît évident, maintenant, qu’il était venu nous dire au revoir ou plus précisément, car là encore on méconnait trop souvent à quel point celui qui faisait profession de cynisme aimait l’amitié, il avait voulu passer un peu de temps avec nous une dernière fois. De quoi ai-je parlé avec Roland pour ce qui était, sans que je le sache, une ultime rencontre ? Je ne sais pas pourquoi, j’ai du mal à m’en souvenir. Je voudrais vous dire qu’il avait donné des indices implicites, ce ne serait pas vrai. Il avait son flegme habituel, son sourire oriental, son exquise courtoisie d’homme qui a perdu depuis longtemps toute illusion mais qui n’en fait pas un drame, courtoisie héritée de cette civilisation naufragée de la Mitteleuropa à laquelle avait appartenu sa mère autrichienne.

Je voudrais tout de même souligner, maintenant, son importance dans le paysage intellectuel français. Il a écrit des livres essentiels sur la psychanalyse avec laquelle il entretenait des rapports ambigus comme avec tout le reste, notamment L’exil intérieur en 1975. Il y disait d’une autre manière, ce que Debord avait cerné dans La Société du Spectacle : l’impossibilité dans le monde moderne pour les êtres de rencontrer d’autres êtres, et pire encore l’impossibilité pour l’homme de coïncider avec lui-même. Il a été aussi une des plus belles plumes du Monde comme critique des essais et surtout un éditeur hors pair aux PUF où sa collection, "Perspectives critiques", présente un catalogue de rêve. On lui doit la découverte d’André Comte-Sponville mais il a aussi publié Clément Rosset ou Marcel Conche et a assuré, à travers plusieurs autres auteurs, les noces de la philosophie et de la littérature : on y trouve ainsi les inclassables et tellement talentueux Romain Slocombe et Frédéric Pajak.

Après, d’autres le réduiront sans doute à une légende qu’il a malicieusement entretenue dans ses journaux intimes dont le monumental Le Monde d’avant (1983-1988) paru au début de l’année dont nous avons rendu compte dans Causeur. Son amitié, jamais reniée, avec Matzneff malgré les brouilles, son goût pour les jeunes filles qui ressemblaient à son idole, Louise Brooks, ou qui venait de l’Empire du Levant. Sa manière de jauger et de juger les hommes à la manière dont ils jouaient au ping-pong et aux échecs. Une de ses grandes tristesses fut d’ailleurs la fermeture pour rénovation du Lutétia, où on pouvait le trouver tous les dimanches dans les salons où il vous mettait très rapidement échec et mat. 

Au-delà de son refus de la postérité, celle qui consiste à avoir des enfants comme celle qui nous fait survivre à notre propre mort en étant encore lu dans vingt ou trente ans, le nihiliste Roland était un homme étonnamment soucieux de transmettre. Il refusait de l’admettre, il disait que je le taquinais, mais pourtant il suffit d’ouvrir un de ses livres pour avoir envie de lire les auteurs dont il parle : Cioran, bien sûr mais aussi son cher Amiel ou encore Paul Nizon. J’en oublie, forcément.

Je ne sais pas où est Roland désormais. Il se riait de mon communisme comme de mon catholicisme qui revient avec l’âge. Il n’empêche, je suis content d’avoir ses livres dans ma bibliothèque. Je vais le relire. C’est encore la meilleure des prières en même temps que le plus beau des hommages que je peux lui rendre. Le plus consolant aussi, car nous allons être un certain nombre, à Causeur et ailleurs, à avoir besoin d’être consolé.

Auteur: Leroy Jérôme

Info: Causeur, 21 sept 2021

[ eulogie ] [ écrivain-sur-écrivain ]

 
Commentaires: 1
Ajouté à la BD par miguel

léviathan

Le calamar géant qui a fait trembler les mers

Il a fallu plusieurs siècles aux savants pour donner crédit aux récits des marins attaqués par un terrifiant monstre marin. Le calamar géant devint un personnage littéraire à part entière au travers d’œuvres telles que Les Travailleurs de la mer de Victor Hugo ou Vingt Mille Lieues sous les mers de Jules Verne.

Les chroniques et les sagas nordiques du Moyen-Âge décrivent un terrifiant monstre marin qui faisait la taille d’une île et se déplaçait dans les mers séparant la Norvège de l’Islande. Au XIIIe siècle, la saga islandaise Örvar-Oddr parle du "monstre le plus grand de la mer", capable d’avaler "des hommes, des bateaux et même des baleines". 

Cette intrigante apparition revient dans des textes ultérieurs, comme la chronique du Suédois Olaus Magnus, qui décrit au XVIe siècle de colossales créatures, capables de couler un bateau. Ce type de récits continue de circuler au XVIIIe siècle, époque à laquelle ce monstre commence à être connu sous le nom de kraken (littéralement “arbre déraciné”), un terme norvégien désignant une réalité pour le moins fantasque. Dans son Histoire naturelle de la Norvège (1752), Erik Ludvigsen Pontoppidan, évêque de Bergen, décrit en effet le kraken comme "une bête d’un mille et demi de long qui, si elle s’accroche au plus grand navire de guerre, le fait couler jusqu’au fond" et précise qu’il "vit dans les fonds marins, dont il ne remonte qu’une fois réchauffé par les feux de l’enfer".

Pourtant, ces descriptions ne sortaient pas totalement de l’imagination de leurs auteurs. Erik Ludvigsen Pontoppidan nota par exemple que "les décharges de l’animal troublaient l’eau" ; il pourrait donc s’agir d’un calamar géant. L’histoire du kraken est liée aux péripéties vécues dans des mers inconnues par des marins qui les relataient à leur retour. Si les marins nordiques s’étaient limités à l’Atlantique Nord, l’entrée dans la modernité a toutefois étendu le champ d’observation à l’ensemble du Pacifique.

Certains marins ont parlé d’un "diable rouge", un calamar qui attrapait et dévorait des naufragés ; d’autres ont évoqué des animaux marins insatiables, mesurant de 12 à 13 m de longueur. La succession de témoignages d’officiers de marine racontant avoir été confrontés à ces créatures déconcertait les scientifiques. Si le célèbre naturaliste suédois Carl von Linné, le père de la taxonomie moderne, inclut le kraken dans son Systema naturae (1735), la plupart des scientifiques n’étaient pas prêts à assumer l’existence du terrible monstre nordique. Le sort injuste que subit le Français Pierre Denys de Montfort illustre cette fermeture d’esprit. Dans son Histoire naturelle générale et particulière des mollusques, le naturaliste consigna en 1801 l’existence des animaux "[les plus grands] de la Nature quant à notre planète" : le "poulpe colossal"et le "poulpe kraken". Il se fondait sur des récits nordiques et des témoignages de marins contemporains, qu’il mit en relation avec un animal similaire cité par le naturaliste romain Pline l’Ancien. Il inclut dans son oeuvre une illustration représentant l’attaque d’un navire par un poulpe géant au large de l’Angola, qui devint l’image emblématique du kraken, mais suscita le rejet unanime de la communauté scientifique et le discrédita à vie.

Or, les témoignages sur l’existence de cet animal légendaire continuaient à se succéder. Le capitaine de baleinier Frank Bullen raconta ainsi qu’il avait sans l’ombre d’un doute assisté au combat d’un "énorme cachalot" avec un "gigantesque calamar". Selon sa description, les yeux de l’animal étaient situés à la base de ses tentacules, corroborant l’idée qu’il s’agissait plutôt d’un calamar (pieuvre et poulpe possédant des bras, mais pas de tentacules).

L’épisode qui marqua un tournant dans l’histoire des calamars géants se produisit en 1861, lorsque le navire français Alecton se trouva confronté à un céphalopode de 6 m de long au nord-est de Ténériffe, dans l’Atlantique. Son commandant, le capitaine de frégate Frédéric Bouyer, relata cette rencontre dans un rapport qu’il soumit à l’Académie des sciences : l’animal "semblait vouloir éviter le navire", mais le capitaine se disposa à le chasser en lui lançant des harpons et en lui tirant des coups de fusil. Il ordonna même de le "garrotter […] et de l’amener le long du bord", mais la créature finit par s’enfoncer dans les profondeurs. Frédéric Bouyer conserva ainsi un morceau du calamar, qu’il fit parvenir au prestigieux biologiste Pierre Flourens. 

Le calamar géant devint un personnage littéraire à part entière au travers d’œuvres telles que Les Travailleurs de la mer de Victor Hugo ou Vingt Mille Lieues sous les mers de Jules Verne. Toujours avide de nouvelles découvertes scientifiques, Jules Verne décrivit dans son roman l’épisode de l’Alecton et toutes les références mythiques et historiques à l’animal ; il y inclut aussi l’attaque d’un calamar contre le Nautilus lui-même. Les scientifiques analysèrent pour leur part les témoignages de marins et les restes de calamars récupérés en mer ou échoués, et conclurent qu’il s’agissait d’une espèce particulière, qu’ils baptisèrent Architeuthis dux.

Le mystère continue de planer autour de cet animal. On ne sait presque rien de son cycle de vie ni de ses habitudes, ni même s’il s’agit d’une seule espèce de calamar. Seules une équipe de scientifiques japonais et une chaîne nord-américaine ont pu le filmer de manière brève respectivement en 2006 et 2012. On sait malgré tout que les mâles mesurent environ 10 m de long et les femelles 14. Son oeil, le plus grand du règne animal, peut mesurer jusqu’à 30 cm de diamètre. 

L’habitat de cet animal se situe dans des profondeurs extrêmes, surtout dans l’océan Pacifique, mais aussi dans l’Atlantique. Il trouve par exemple refuge dans le canyon d’Avilés, à 5 000 m de profondeur au large des Asturies. Habitués à en rencontrer lorsqu’ils partent en mer, les pêcheurs locaux n’ont guère accordé d’importance à la controverse autour de son existence. Cet animal leur est si familier qu’ils lui ont même donné un nom : le peludín ("petit velu") ; un musée, qui lui est consacré, a par ailleurs ouvert ses portes en 1997 à Luarca, sur la côte des Asturies. 

Qu’on l’appelle peludín ou Architeuthis dux, on sait désormais avec certitude que cet animal existe, même s’il n’est pas aussi sauvage que la créature sortie de l’imagination nordique et des bestiaires de la Renaissance. Il est désormais si réel que seuls notre abandon de l’exploration sous- marine et l’absence de progrès de la science entravent encore son étude et la connaissance que nous en avons. D’ici là, le mystère qui l’entoure continuera d’alimenter des légions de cryptozoologues résolus à ressusciter le kraken, mais aussi les créatures les plus romantiques de nos vieilles légendes marines.

Auteur: Armendariz Xabier

Info: sur https://www.nationalgeographic.fr/, 6 juillet 2021

[ mythologie ] [ homme-animal ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

taylorisme

Quoique Taylor ait baptisé son système "Organisation scientifique du travail", ce n’était pas un savant. Sa culture correspondait peut-être au baccalauréat, et encore ce n’est pas sûr. Il n’avait jamais fait d’études d’ingénieur. Ce n’était pas non plus un ouvrier à proprement parler, quoiqu’il ait travaillé en usine. Comment donc le définir ? C’était un contremaître, mais non pas de l’espèce de ceux qui sont venus de la classe ouvrière et qui en ont gardé le souvenir. C’était un contremaître du genre de ceux dont on trouve des types actuellement dans les syndicats professionnels de maîtrise et qui se croient nés pour servir de chiens de garde au patronat. Ce n’est ni par curiosité d’esprit, ni par besoin de logique qu’il a entrepris ses recherches. C’est son expérience de contremaître chien de garde qui l’a orienté dans toutes ses études et qui lui a servi d’inspiratrice pendant trente-cinq années de recherches patientes. C’est ainsi qu’il a donné à l’industrie, outre son idée fondamentale d’une nouvelle organisation des usines, une étude admirable sur le travail des tours à dégrossir.

Taylor était né dans une famille relativement riche et aurait pu vivre sans travailler, n’étaient les principes puritains de sa famille et de lui-même, qui ne lui permettaient pas de rester oisif. Il fit ses études dans un lycée, mais une maladie des yeux les lui fit interrompre à 18 ans. Une singulière fantaisie le poussa alors à entrer dans une usine où il fit un apprentissage d’ouvrier mécanicien. Mais le contact quotidien avec la classe ouvrière ne lui donna à aucun degré l’esprit ouvrier. Au contraire, il semble qu’il y ait pris conscience d’une manière plus aiguë de l’opposition de classe qui existait entre ses compagnons de travail et lui-même, jeune bourgeois, qui ne travaillait pas pour vivre, qui ne vivait pas de son salaire, et qui, connu de la direction, était traité en conséquence.

Après son apprentissage, à l’âge de 22 ans, il s’embaucha comme tourneur dans une petite usine de mécanique, et dès le premier jour il entra tout de suite en conflit avec ses camarades d’atelier qui lui firent comprendre qu’on lui casserait la figure s’il ne se conformait pas à la cadence générale du travail ; car à cette époque régnait le système du travail aux pièces organisé de telle manière que, dès que la cadence augmentait, on diminuait les tarifs. Les ouvriers avaient compris qu’il ne fallait pas augmenter la cadence pour que les tarifs ne diminuent pas ; de sorte que chaque fois qu’il entrait un nouvel ouvrier, on le prévenait d’avoir à ralentir sa cadence sous peine d’avoir la vie intenable.

Au bout de deux mois, Taylor est arrivé à devenir contremaître. En racontant cette histoire, il explique que le patron avait confiance en lui parce qu’il appartenait à une famille bourgeoise. Il ne dit pas comment le patron l’avait distingué si rapidement, puisque ses camarades l’empêchaient de travailler plus vite qu’eux, et on peut se demander s’il n’avait pas gagné sa confiance en lui racontant ce qui s’était dit entre ouvriers.

Quand il est devenu contremaître, les ouvriers lui ont dit : "On est bien content de t’avoir comme contremaître, puisque tu nous connais et que tu sais que si tu essaies de diminuer les tarifs on te rendra la vie impossible." À quoi Taylor répondit en substance : "Je suis maintenant de l’autre côté de la barricade, je ferai ce que je dois faire." Et en fait, ce jeune contremaître fit preuve d’une aptitude exceptionnelle pour faire augmenter la cadence et renvoyer les plus indociles.

Cette aptitude particulière le fit monter encore en grade jusqu’à devenir directeur de l’usine. Il avait alors vingt-quatre ans.

Une fois directeur, il a continué à être obsédé par cette unique préoccupation de pousser toujours davantage la cadence des ouvriers. Évidemment, ceux-ci se défendaient, et il en résultait que ses conflits avec les ouvriers allaient en s’aggravant. Il ne pouvait exploiter les ouvriers à sa guise parce qu’ils connaissaient mieux que lui les meilleures méthodes de travail. Il s’aperçut alors qu’il était gêné par deux obstacles : d’un côté il ignorait quel temps était indispensable pour réaliser chaque opération d’usinage et quels procédés étaient susceptibles de donner les meilleurs temps ; d’un autre côté, l’organisation de l’usine ne lui donnait pas le moyen de combattre efficacement la résistance passive des ouvriers. Il demanda alors à l’administrateur de l’entreprise l’autorisation d’installer un petit laboratoire pour faire des expériences sur les méthodes d’usinage. Ce fut l’origine d’un travail qui dura vingt-six ans et amena Taylor à la découverte des aciers rapides, de l’arrosage de l’outil, de nouvelles formes d’outil à dégrossir, et surtout il a découvert, aidé d’une équipe d’ingénieurs, des formules mathématiques donnant les rapports les plus économiques entre la profondeur de la passe, l’avance et la vitesse des tours ; et pour l’application de ces formules dans les ateliers, il a établi des règles à calcul permettant de trouver ces rapports dans tous les cas particuliers qui pouvaient se présenter.

Ces découvertes étaient les plus importantes à ses yeux parce qu’elles avaient un retentissement immédiat sur l’organisation des usines. Elles étaient toutes inspirées par son désir d’augmenter la cadence des ouvriers et par sa mauvaise humeur devant leur résistance. Son grand souci était d’éviter toute perte de temps dans le travail. Cela montre tout de suite quel était l’esprit du système. Et pendant vingt-six ans il a travaillé avec cette unique préoccupation. Il a conçu et organisé progressivement le bureau des méthodes avec les fiches de fabrication, le bureau des temps pour l’établissement du temps qu’il fallait pour chaque opération, la division du travail entre les chefs techniques et un système particulier de travail aux pièces avec prime.

[...]

La méthode de Taylor consiste essentiellement en ceci : d’abord, on étudie scientifiquement les meilleurs procédés à employer pour n’importe quel travail, même le travail de manœuvres (je ne parle pas de manœuvres spécialisés, mais de manœuvres proprement dits), même la manutention ou les travaux de ce genre ; ensuite, on étudie les temps par la décomposition de chaque travail en mouvements élémentaires qui se reproduisent dans des travaux très différents, d’après des combinaisons diverses ; et une fois mesuré le temps nécessaire à chaque mouvement élémentaire, on obtient facilement le temps nécessaire à des opérations très variées. Vous savez que la méthode de mesure des temps, c’est le chronométrage. Il est inutile d’insister là-dessus. Enfin, intervient la division du travail entre les chefs techniques. Avant Taylor, un contremaître faisait tout ; il s’occupait de tout. Actuellement, dans les usines, il y a plusieurs chefs pour un même atelier : il y a le contrôleur, il y a le contremaître, etc.

Auteur: Weil Simone

Info: "La condition ouvrière", Journal d'usine, éditions Gallimard, 2002, pages 310 à 314

[ biographie ] [ résumé ]

 

Commentaires: 0

Ajouté à la BD par Coli Masson

topologie abstraite

Des surfaces au-delà de l'imagination sont découvertes après des décennies de recherche

Grâce à des idées empruntées à la théorie des graphes, deux mathématiciens ont montré que des surfaces extrêmement complexes sont faciles à parcourir.

En juillet dernier, deux mathématiciens de l'Université de Durham, Will Hide et Michael Magee , ont confirmé l'existence d'une séquence de surfaces très recherchée : chacune plus compliquée que la précédente, devenant finalement si étroitement liée à elles-mêmes qu'elles atteignent presque les limites de ce qui est possible. possible.

Au début, il n’était pas évident que ces surfaces existaient. Mais depuis que la question de leur existence s’est posée pour la première fois dans les années 1980, les mathématiciens ont compris que ces surfaces pouvaient en réalité être courantes, même si elles sont extrêmement difficiles à identifier – un exemple parfait de la façon dont les mathématiques peuvent renverser l’intuition humaine. Ce nouveau travail constitue un pas en avant dans une quête visant à aller au-delà de l’intuition pour comprendre les innombrables façons dont les surfaces peuvent se manifester.

"C'est un brillant morceau de mathématiques", a déclaré Peter Sarnak , mathématicien à l'Institute for Advanced Study de Princeton, New Jersey.

Les surfaces comprennent toutes sortes d’objets bidimensionnels : l’enveloppe extérieure d’une sphère, d’un beignet ou d’un cylindre ; une bande de Möbius. Ils sont essentiels aux mathématiques et à la physique. Mais même si la relation des mathématiciens avec les surfaces remonte à plusieurs siècles, ils ne connaissent pas du tout ces objets.

Les surfaces simples ne sont pas le problème. Simple dans ce cas signifie que la surface a un petit nombre de trous, ou un faible " genre ". Une sphère, par exemple, n'a pas de trous et a donc un genre nul ; un beignet en a un.

Mais lorsque le genre est élevé, l’intuition nous fait défaut. Lorsqu'Alex Wright , mathématicien à l'Université du Michigan, tente de visualiser une surface de haut genre, il se retrouve avec des trous disposés en rangée bien rangée. " Si vous vouliez que je sois un peu plus créatif, je pourrais l'enrouler en un cercle avec de nombreux trous. Et j’aurais du mal à imaginer une image mentale fondamentalement différente de celle-là ", a-t-il déclaré. Mais sur les surfaces de grande qualité, les trous se chevauchent de manière complexe, ce qui les rend difficiles à saisir. Une simple approximation est " aussi loin d’être représentative qu’elle pourrait l’être, dans tous les sens du terme ", a déclaré Wright.

Cette lutte était prévisible, a déclaré Laura Monk , mathématicienne à l'Université de Bristol. " On peut souvent faire des choses qui ne sont pas bonnes. Cependant, créer des choses qui sont bonnes, qui ressemblent à ce que nous attendons généralement d’être vrai, est un peu plus difficile ", a-t-elle déclaré.

Cela signifie que les mathématiciens souhaitant vraiment comprendre l’espace des surfaces doivent trouver des moyens de découvrir des objets dont ils ignorent même l’existence.

C’est exactement ce qu’ont fait Hide et Magee dans leur article de juillet, confirmant l’existence de surfaces sur lesquelles les mathématiciens s’interrogeaient depuis des décennies. La conjecture qu’ils ont prouvée et l’histoire qui l’entoure s’inspirent d’un tout autre domaine des mathématiques : la théorie des graphes.

Le maximum possible

Pour les mathématiciens, les graphiques sont des réseaux constitués de points ou de nœuds reliés par des lignes ou des arêtes. Dès 1967, des mathématiciens comme Andrey Kolmogorov étudiaient des réseaux qui imposaient un coût à la connexion de deux nœuds. Cela a conduit à un exemple de ce que l’on appellera plus tard un graphe d’expansion : un graphe qui maintient le nombre d’arêtes à un faible niveau, tout en maintenant une connectivité élevée entre les nœuds.

Les graphiques expanseurs sont depuis devenus des outils cruciaux en mathématiques et en informatique, y compris dans des domaines pratiques comme la cryptographie. À l’instar d’un système routier bien conçu, ces graphiques facilitent le déplacement d’un nœud à un autre sans couvrir l’intégralité du graphique avec des arêtes. Les mathématiciens aiment limiter le nombre d’arêtes en stipulant que chaque nœud ne peut avoir, disons, que trois arêtes en émanant – tout comme vous ne voudriez peut-être pas plus de quelques autoroutes sillonnant votre ville.

Si un ordinateur choisit au hasard où mènent les trois arêtes de chaque nœud, vous constaterez que, surtout lorsque le graphique est très grand, la plupart de ces graphiques aléatoires sont d'excellents expanseurs. Mais bien que l’univers soit rempli de graphiques d’expansion, les êtres humains ont échoué à maintes reprises à les produire à la main.

"Si vous voulez en construire un, vous ne devriez pas les dessiner vous-même", a déclaré Shai Evra , mathématicien à l'Université hébraïque de Jérusalem. "Notre imagination ne comprend pas ce qu'est un expanseur."

L’idée d’expansion, ou de connectivité, peut être mesurée de plusieurs manières. La première consiste à couper un graphique en deux gros morceaux en coupant les bords un par un. Si votre graphique est constitué de deux groupes de nœuds, les groupes étant reliés par une seule arête, il vous suffit de couper une seule arête pour la diviser en deux. Plus le graphique est connecté, plus vous devrez découper d'arêtes.

Une autre façon d’accéder à la connectivité consiste à parcourir le graphique de nœud en nœud, en choisissant à chaque étape une arête sur laquelle marcher au hasard. Combien de temps faudra-t-il pour visiter tous les quartiers du graphique ? Dans l'exemple avec les deux amas, vous serez confiné à l'une des bulles à moins que vous ne traversiez la seule connexion avec l'autre moitié. Mais s’il existe de nombreuses façons de voyager entre les différentes zones du graphique, vous parcourrez l’ensemble en peu de temps.

Ces mesures de connectivité peuvent être quantifiées par un nombre appelé écart spectral. L'écart spectral est nul lorsque le graphe est complètement déconnecté, par exemple s'il est composé de deux groupes de nœuds qui ne sont pas du tout attachés l'un à l'autre. À mesure qu’un graphe devient plus connecté, son écart spectral aura tendance à s’élargir.

Mais l’écart spectral ne peut aller que jusqu’à un certain point. En effet, les deux caractéristiques déterminantes des graphes d’expansion – peu d’arêtes et une connectivité élevée – sont apparemment en contradiction l’une avec l’autre. Mais en 1988, Gregory Margulis et, indépendamment, Sarnak et deux co-auteurs ont décrit des " expanseurs optimaux " – des graphiques dont l’écart spectral est aussi élevé que le maximum théorique. " C'est choquant qu'ils existent ", a déclaré Sarnak.

Plus tard, les mathématiciens prouveront que la plupart des grands graphes sont proches de ce maximum. Mais le travail avec les expanseurs optimaux et les graphiques aléatoires ne consistait pas simplement à trouver les bons endroits pour placer les arêtes. Cela nécessitait le recours à des techniques étranges et sophistiquées empruntées à la théorie des nombres et des probabilités.

Auteur: Internet

Info: https://www.quantamagazine.org/ - Leila Sloman, 2 juin 2022

[ . ]

 
Commentaires: 1
Ajouté à la BD par miguel

réalité subatomique

Des chercheurs font une découverte importante sur le ferromagnétisme

Une équipe de chercheurs japonais vient de réaliser une percée majeure dans le domaine de la physique quantique. Leurs travaux démontrent en effet que le ferromagnétisme, un état ordonné des atomes, peut être provoqué par une augmentation de la motilité des particules, et que les forces répulsives entre les atomes sont suffisantes pour le maintenir. Voici pourquoi c'est important.

Qu’est-ce que le ferromagnétisme ?

Chaque atome d’un matériau ferromagnétique est comme un petit aimant microscopique. Imaginez alors chacun de ces atomes avec son propre nord et son propre sud magnétiques.

Normalement, ces minuscules aimants sont en proie au chaos, pointant dans toutes les directions possibles, rendant leurs effets magnétiques mutuellement insignifiants. C’est un peu comme si une foule de personnes se promenait dans toutes les directions, chacune ayant son propre itinéraire, rendant difficile de discerner une tendance générale.

Cependant, lorsque vous refroidissez ce matériau en dessous d’une température spécifique très froide, appelée température de Curie, quelque chose de magique se produit : chaque personne de cette même foule commence soudainement à suivre le même chemin, comme si elles suivaient un chef de file invisible.

Dans le monde des atomes, cela se traduit par tous les petits aimants s’alignant dans une direction commune. C’est comme si une armée d’aimants se mettait en formation, tous pointant dans la même direction avec un but commun.

Vous venez alors de créer un champ magnétique global. Cette unification des orientations magnétiques crée en effet une aimantation macroscopique que vous pouvez ressentir lorsque vous approchez un objet aimanté à proximité. C’est ce qu’on appelle le ferromagnétisme.

De nombreuses applications

On ne s’en pas forcément compte, mais ce phénomène est à la base de nombreuses technologies modernes et a un impact significatif sur notre vie quotidienne.

Pensez aux aimants sur nos réfrigérateurs, par exemple. Ils sont là, fidèles et puissants, tenant en place des photos, des listes de courses et autres souvenirs. Tout cela est rendu possible grâce à la capacité du ferromagnétisme à maintenir un champ magnétique stable, permettant aux aimants de s’attacher fermement aux surfaces métalliques.

Et que dire de nos haut-parleurs ? Ces merveilles de l’ingénierie audio tirent en effet parti du ferromagnétisme pour produire des sons que nous pouvons entendre et ressentir. Lorsque le courant électrique traverse la bobine d’un haut-parleur, il crée un champ magnétique qui interagit avec un aimant permanent, provoquant le mouvement d’un diaphragme. Ce mouvement génère alors des ondes sonores qui nous enveloppent de musique, de voix et d’effets sonores, donnant vie à nos films, chansons et podcasts préférés.

Les scanners d’IRM sont un autre exemple. Ces dispositifs révolutionnaires exploitent en effet les propriétés magnétiques des tissus corporels pour produire des images détaillées de nos organes, de nos muscles et même de notre cerveau. En appliquant un champ magnétique puissant et des ondes radio, les atomes d’hydrogène dans notre corps s’alignent et émettent des signaux détectés par l’appareil, permettant la création d’images en coupe transversale de notre anatomie interne.

Vous l’avez compris, en comprenant mieux les mécanismes sous-jacents du ferromagnétisme, les scientifiques peuvent donc exploiter cette connaissance pour développer de nouvelles technologies et améliorer celles qui existent déjà.

Cela étant dit, plus récemment, des chercheurs japonais ont fait une découverte qui étend notre compréhension de ce phénomène à des conditions et des mécanismes jusque-là inconnus.

L’ordre naît aussi du mouvement

Comme dit plus haut, traditionnellement, on pensait que le ferromagnétisme pouvait être induit par des températures très froides, où les atomes seraient suffisamment calmes pour s’aligner dans une direction commune. Ici, les scientifiques ont démontré que cet état ordonné des atomes peut également être provoqué par une augmentation de la motilité des particules.

En d’autres termes, lorsque les particules deviennent plus mobiles, les forces répulsives entre les atomes peuvent les organiser dans un état magnétique ordonné.

Cela représente une avancée majeure dans le domaine de la physique quantique, car cela élargit le concept de matière active aux systèmes quantiques.

Notez que la matière active est un état dans lequel des agents individuels s’auto-organisent et se déplacent de manière organisée sans besoin d’un contrôleur externe. Ce concept a été étudié à différentes échelles, de l’échelle nanométrique à l’échelle des animaux, mais son application au domaine quantique était jusqu’ici peu explorée.

Pour ces travaux, l’équipe dirigée par Kazuaki Takasan et Kyogo Kawaguchi, de l’Université de Tokyo, a développé un modèle théorique dans lequel les atomes imitent le comportement des agents de la matière active, comme les oiseaux en troupeau. Lorsqu’ils ont augmenté la motilité des atomes, les forces répulsives entre eux les ont réorganisés dans un état ordonné de ferromagnétisme.

Cela signifie que les spins, le moment cinétique des particules et des noyaux subatomiques, se sont alignés dans une direction, tout comme les oiseaux en troupeau font face à la même direction lorsqu’ils volent.

Image schématique du ferromagnétisme induit par l’activité dans la matière active quantique. Ici, les atomes en mouvement avec des spins présentent l’ordre ferromagnétique (c’est-à-dire s’alignant dans une direction) comme une volée d’oiseaux représentée ci-dessus. Crédits : Takasan et al 2024

Quelles implications ?

Ce résultat, obtenu par une combinaison de simulations informatiques, de théories du champ moyen et de preuves mathématiques, élargit notre compréhension de la physique quantique et ouvre de nouvelles voies de recherche pour explorer les propriétés magnétiques des matériaux à des échelles microscopiques.

Cette découverte pourrait notamment avoir un impact significatif sur le développement de nouvelles technologies basées sur les propriétés magnétiques des particules.

Par exemple, la mémoire magnétique est une technologie largement utilisée dans les dispositifs de stockage de données, tels que les disques durs et les bandes magnétiques. En comprenant mieux les mécanismes qui sous-tendent le ferromagnétisme, les scientifiques pourraient alors concevoir des matériaux magnétiques plus efficaces et plus économes en énergie pour ces applications, ce qui pourrait conduire à des capacités de stockage accrues et à des temps d’accès plus rapides pour les données.

De plus, l’informatique quantique est un domaine en plein essor qui exploite les propriétés quantiques des particules pour effectuer des calculs à une vitesse beaucoup plus rapide que les ordinateurs classiques. Les qubits, les unités de calcul de l’informatique quantique, peuvent être réalisés à l’aide de diverses plateformes, y compris des systèmes magnétiques.

La capacité de contrôler et de manipuler le ferromagnétisme à l’échelle des particules pourrait donc ouvrir de nouvelles voies pour la réalisation et la manipulation de qubits magnétiques, ce qui pourrait contribuer à la réalisation de l’informatique quantique à grande échelle.

Ce ne sont ici que des exemples. Le point à retenir est qu’en comprenant mieux les mécanismes qui sous-tendent ce phénomène, les scientifiques pourraient être en mesure de concevoir des matériaux magnétiques plus efficaces pour beaucoup d’applications.

 

Auteur: Internet

Info: https://www.science-et-vie.com - 5 mai 2024, Brice Louvet, Source : Physical Review Research.

[ électrons ] [ protons ] [ neutrons ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste