Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 168
Temps de recherche: 0.0548s

unicité

Parce que toutes ces choses sont des aspects de l'holomouvement, il estime que cela n'a pas de sens de parler de conscience et de matière en interaction. En un sens, l'observateur est l'observé. L'observateur est également l'appareil de mesure, les résultats expérimentaux, le laboratoire et la brise qui souffle à l'extérieur du laboratoire. En fait, Bohm pense que la conscience est une forme plus subtile de la matière, et que la base de toute relation entre les deux ne se trouve pas dans notre propre niveau de réalité, mais dans l'ordre implicite. La conscience est présente à divers degrés d'épanouissement et de déploiement dans toute la matière, ce qui explique peut-être pourquoi les plasmas possèdent certaines des caractéristiques des êtres vivants. Comme le dit Bohm, "la capacité de la forme à être active est le trait le plus caractéristique de l'esprit, et nous avons déjà quelque chose qui ressemble à l'esprit avec l'électron."

 De même, il pense que la division de l'univers en êtres vivants et non vivants n'a pas de sens. La matière animée et la matière inanimée sont indissociablement liées, et la vie, elle aussi, est enveloppée dans la totalité de l'univers. Selon Bohm, même un rocher est en quelque sorte vivant, car la vie et l'intelligence sont présentes non seulement dans toute la matière, mais aussi dans "l'énergie", "l'espace", "le temps", "le tissu de l'univers entier" et tout ce que nous extrayons de l'holo-mouvement et que nous considérons à tort comme des choses séparées. L'idée que la conscience et la vie (et en fait toutes les choses) sont des ensembles enveloppés dans l'univers a un revers de médaille tout aussi éblouissant. De même que chaque partie d'un hologramme contient l'image du tout, chaque partie de l'univers enveloppe le tout. Cela signifie que si nous savions comment y accéder, nous pourrions trouver la galaxie d'Andromède dans l'ongle de notre main gauche. Nous pourrions également trouver Cléopâtre rencontrant César pour la première fois, car en principe, tout le passé et les implications pour tout l'avenir sont également enveloppés dans chaque petite région de l'espace et du temps. Chaque cellule de notre corps englobe le cosmos tout entier. Il en va de même pour chaque feuille, chaque goutte de pluie et chaque grain de poussière, ce qui donne un nouveau sens au célèbre poème de William Blake : "Pour voir un monde dans un grain de sable et un ciel dans une fleur sauvage, tenez l'infini dans la paume de votre main et l'éternité dans une heure."

Auteur: Talbot Michael Coleman

Info:

[ dualité miroir ] [ Brahman ]

 

Commentaires: 0

Ajouté à la BD par miguel

esprit-matière

Les physiciens quantiques ont montré que les atomes physiques sont constitués de tourbillons d'énergie qui tournent et vibrent en permanence ; chaque atome est comme une toupie bancale qui rayonne de l'énergie. Comme chaque atome a sa propre signature énergétique spécifique (oscillation), les assemblages d'atomes (molécules) rayonnent collectivement leurs propres modèles d'énergie.

Ainsi, chaque structure matérielle de l'univers, y compris vous et moi, rayonne une signature énergétique unique. S'il était théoriquement possible d'observer la composition d'un atome réel avec un microscope, que verrions-nous ? Imaginez un diable de poussière tourbillonnant sur le sol du désert. Maintenant, enlevez-y le sable et la saleté. Ce qu'il vous reste est un tourbillon invisible, une petite tornade. Un certain nombre de vortex d'énergie infiniment petits, semblables à des diables de poussière, appelés quarks et photons, constituent collectivement la structure de l'atome. De loin, l'atome apparaîtra probablement comme une sphère floue. Et plus sa structure se rapproche du foyer, moins l'atome devient clair et distinct. À mesure que la surface de l'atome se rapproche, il disparait. Vous ne voyez plus rien. En fait, si vous vous concentriez sur toute la structure de l'atome, vons constateriez comme un vide physique. L'atome n'a pas de structure physique - l'empereur est nu !

Vous vous souvenez des modèles atomiques qu'on montre à l'école, ceux avec des billes et des roulements à billes qui tournent comme le système solaire ? Mettons cette image à côté de la structure "physique" de l'atome découverte par les physiciens quantiques. Non, il n'y a pas d'erreur ; les atomes sont faits d'énergie invisible, pas de matière tangible ! Ainsi, dans notre monde, la substance matérielle (la matière) existe à partir de quasi rien. 

C'est un peu bizarre quand on y pense. Vous tenez ce livre physique dans vos mains. Pourtant, si vous vous concentriez sur la substance matérielle du livre avec un microscope atomique, vous verriez que vous ne tenez rien. Il s'avère que les étudiants en biologie avaient raison sur un point : l'univers quantique est hallucinant. Examinons de plus près la nature du "maintenant on le voit, maintenant on le voit pas" de la physique quantique. La matière peut être définie à la fois comme un solide (particule) et comme un champ de force immatériel (onde). Lorsque les scientifiques étudient les propriétés physiques des atomes, telles que la masse et le poids, ceux-ci ressemblent et agissent comme la matière physique. Cependant, lorsque ces mêmes atomes sont décrits en termes de potentiels de tension et de longueurs d'onde, ils présentent les qualités et les propriétés de l'énergie (ondes). (Hackermüller, 2003 ; Chapman et Pool 1995)

Le fait que l'énergie et la matière sont une seule et même chose est précisément ce qu'Einstein a reconnu lorsqu'il a conclu que E = mc2. En termes simples, cette équation révèle que l'énergie (E) = matière (m, masse) multipliée par la vitesse de la lumière au carré (c2). Einstein a révélé que nous ne vivons pas dans un univers avec des objets physiques discrets, séparés par un espace mort. L'Univers est un tout indivisible et dynamique dans lequel l'énergie et la matière sont si profondément enchevêtrées qu'il est impossible de les considérer comme des éléments indépendants.

Auteur: Lipton Bruce H.

Info: The Biology of Belief : Libérer la puissance de la conscience, de la matière et des miracles

[ unicité ] [ dualité ]

 

Commentaires: 0

Ajouté à la BD par miguel

citation s'appliquant à ce logiciel

Le langage des hommes, surtout écrit, s'étendant et s'affinant continuellement, permet d'appréhender tout et son contraire, c'est à dire tant le réél tangible que les mondes imaginaires, oniriques, introspectifs, anciens  ou potentiels.

Ainsi, à l'aide du support linguistique, français en l'occurrence, et dans la lignée de C.S. Peirce - pour qui chaque mot est un "quasi esprit", FLP s'essaye à quelque chose de pas facile à formuler.

A l'aide de la technologie numérique, tout en ayant conscience d'un positionnement temporel "éphémère et subjectif", cette application tente d'établir un dictionnaire polynomial communautaire qui, ambition supplémentaire, voudrait tout conserver ouvert, ne pas se mettre de limites en terme de mémoire (taille) et donc demeurer adaptable à tout développement ultérieur.

Représentation de FLP (début 2021).

Grâce à cet outil, les idées/pensées collectives issues de la sphère Gaïa peuvent se développer au sein d'une auto/classification/structuration sémantique collective apte à se positionner aux miroitantes et changeantes interfaces des mondes incarnés/passés et non incarnés/imaginaires/futurs. En clair FLP se voudrait être capable d'accueillir/intégrer/répertorier tout ce que les idiomes sont capables d'énoncer, coder, décrire ou traduire de façon cohérente, compréhensible et, si possible, ramassée et élégante : descriptifs visuels, univers parallèles, sentiments, définitions, sensations, réflexions contextualisées et développées, termes spécifiques, impressions subjectives, reflets de l'histoire des hommes - ou de civilisations extraterrestres, modes vibratoires du monde astral, etc.. Mélanges de focales et de points de vues qui pourra peut-être s'approcher d'une idée de cosmos holographique.

Ainsi les Fils de la Pensée s'amusent à développer un monde scriptural virtuel intermédiaire, si possible avec un fort fondement littéraire pour ce qui est des témoignages humains, ah ah ah.  (En effet, pour ceux venus d'ailleurs, animaux et autres aliens, nous serons moins difficiles. Re ha ha ha... Bien qu'une telle intervention externe ne soit pas inimaginable.)

Tout ceci étant soigneusement intégré (paramétré) dans la base de données par des lecteurs-inserteurs attentifs. FLP devenant aussi du coup un outil de recherche sémantique qui permet de vaquer de mille manières dans cet univers idiomatique intermédiaire puisque le lecteur quêteur a la possibilité de jongler/mélanger/croiser les fonctions de recherche suivantes :

- par mot, bout de mots et additions/mélanges de ces derniers

- par chaines de caractère (mises entre "  " )

- par taille de l'extrait (du plus petit au plus grand ou le contraire)

- par ordre alphabétique (catégories, auteurs, etc.)

- par sexe de l'auteur de l'extrait

- par localisation - pays - continent - autre planète...

- par profession, ou caractéristique de l'auteur, si paramétré (non-voyant, sportif, oulipien...)

- par situation temporelle, si elle est paramétrée (date de la création de la citation ou de l'auteur - formacja)

- par époque-courant historique - si paramétrée

- en supprimant telle ou telle chaine de caractères en mettant un - devant elle.

- en affinant une recherche donnéepar l'usage des fonctions avancées

- par tag ou catégories uniquement (ou mélange des deux)

- Etc.

           ***

A moyen terme sont envisagées les possibilités de recherches/classements suivants

- étymologique (cladistique)  = filiation = continuité temporelle = évolution  (vision horizontale). CONSTATIF      

- lexicographique - sens, efficacité sémantique (phénétique) = emploi contextualisé  = présence à un présent x =  mode/pouvoir/politiquement correct/contraintes d'un moment donné (vision verticale). PERFORMATIF.

Deux axes susceptibles d'entrer dans la réflexion FLPienne quant aux prémisses d'une classification trétravalente ou pré-mémétique

           ***

Avec, en point de mire beaucoup plus lointain, littéraire, ésotérique... Une utopie - de science-fiction astrale dirons-nous, puisqu'il s'agirait d'un classement/strucure en septénaires intricables et communiquants (imaginez les interconnexions de boules à 7 facettes survolées de 7 satellites hepta-facés ) : avec, en première perspective de structuration, l'idée de s'inspirer des interconnexions entre les 7 degrés de bases de la pensée FLP (lettres, mots, phrases, tags/catégories, chaines, sujets, domaines) et les 7 grands domaines (PSY - POLITIQUE - ARTS-CULTURE - ENSEIGNEMENT - REFLEXION SUR LE LANGAGE - SCIENCES ET RATIONALISME - TRANSCENDANCE ET SPIRITUALITE).  chaque idée/insert présentant une partie de son particularisme au travers de la présentation de son degré de proximité avec les 6 autres via une disposition réfléchie de ces derniers, c'est à dire collectivement concertée par les participants de de FLP.

(Classifications listes bien évidemment sans cesse en cours de réflexions élaboratives).

Auteur: Mg

Info: Dès 2021 , en cours

[ prospective ] [ cogitation ] [ dualité ]

 
Commentaires: 1
Ajouté à la BD par miguel

épigénétique

AP : Nous allons à présent entrer dans la réalité elle-même. Si j’ai bien compris votre démarche générale, vous partez d’une interrogation sur la physique quantique et sur les énigmes qu’elle suggère, notamment quant au sens à attribuer à la matière. Puis, vous appliquerez à l’esprit ce que vous avez découvert à l’aide de la physique quantique.

ER : Oui, on peut résumer ainsi. Je m’appuie au départ sur deux mystères. Le premier, c’est celui de la conscience ; le second est celui de la physique quantique. Quand vous grattez un peu, vous voyez rapidement que l’interprétation officielle du "quantique" est bancale, it doesn’t fit. Il y a quelque chose qui ne va pas, et c’est la raison pour laquelle il y a eu de nombreuses interprétations de la théorie. J’aperçois sur votre bureau Le réel voilé de Bernard d’Espagnat, qui propose une interprétation. L’Ecole de Copenhague en propose une autre, et ainsi de suite : il existe de nombreuses interprétations, plus ou moins sérieuses. Je crois en tout cas que toutes souffrent d’une béance quelque part. Aucune n’est pleinement satisfaisante. Aucune, d’ailleurs, n’emporte le consensus franc et massif de la communauté scientifique. On n’a, au mieux, qu’un consensus mou ; qui peut varier au fil du temps. Pendant longtemps ce fut l’interprétation de Bohr (dite l’Ecole de Copenhague) qui régna. Une interprétation due à Hugh Everett, dite "des mondes multiples", a rallié les suffrages des cosmologistes et des astrophysiciens. Il semble qu’aujourd’hui une théorie, dite "de la décohérence", gagne du terrain ; jusqu’à ce qu’elle soit à sont tour supplantée par une autre. Nous avons des phénomènes de mode. C’est l’indice qu’il y a un malaise persistant. Ce dernier est loin d’avoir disparu.

Mon point de départ a été de me dire : si la réalité est psychophysique, s’il y a une strate de la réalité qu’on peut appeler le psychisme, qui serait le ferment qui conduit dans certaines conditions à la conscience, la fonction biologique sensori-motrice me montre alors qu’il y a une interface, un dialogue possible entre ces deux strates (que je suppose – c’est mon hypothèse fondamentale – non réductibles l’une à l’autre). Elle me montre qu’entre la dimension matérielle et la dimension psychique, il y a comme un double-crochet qui permet ce dialogue. Réfléchissons à ce que cela implique : ça veut dire que dans la matière, il y a un petit crochet qui dépasse. Ce crochet lui permet de dialoguer avec une altérité qui, puisqu’elle est psychique, n’est plus matérielle. Alors, de deux choses l’une : soit la physique n’a pas trouvé cette interface, elle nous ne pourrons pas aller plus loin tant que ce sera le cas. Soit elle l’a trouvée. Dans ce cas, cette interface se distingue par ses propriétés singulières. Singulières car… pas tout-à-fait matérielles ! Ces propriétés seront qualitativement différentes des propriétés usuelles de la matière, qui sont purement physico-physiques. A mon humble avis, nous sommes dans ce deuxième cas depuis que la physique est devenue quantique. Et c’est justement cela qui pose problème, parce que les physiciens n’ont pas compris. Ils sont prisonniers de leur paradigme matérialiste. Ils ne reconnaissent que le physico-physique, alors qu’il existe aussi le psycho-physique. S’ils ont trouvé cette interface, ils sont comme la poule qui a trouvé un couteau, ils sont face à de l’ininterprétable. Face à de l’inintelligible. Faute du référentiel conceptuel adéquat. Le référentiel matérialiste, trop étroit, crée des problèmes conceptuels quand on veut l’appliquer au psycho-physique. C’est inévitable.

Ensuite, il me fallait donner un contenu au psychisme et le caractériser dans sa singularité. C’est pourquoi je l’ai décrit comme "endo-causal". Contrairement au déterminisme, qui est objectif (et qui est exo-causal dans ma terminologie), l’endo-causalité est de l’ordre de la subjectivité. C’est un contenu privé, comme la privacy of mind des anglo-saxons. Elle est inaccessible à un observateur extérieur.

AP : Inaccessible à une description à la troisième personne.

ER : Exactement. Le contenu privé s’éprouve, il est exclusif à la première personne, au sujet lui-même. La seule traduction phénoménologique de l’endo-causalité – qui est une capacité de choix – est une rupture du déterminisme ; ça s’appelle aussi l’aléatoire. Je cherchais donc l’interface dans les phénomènes inintelligibles (ininterprétables) pour la physique quantique, prisonnière qu’elle est de son paradigme matérialiste. Et, simultanément, là où il y a de l’aléatoire vrai (non lié à notre ingorance). Cela m’amène à la réduction du paquet d’onde ainsi qu’aux sauts et transitions quantiques.

AP : D’accord ; pour être très clair, je me permets de vous citer à nouveau : il faut, dites-vous, "allouer à toute particule élémentaire un certain degré de psychisme." Cet énoncé est très fort, mais assez étonnant : ce que vous dites, en somme, c’est qu’une particule ne contient pas que de la matière, qu’elle contient une certaine forme de psychisme, de subjectivité, et l’ensemble de la matière et de la subjectivité, vous appelez cela "psychomatière". Cela permettrait d’expliquer le comportement des particules à l’aide d’une causalité de type subjectif, d’une "endo-causalité" immanente à chaque particule.

ER : Oui, et je comprend que cela puisse surprendre, voire choquer. Je prends la comparaison (ou la métaphore) de l’œuf dur sans sa coquille : vous ne voyez de lui que l’albumine coagulée. Mais à l’intérieur, il y a autre chose. Il a le jaune d’œuf ; mais il est indécelable. De même le ’psi’ est indécelable. Pourquoi ? Parce qu’il est latent la plupart du temps (dans l’état matière). Etre indécelable ne signifie pas être inexistant : prenez l’exemple du neutrino. Pas moins de 66 milliards d’entre eux traversent chaque seconde chaque cm² de notre peau. Heureusement pour nous, comme ils n’interagissent pas, ils sont sans effet – ils sont donc indécelables ! De la même manière, le ’psi’ en général n’interfère pas : tout se passe comme s’il n’existait pas.



 

Auteur: Ransford Emmanuel

Info: Sur actu-philosophia, interview de Thibaut Gress, 7.1 2010

[ résonance ] [ determinisme vs indeterminisme ] [ panpsychisme ] [ dualité sur-atomique ]

 

Commentaires: 0

Ajouté à la BD par miguel

bio-mathématiques

C’est confirmé : vous êtes constitué de cristaux liquides

Une équipe de chercheurs a réussi à prouver l’existence d’une double symétrie dans les tissus organiques, qui permet de les appréhender comme des cristaux liquides. Cette découverte pourrait faire émerger une nouvelle façon d’étudier le fonctionnement du vivant, à la frontière de la biologie et de la mécanique des fluides.

Dans une étude parue dans le prestigieux journal Nature et repérée par Quanta Magazine, des chercheurs ont montré que les tissus épithéliaux, qui constituent la peau et les enveloppes des organes internes, ne sont pas que des amas de cellules réparties de façon aléatoire. Ils présentent en fait deux niveaux de symétrie bien définis qui leur donnent des propriétés fascinantes; fonctionnellement, on peut désormais les décrire comme des cristaux liquides. Une découverte qui pourrait avoir des retombées potentiellement très importantes en médecine.

Ces travaux tournent entièrement autour de la notion de cristal liquide. Comme leur nom l’indique, il s’agit de fluides; techniquement, ils peuvent donc s’écouler comme de l’eau – mais avec une différence importante. Contrairement aux liquides classiques, où les atomes se déplacent les uns par rapport aux autres de façon complètement chaotique, les constituants d’un cristal liquide présentent tout de même un certain degré d’organisation.

Il ne s’agit pas d’une vraie structure cristalline comme on en trouve dans presque tous les minéraux, par exemple. Les cristaux liquides ne sont pas arrangés selon un motif précis qui se répète dans l’espace. En revanche, ils ont tendance à s’aligner dans une direction bien spécifique lorsqu’ils sont soumis à certains facteurs, comme une température ou un champ électrique.

C’est cette directionnalité, appelée anisotropie, qui est à l’origine des propriétés des cristaux liquides. Par exemple, ceux qui sont utilisés dans les écrans LCD (pour Liquid Crystal Display) réfractent la lumière différemment en fonction de leur orientation. Cela permet d’afficher différentes couleurs en contrôlant localement l’orientation du matériau grâce à de petites impulsions électriques.

Du tissu biologique au cristal liquide

Mais les cristaux liquides n’existent pas seulement dans des objets électroniques. Ils sont aussi omniprésents dans la nature ! Par exemple, la double couche de lipides qui constitue la membrane de nos cellules peut être assimilée à un cristal liquide. Et il ne s’agit pas que d’une anecdote scientifique ; cette organisation est très importante pour maintenir à la fois l’intégrité structurelle et la flexibilité de ces briques fondamentales. En d’autres termes, la dynamique des cristaux liquides est tout simplement essentielle à la vie telle qu’on la connaît.

Pour cette raison, des chercheurs essaient d’explorer plus profondément le rôle biologique des cristaux liquides. Plus spécifiquement, cela fait quelques années que des chercheurs essaient de montrer que les tissus, ces ensembles de cellules organisées de façon à remplir une mission bien précise, peuvent aussi répondre à cette définition.

Vu de l’extérieur, l’intérêt de ces travaux est loin d’être évident. Mais il ne s’agit pas seulement d’un casse-tête très abstrait ; c’est une question qui regorge d’implications pratiques très concrètes. Car si l’on parvient à prouver que les tissus peuvent effectivement être assimilés à des cristaux liquides, cela débloquerait immédiatement un nouveau champ de recherche particulièrement vaste et fascinant. Les outils mathématiques que les physiciens utilisent pour prédire le comportement des cristaux pourraient soudainement être appliqués à la biologie cellulaire, avec des retombées considérables pour la recherche fondamentale et la médecine clinique.

Mais jusqu’à présent, personne n’a réussi à le prouver. Tous ces efforts se sont heurtés au même mur mathématique — ou plus précisément géométrique ; les théoriciens et les expérimentateurs ne sont jamais parvenus à se mettre d’accord sur la symétrie intrinsèque des tissus biologiques. Regrettable, sachant qu’il s’agit de LA caractéristique déterminante d’un cristal liquide.

Les deux concepts enfin réconciliés

Selon Quanta Magazine, certains chercheurs ont réussi à montrer grâce à des simulations informatiques que les groupes de cellules pouvaient présenter une symétrie dite " hexatique ". C’est ce que l’on appelle une symétrie d’ordre six, où les éléments sont arrangés par groupe de six. Mais lors des expériences en laboratoire, elles semblent plutôt adopter une symétrie dite " nématique* ". Pour reprendre l’analogie de Quanta, selon ce modèle, les cellules se comportent comme un fluide composé de particules en forme de barres, un peu comme des allumettes qui s’alignent spontanément dans leur boîte. Il s’agit alors d’une symétrie d’ordre deux. 

C’est là qu’interviennent les auteurs de ces travaux, affiliés à l’université néerlandaise de Leiden. Ils ont suggéré qu’il serait possible d’établir un lien solide entre les tissus biologiques et le modèle des cristaux liquides, à une condition : il faudrait prouver que les tissus présentent les deux symétries à la fois, à des échelles différentes. Plus spécifiquement, les cellules devraient être disposées selon une symétrie d’ordre deux à grande échelle, avec une symétrie d’ordre six cachée à l’intérieur de ce motif qui apparaît lorsque l’on zoome davantage.

L’équipe de recherche a donc commencé par cultiver des couches très fines de tissus dont les contours ont été mis en évidence grâce à un marqueur. Mais pas question d’analyser leur forme à l’œil nu ; la relation qu’ils cherchaient à établir devait impérativement être ancrée dans des données objectives, et pas seulement sur une impression visuelle. Selon Quanta, ils ont donc eu recours à un objet mathématique appelé tenseur de forme grâce auquel ils ont pu décrire mathématiquement la forme et l’orientation de chaque unité.

Grâce à cet outil analytique, ils ont pu observer expérimentalement cette fameuse double symétrie. À grande échelle, dans des groupes de quelques cellules, ils ont observé la symétrie nématique qui avait déjà été documentée auparavant. Et en regardant de plus près, c’est une symétrie hexatique qui ressortait — exactement comme dans les simulations informatiques. " C’était assez incroyable à quel point les données expérimentales et les simulations concordaient ", explique Julia Eckert, co-autrice de ces travaux citée par Quanta.

Une nouvelle manière d’appréhender le fonctionnement du vivant

C’est la première fois qu’une preuve solide de cette relation est établie, et il s’agit incontestablement d’un grand succès expérimental. On sait désormais que certains tissus peuvent être appréhendés comme des cristaux liquides. Et cette découverte pourrait ouvrir la voie à un tout nouveau champ de recherche en biologie.

Au niveau fonctionnel, les implications concrètes de cette relation ne sont pas encore parfaitement claires. Mais la bonne nouvelle, c’est qu’il sera désormais possible d’utiliser des équations de mécanique des fluides qui sont traditionnellement réservées aux cristaux liquides pour étudier la dynamique des cellules.

Et cette nouvelle façon de considérer les tissus pourrait avoir des implications profondes en médecine. Par exemple, cela permettra d’étudier la façon dont certaines cellules migrent à travers les tissus. Ces observations pourraient révéler des mécanismes importants sur les premières étapes du développement des organismes, sur la propagation des cellules cancéreuses qui génère des métastases, et ainsi de suite.

Mais il y a encore une autre perspective encore plus enthousiasmante qui se profile à l’horizon. Il est encore trop tôt pour l’affirmer, mais il est possible que cette découverte représente une petite révolution dans notre manière de comprendre la vie.

En conclusion de l’article de Quanta, un des auteurs de l’étude résume cette idée en expliquant l’une des notions les plus importantes de toute la biologie. On sait depuis belle lurette que l’architecture d’un tissu est à l’origine d’un certain nombre de forces qui définissent directement ses fonctions physiologiques. Dans ce contexte, cette double symétrie pourrait donc être une des clés de voûte de la complexité du vivant, et servir de base à des tas de mécanismes encore inconnus à ce jour ! Il conviendra donc de suivre attentivement les retombées de ces travaux, car ils sont susceptibles de transformer profondément la biophysique et la médecine.

 

Auteur: Internet

Info: Antoine Gautherie, 12 décembre 2023. *Se dit de l'état mésomorphe, plus voisin de l'état liquide que de l'état cristallisé, dans lequel les molécules, de forme allongée, peuvent se déplacer librement mais restent parallèles entre elles, formant ainsi un liquide biréfringent.

[ double dualité ] [ tétravalence ]

 

Commentaires: 0

Ajouté à la BD par miguel

philosophie

AP : Il y a une métaphore qui revient de manière récurrente dans votre ouvrage, qui est celle de l’ampoule et de la lumière. Cette métaphore rappelle vraiment celle de Bergson que je me permets de citer : "Un vêtement est solidaire du clou auquel il est accroché ; il tombe si l’on arrache le clou ; il oscille si le clou remue ; il se troue, il se déchire si la tête du clou est trop pointue ; il ne s’ensuit pas que chaque détail du clou corresponde à un détail du vêtement, ni que le clou soit l’équivalent du vêtement ; encore moins s’ensuit-il que le clou et le vêtement soient la même chose. Ainsi la conscience est incontestablement accrochée à un cerveau mais il ne résulte nullement de là que le cerveau dessine tout le détail de la conscience, ni que la conscience soit une fonction du cerveau."*

ER : Oui, je pense que j’ai cité exactement ceci dans mon livre, ou alors, en réduisant le livre, il est possible que cette référence à Bergson ait sauté. Plusieurs métaphores sont envisageables, mais le cœur du problème est celui du cerveau conscient. Les neuroscientifiques posent (je crois) mal le problème, aussi bien du côté des athées que des spiritualistes puisque, pour faire simple, on est dans la seule alternative suivante. Soit la conscience cérébrale est matérielle et immanente : c’est le point de vue matérialiste. Soit la conscience est un phénomène transcendant et immatériel : c’est le point de vue spiritualiste. Je suis intermédiaire entre les deux. En effet, je prends d’un côté l’immanence (qui implique la possibilité d’une approche scientifique du fait mental), et de l’autre je prends le côté immatériel. J’appelais d’ailleurs à un moment ma théorie "im-im", "immatériel-immanent". Je fais de la conscience un phénomène à la fois immatériel – en un sens précis que j’indiquerai – mais néanmoins immanent. Je ne fais appel à aucune instance surnaturelle pour la conscience. Mon hypothèse "im-im" me place en position intermédiaire entre les deux extrêmes du matérialisme et du spiritualisme.

Sur le fond, l’histoire de la lampe est avant tout une manière de dénoncer certaines "bêtises" que l’on entend dans les neurosciences. Par exemple, on entend souvent que la conscience est le cerveau en marche, qu’elle est au sens de l’identité le cerveau. Changeux dit des choses de ce genre-là, et il n’est pas le seul. Je dis que c’est aussi stupide que si l’on disait que la lumière est la lampe qui la crée. Certes, je pourrais m’exprimer plus diplomatiquement…

AP : Vous développez donc le même argument que Bergson.

ER : Absolument ; mais jusqu’à un certain point seulement. C’est le même argument, à ceci près que la lampe me permet d’aller un peu plus loin. Voyons cela. La matière de la lampe n’est pas différente de la matière qu’on trouve ailleurs. Son secret ne réside pas dans une matière particulière qui serait la sienne, et qui expliquerait sa capacité à émettre de la lumière. Cette capacité est vient au contraire du fait que la lampe réalise les conditions d’émission d’actualisation d’un potentiel inhérent à toute matière, celui d’émettre de la lumière. Je comprends de même que le cerveau conscient est une structure qui réalise les conditions d’émission ou d’actualisation d’une potentialité qui (dans mon hypothèse) est latente dans la matière normale. Latente et universelle. Cette potentialité est celle de l’apparition de la conscience ou, plus généralement, du psychisme (qui englobe l’inconscient et le pré-conscient). Donc, ma métaphore suggère une certaine façon de comprendre le mystère du cerveau conscient.

AP : Oui, mais au risque d’insister sur cette métaphore, je dois dire que je ne l’ai jamais comprise, elle m’a toujours paru fonctionner à vide.

ER : Elle revient à dire qu’une corrélation n’est pas une identité.

AP : Cela, je le comprends très bien. Mais ce que je ne comprends pas, c’est la pertinence de la métaphore : Bergson et vous-même voulez montrer qu’il y a deux ordres de réalité différents : un ordre matériel et un ordre de l’esprit, sachant que l’ordre matériel donne naissance à l’ordre de l’esprit sans que ce dernier ne soit identique à l’ordre matériel. Cela, je le comprends fort bien. Chez vous, l’ampoule donne naissance à la possibilité énergétique de la lumière, mais l’ampoule n’est pas la lumière. Mais ce qui ne me convainc pas, c’est le fait que le clou et le marteau, ou l’ampoule et la lumière, appartiennent au même domaine de réalité : ils sont tous absolument matériels, si bien que cette métaphore me semble inapte à maintenir une différence quant aux ordres de réalité : la métaphore ne fonctionne que parce qu’on abolit dans les objets retenus ce qui justement pose problème, à savoir les différents ordres de réalité.

ER : Non, cette métaphore n’implique rien, dans mon esprit en tout cas, quant à l’identié – ou au contraire l’hétérogénéité – entre les ordres de réalité. D’ailleurs, je crois qu’ils dépendent en partie de nos catégories mentales, qui comportent de l’arbitraire. Si par exemple vous décrétez que la matière est la seule matière pesante, alors la lumière, qui n’est pas pesante, n’est donc pas matérielle en ce sens-là. Tout cela est arbitraire, c’est une question de définition. Vous pouvez à présent dire que la lumière est qualitativement différente de la matière, et vous avez donc une structure matérielle capable d’engendrer quelque chose de différent. Mais j’en profite pour rappeler qu’une métaphore n’est jamais exacte à 100 %. La carte, métaphore graphique du territoire, n’est pas le territoire. C’est juste une voie d’accès, une approximation de la vérité, qui permet à certains d’accéder à l’essentiel d’un message. Sans entrer dans ses détails plus ou moins subtils.

AP : Oui, je suis d’accord, mais il n’en demeure pas moins que la validité de la métaphore repose tout entière sur une pétition de principe : on prend pour acquis ce qui est très problématique, on évacue le problème, que ce soit chez Bergson ou chez vous puisqu’on crée une métaphore qui évite de penser ce problème : comment deux ordres de réalité différents peuvent être corrélés ? Le problème de Bergson est précisément de penser à la fois la solidarité de deux éléments et leur différence ontologique : mais au lieu de cela, il pose d’emblée une communauté ontologique (le clou et le manteau), et je crains que la métaphore que vous prenez pour illustrer la même idée fonctionne de la même manière ; je vous cite (p 52) : "Le cerveau sera alors conçu comme une machine à produire de la conscience, sans que cela implique la nature matérielle de cette dernière. Exactement à la manière dont une lampe, faite de matière solide et pesante, est néanmoins capable de produire de la lumière, qui est énergie pure et sans masse." On a le même problème : l’ampoule et la lumière ne sont pas strictement identiques, bien sûr, mais dans les deux cas on est dans ordre matériel, l’énergie pure est quantifiable, elle est objectivable, elle est matérielle, tout comme l’est l’ampoule. Par conséquent, on ne se demande plus comment ce qui est de deux ordres de réalité différents peut entrer en contact ou peut être corrélé, on prend au contraire la possibilité du contact comme acquise, parce qu’on écrase en fait la différence ontologique des deux éléments, alors même qu’elle devrait poser problème. Le clou et le manteau sont en contact parce qu’ils appartiennent tous les deux à la matière ; or, si la conscience est immatérielle, et le cerveau matériel, la question du contact se pose de manière très différente que dans le cas du clou et du manteau ou de l’ampoule et de la lumière.

ER : Cette métaphore est simplement une réaction par rapport à ceux qui identifient purement et simplement conscience et cerveau ; alors je leur dis que c’est comme si vous disiez que la lampe et la lumière sont la même chose. Or une telle identification est stupide, on le sait instinctivement.

AP : Oui, tout cela je le comprends ; mais je considère juste que cette métaphore n’est pas valide, précisément en raison de l’oubli de la différenciation ontologique des éléments qu’elle utilise (la lumière et l’ampoule ne sont pas ontologiquement différentes), alors même qu’elle est censée prouver la non-identité des deux termes, leur différence ontologique (la conscience est immatérielle, le cerveau est matériel). Bref, je ne vois pas bien en quoi ça réfute réellement la thèse matérialiste puisque la métaphore est obligée pour fonctionner, c’est-à-dire pour penser la corrélation, de prendre deux éléments qui appartiennent nécessairement au même ordre de réalité. Et le matérialisme ne dit rien d’autre.

ER : Ecoutez, je me permettrai modestement de dire que ça ne vaut pas la peine qu’on en fasse une telle histoire. Je rapelle deux choses cependant. D’une part, ma métaphore, contrairement je crois à celle de Bergson, invite à comprendre le cerveau (ou la "lampe à conscience") comme un outil de production d’autre chose – la conscience – SANS préjuger de l’identité ontologique, ou non, entre les deux. D’autre part, je suis un peu perplexe sur ce que vous dites sur la possibilité du contact entre matière (cérébrale, ou autre) et la conscience. Car ce contact est au coeur de mon livre, dont le but premier est précisément de proposer une solution à cette énigme. Ce n’est rien de moins que son sujet central ! Je crois pouvoir la résoudre, en m’appuyant sur la physique quantique (dépouillée des confusions et contresens qui l’entourent) et la notion de psychomatière. Tout mon livre est là… et je suppose que cela ne vous a pas échappé. En fait, je commence à douter : ai-je été suffisamment clair pour le lecteur ?

Auteur: Ransford Emmanuel

Info: Sur actu-philosophia, interview de Thibaut Gress, 7.1 2010 à propos de son livre "Les racines physiques de l’esprit ". *Henri Bergson, L’énergie spirituelle, Edition du centenaire, PUF, 1959, p. 842

[ dualité prison ] [ rationalisme impuissant ] [ limitation sémantique ]

 

Commentaires: 0

Ajouté à la BD par miguel

tour d'horizon de l'IA

Intelligence artificielle symbolique et machine learning, l’essor des technologies disruptives

Définie par le parlement Européen comme la " reproduction des comportements liés aux humains, tels que le raisonnement, la planification et la créativité ", l’intelligence artificielle s’initie de façon spectaculaire dans nos vies. Théorisée au milieu des années 50, plusieurs approches technologiques coexistent telles que l’approche machine learning dite statistique basée sur l’apprentissage automatique, ou l’approche symbolique basée sur l’interprétation et la manipulation des symboles. Mais comment se différencient ces approches ? Et pour quels usages ?

L’intelligence artificielle, une histoire ancienne

Entre les années 1948 et 1966, l’Intelligence Artificielle a connu un essor rapide, stimulé par des financements importants du gouvernement américain pour des projets de recherche sur l’IA, notamment en linguistique. Des progrès significatifs ont été réalisés dans la résolution de problèmes de logique symbolique, mais la capacité de l’IA à traiter des données complexes et imprécises était encore limitée.

A la fin des années 70, plus précisément lors du deuxième “été de l’IA” entre 1978 et 1987,  l’IA connaît un regain d’intérêt. Les chercheurs ont commencé à explorer de nouvelles approches, notamment l’utilisation de réseaux neuronaux et de systèmes experts. Les réseaux neuronaux sont des modèles de traitement de l’information inspirés par le fonctionnement du cerveau humain, tandis que les systèmes experts sont des programmes informatiques qui simulent l’expertise humaine dans un domaine spécifique.

Il faudra attendre la fin des années 90 pour voir un renouveau de ces domaines scientifiques, stimulé par des avancées majeures dans le traitement des données et les progrès de l’apprentissage automatique. C’est d’ailleurs dans cette période qu’une IA, Deepblue, gagne contre le champion mondial Garry Kasparov aux échecs.$

Au cours des dernières années, cette technologie a connu une croissance exponentielle, stimulée par des progrès majeurs dans le deep learning, la robotique ou la compréhension du langage naturel (NLU). L’IA est maintenant utilisée dans un large éventail de domaines, notamment la médecine, l’agriculture, l’industrie et les services. C’est aujourd’hui un moteur clé de l’innovation et de la transformation de notre monde, accentué par l’essor des generative AIs. 

Parmi ces innovations, deux grandes approches en intelligence artificielle sont aujourd’hui utilisées : 

1 - Le Machine Learning : qui est un système d’apprentissage automatique basé sur l’exploitation de données, imitant un réseau neuronal

2 - L’IA Symbolique : qui se base sur un système d’exploitation de " symboles ”, ce qui inspire des technologies comme le “système expert” basé sur une suite de règles par exemple.

Mais comment fonctionnent ces deux approches et quels sont leurs avantages et leurs inconvénients ? Quels sont leurs champs d’application ? Peuvent-ils être complémentaires ?

Le machine learning

Le Machine Learning est le courant le plus populaire ces dernières années, il est notamment à l’origine de ChatGPT ou bien MidJourney, qui font beaucoup parler d’eux ces derniers temps. Le Machine Learning (ML) est une famille de méthodes d’apprentissage automatique qui permet aux ordinateurs d’apprendre à partir de données, sans être explicitement programmés. En utilisant des algorithmes, le ML permet aux ordinateurs de comprendre les structures et les relations dans les données et de les utiliser pour prendre des décisions.

Le ML consiste à entraîner des modèles informatiques sur de vastes ensembles de données. Ces modèles sont des algorithmes auto apprenant se basant sur des échantillons de données, tout en déterminant des schémas et des relations/corrélations entre elles. Le processus d’entraînement consiste à fournir à l’algorithme des données étiquetées, c’est-à-dire des données qui ont déjà été classifiées ou étiquetées pour leur attribuer une signification. L’algorithme apprend ensuite à associer les caractéristiques des données étiquetées aux catégories définies en amont. Il existe cependant une approche non-supervisée qui consiste à découvrir ce que sont les étiquettes elles-mêmes (ex: tâche de clustering).

Traditionnellement, le machine learning se divise en 4 sous-catégories : 

Apprentissage supervisé : 

Les ensembles de données sont étiquetés, ce qui permet à l’algorithme de trouver des corrélations et des relations entre les caractéristiques des données et les étiquettes correspondantes. 

Apprentissage non supervisé : 

Les ensembles de données ne sont pas étiquetés et l’algorithme doit découvrir les étiquettes par lui-même. 

Apprentissage semi-supervisé : 

L’algorithme utilise un mélange de données étiquetées et non étiquetées pour l’entraînement.

Apprentissage par renforcement : 

L’algorithme apprend à prendre des décisions en interagissant avec son environnement. Il reçoit des récompenses ou des pénalités pour chaque action, ce qui lui permet d’ajuster sa stratégie pour maximiser sa récompense globale.

Un exemple d’application du Machine Learning est la reconnaissance d’images. Des modèles d’apprentissages profonds sont entraînés sur des millions d’images pour apprendre à reconnaître des objets, des personnes, des animaux, etc. Un autre exemple est la prédiction de la demande dans le commerce de détail, où des modèles sont entraînés sur des données de ventes passées pour prédire les ventes futures.

Quels sont les avantages ? 

Étant entraîné sur un vaste corpus de données, le ML permet de prédire des tendances en fonction de données.  

- Le machine learning offre la capacité de détecter des tendances and des modèles dans les données qui peuvent échapper à l’observation humaine.

- Une fois configuré, le machine learning peut fonctionner de manière autonome, sans l’intervention humaine. Par exemple, dans le domaine de la cybersécurité, il peut surveiller en permanence le trafic réseau pour identifier les anomalies.

- Les résultats obtenus par le machine learning peuvent s’affiner et s’améliorer avec le temps, car l’algorithme peut apprendre de nouvelles informations et ajuster ses prédictions en conséquence.

- Le machine learning est capable de traiter des volumes massifs et variés de données, même dans des environnements dynamiques et complexes.

L’intelligence artificielle symbolique

L’IA symbolique est une autre approche de l’intelligence artificielle. Elle utilise des symboles and des règles de traitement de l’information pour effectuer des tâches. Les symboles peuvent être des concepts, des objets, des relations, etc. Les règles peuvent être des règles de déduction, des règles de production, des règles d’inférence…etc.

Un exemple d’application de l’IA symbolique est le système expert. Un système expert est un programme informatique qui utilise des règles de déduction pour résoudre des problèmes dans un domaine spécifique, comme le diagnostic médical ou l’aide à la décision en entreprise. Un autre exemple est la traduction automatique basée sur des règles, les règles de grammaire et de syntaxe sont utilisées pour traduire un texte d’une langue à une autre.

Quelques exemples d’usages de l’IA symbolique :

La traduction

L’IA symbolique a été utilisée pour développer des systèmes de traduction automatique basés sur des règles. Ces systèmes utilisent des règles de grammaire et de syntaxe pour convertir un texte d’une langue à une autre. Par exemple, le système SYSTRAN, développé dans les années 1960, est un des premiers systèmes de traduction automatique basé sur des règles. Ce type de système se distingue des approches basées sur le Machine Learning, comme Google Translate, qui utilisent des modèles statistiques pour apprendre à traduire des textes à partir de corpus bilingues.

Le raisonnement logique

L’IA symbolique est également utilisée pour développer des systèmes capables de raisonnement logique, en exploitant des règles et des connaissances déclaratives pour résoudre des problèmes complexes. Par exemple, les systèmes d’aide à la décision basés sur des règles peuvent être utilisés dans des domaines tels que la finance, l’assurance ou la logistique, pour aider les entreprises à prendre des décisions éclairées. Un exemple concret est le système MYCIN, développé dans les années 1970 pour aider les médecins à diagnostiquer des infections bactériennes et à prescrire des antibiotiques adaptés.

L’analyse de textes

L’IA symbolique peut être utilisée pour l’analyse de textes, en exploitant des règles et des connaissances linguistiques pour extraire des informations pertinentes à partir de documents. Par exemple, les systèmes d’extraction d’information basés sur des règles peuvent être utilisés pour identifier des entités nommées (noms de personnes, d’organisations, de lieux, etc.) et des relations entre ces entités dans des textes. Un exemple d’application est l’analyse et la catégorisation des messages entrants pour les entreprises, cœur de métier de Golem.ai avec la solution InboxCare.

Les avantages de l’IA symbolique 

L’IA symbolique est une approche qui utilise des symboles, et parfois des " règles” basées sur des connaissances, qui comporte plusieurs avantages :

- Explicablilité : Les décisions prises par les systèmes d’IA symbolique sont explicites et peuvent être expliquées en fonction des règles logiques et des connaissances déclaratives utilisées par le système. Cette transparence peut être essentielle dans des applications critiques, comme la médecine ou la défense.

- Frugalité : Contrairement au Machine Learning, l’IA symbolique ne nécessite pas d’entraînement, ce qui la rend moins gourmande en énergie à la fois lors de la conception et de l’utilisation.

- Adaptabilité : Les systèmes d’IA symbolique peuvent être facilement adaptés à de nouveaux domaines en ajoutant de nouvelles règles logiques et connaissances déclaratives à leurs bases de connaissances existantes, leurs permettant de s’adapter rapidement à de nouvelles situations.

L’intelligence artificielle hybride ou le neuro-symbolique 

Les systèmes hybrides combinent les avantages de l’IA symbolique et du Machine Learning en utilisant une approche mixte. Dans ce type de système, l’IA symbolique est utilisée pour représenter les connaissances et les règles logiques dans un domaine spécifique. Les techniques de Machine Learning sont ensuite utilisées pour améliorer les performances de l’IA symbolique en utilisant des ensembles de données pour apprendre des modèles de décision plus précis et plus flexibles. Mais nous pouvons également voir d’autres articulations comme la taxonomie de Kautz par exemple.

L’IA symbolique est souvent utilisée dans des domaines où il est important de comprendre et de contrôler la façon dont les décisions sont prises, comme la médecine, la finance ou la sécurité. En revanche, le Machine Learning est souvent utilisé pour des tâches de classification ou de prédiction à grande échelle, telles que la reconnaissance de voix ou d’image, ou pour détecter des modèles dans des données massives.

En combinant les deux approches, les systèmes hybrides peuvent bénéficier de la compréhensibilité et de la fiabilité de l’IA symbolique, tout en utilisant la flexibilité et la capacité de traitement massif de données du Machine Learning pour améliorer la performance des décisions. Ces systèmes hybrides peuvent également offrir une plus grande précision et un temps de réponse plus rapide que l’une ou l’autre approche utilisée seule.

Que retenir de ces deux approches ?

L’Intelligence Artificielle est en constante évolution et transforme de nombreux secteurs d’activité. Les deux approches principales de l’IA ont leurs avantages et inconvénients et peuvent être complémentaires. Il est donc crucial pour les entreprises de comprendre ces technologies pour rester compétitives. 

Cependant, les implications éthiques et sociales de l’IA doivent également être prises en compte. Les décisions des algorithmes peuvent avoir un impact sur la vie des personnes, leur travail, leurs droits et leurs libertés. Il est donc essentiel de mettre en place des normes éthiques et des réglementations pour garantir que l’IA soit au service de l’humanité. Les entreprises et les gouvernements doivent travailler ensemble pour développer des IA responsables, transparentes et équitables qui servent les intérêts de tous. En travaillant ensemble, nous pouvons assurer que l’IA soit une force positive pour l’humanité dans les années à venir. 



 

Auteur: Merindol Hector

Info: https://golem.ai/en/blog/technologie/ia-symbolique-machinelearning-nlp - 4 avril 2023

[ dualité ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

homme-machine

Les grands modèles de langage tels que ChatGPT sont aujourd'hui suffisamment importants pour commencer à afficher des comportements surprenants et imprévisibles.

Quel film ces emojis décrivent-ils ? (On voit une vidéo qui présente des myriades d'émoji formant des motifs mouvants, modélisés à partir de métadonnées)

Cette question était l'une des 204 tâches choisies l'année dernière pour tester la capacité de divers grands modèles de langage (LLM) - les moteurs de calcul derrière les chatbots d'IA tels que ChatGPT. Les LLM les plus simples ont produit des réponses surréalistes. "Le film est un film sur un homme qui est un homme qui est un homme", commençait l'un d'entre eux. Les modèles de complexité moyenne s'en sont approchés, devinant The Emoji Movie. Mais le modèle le plus complexe l'a emporté en une seule réponse : Finding Nemo.

"Bien que j'essaie de m'attendre à des surprises, je suis surpris par ce que ces modèles peuvent faire", a déclaré Ethan Dyer, informaticien chez Google Research, qui a participé à l'organisation du test. C'est surprenant parce que ces modèles sont censés n'avoir qu'une seule directive : accepter une chaîne de texte en entrée et prédire ce qui va suivre, encore et encore, en se basant uniquement sur des statistiques. Les informaticiens s'attendaient à ce que le passage à l'échelle permette d'améliorer les performances sur des tâches connues, mais ils ne s'attendaient pas à ce que les modèles puissent soudainement gérer autant de tâches nouvelles et imprévisibles.

Des études récentes, comme celle à laquelle a participé M. Dyer, ont révélé que les LLM peuvent produire des centaines de capacités "émergentes", c'est-à-dire des tâches que les grands modèles peuvent accomplir et que les petits modèles ne peuvent pas réaliser, et dont beaucoup ne semblent pas avoir grand-chose à voir avec l'analyse d'un texte. Ces tâches vont de la multiplication à la génération d'un code informatique exécutable et, apparemment, au décodage de films à partir d'emojis. De nouvelles analyses suggèrent que pour certaines tâches et certains modèles, il existe un seuil de complexité au-delà duquel la fonctionnalité du modèle monte en flèche. (Elles suggèrent également un sombre revers de la médaille : À mesure qu'ils gagnent en complexité, certains modèles révèlent de nouveaux biais et inexactitudes dans leurs réponses).

"Le fait que les modèles de langage puissent faire ce genre de choses n'a jamais été abordé dans la littérature à ma connaissance", a déclaré Rishi Bommasani, informaticien à l'université de Stanford. L'année dernière, il a participé à la compilation d'une liste de dizaines de comportements émergents, dont plusieurs ont été identifiés dans le cadre du projet de M. Dyer. Cette liste continue de s'allonger.

Aujourd'hui, les chercheurs s'efforcent non seulement d'identifier d'autres capacités émergentes, mais aussi de comprendre pourquoi et comment elles se manifestent - en somme, d'essayer de prédire l'imprévisibilité. La compréhension de l'émergence pourrait apporter des réponses à des questions profondes concernant l'IA et l'apprentissage automatique en général, comme celle de savoir si les modèles complexes font vraiment quelque chose de nouveau ou s'ils deviennent simplement très bons en statistiques. Elle pourrait également aider les chercheurs à exploiter les avantages potentiels et à limiter les risques liés à l'émergence.

"Nous ne savons pas comment déterminer dans quel type d'application la capacité de nuisance va se manifester, que ce soit en douceur ou de manière imprévisible", a déclaré Deep Ganguli, informaticien à la startup d'IA Anthropic.

L'émergence de l'émergence

Les biologistes, les physiciens, les écologistes et d'autres scientifiques utilisent le terme "émergent" pour décrire l'auto-organisation, les comportements collectifs qui apparaissent lorsqu'un grand nombre d'éléments agissent comme un seul. Des combinaisons d'atomes sans vie donnent naissance à des cellules vivantes ; les molécules d'eau créent des vagues ; des murmurations d'étourneaux s'élancent dans le ciel selon des schémas changeants mais identifiables ; les cellules font bouger les muscles et battre les cœurs. Il est essentiel que les capacités émergentes se manifestent dans les systèmes qui comportent de nombreuses parties individuelles. Mais ce n'est que récemment que les chercheurs ont été en mesure de documenter ces capacités dans les LLM, car ces modèles ont atteint des tailles énormes.

Les modèles de langage existent depuis des décennies. Jusqu'à il y a environ cinq ans, les plus puissants étaient basés sur ce que l'on appelle un réseau neuronal récurrent. Ceux-ci prennent essentiellement une chaîne de texte et prédisent le mot suivant. Ce qui rend un modèle "récurrent", c'est qu'il apprend à partir de ses propres résultats : Ses prédictions sont réinjectées dans le réseau afin d'améliorer les performances futures.

En 2017, les chercheurs de Google Brain ont introduit un nouveau type d'architecture appelé "transformateur". Alors qu'un réseau récurrent analyse une phrase mot par mot, le transformateur traite tous les mots en même temps. Cela signifie que les transformateurs peuvent traiter de grandes quantités de texte en parallèle. 

Les transformateurs ont permis d'augmenter rapidement la complexité des modèles de langage en augmentant le nombre de paramètres dans le modèle, ainsi que d'autres facteurs. Les paramètres peuvent être considérés comme des connexions entre les mots, et les modèles s'améliorent en ajustant ces connexions au fur et à mesure qu'ils parcourent le texte pendant l'entraînement. Plus il y a de paramètres dans un modèle, plus il peut établir des connexions avec précision et plus il se rapproche d'une imitation satisfaisante du langage humain. Comme prévu, une analyse réalisée en 2020 par les chercheurs de l'OpenAI a montré que les modèles gagnent en précision et en capacité au fur et à mesure qu'ils s'étendent.

Mais les débuts des LLM ont également apporté quelque chose de vraiment inattendu. Beaucoup de choses. Avec l'avènement de modèles tels que le GPT-3, qui compte 175 milliards de paramètres, ou le PaLM de Google, qui peut être étendu à 540 milliards de paramètres, les utilisateurs ont commencé à décrire de plus en plus de comportements émergents. Un ingénieur de DeepMind a même rapporté avoir pu convaincre ChatGPT qu'il s'était lui-même un terminal Linux et l'avoir amené à exécuter un code mathématique simple pour calculer les 10 premiers nombres premiers. Fait remarquable, il a pu terminer la tâche plus rapidement que le même code exécuté sur une vraie machine Linux.

Comme dans le cas du film emoji, les chercheurs n'avaient aucune raison de penser qu'un modèle de langage conçu pour prédire du texte imiterait de manière convaincante un terminal d'ordinateur. Nombre de ces comportements émergents illustrent l'apprentissage "à zéro coup" ou "à quelques coups", qui décrit la capacité d'un LLM à résoudre des problèmes qu'il n'a jamais - ou rarement - vus auparavant. Selon M. Ganguli, il s'agit là d'un objectif de longue date dans la recherche sur l'intelligence artificielle. Le fait de montrer que le GPT-3 pouvait résoudre des problèmes sans aucune donnée d'entraînement explicite dans un contexte d'apprentissage à zéro coup m'a amené à abandonner ce que je faisais et à m'impliquer davantage", a-t-il déclaré.

Il n'était pas le seul. Une série de chercheurs, qui ont détecté les premiers indices montrant que les LLM pouvaient dépasser les contraintes de leurs données d'apprentissage, s'efforcent de mieux comprendre à quoi ressemble l'émergence et comment elle se produit. La première étape a consisté à documenter minutieusement l'émergence.

Au-delà de l'imitation

En 2020, M. Dyer et d'autres chercheurs de Google Research ont prédit que les LLM auraient des effets transformateurs, mais la nature de ces effets restait une question ouverte. Ils ont donc demandé à la communauté des chercheurs de fournir des exemples de tâches difficiles et variées afin de déterminer les limites extrêmes de ce qu'un LLM pourrait faire. Cet effort a été baptisé "Beyond the Imitation Game Benchmark" (BIG-bench), en référence au nom du "jeu d'imitation" d'Alan Turing, un test visant à déterminer si un ordinateur peut répondre à des questions d'une manière humaine convaincante. (Le groupe s'est particulièrement intéressé aux exemples où les LLM ont soudainement acquis de nouvelles capacités qui étaient totalement absentes auparavant.

"La façon dont nous comprenons ces transitions brutales est une grande question de la echerche", a déclaré M. Dyer.

Comme on pouvait s'y attendre, pour certaines tâches, les performances d'un modèle se sont améliorées de manière régulière et prévisible au fur et à mesure que la complexité augmentait. Pour d'autres tâches, l'augmentation du nombre de paramètres n'a apporté aucune amélioration. Mais pour environ 5 % des tâches, les chercheurs ont constaté ce qu'ils ont appelé des "percées", c'est-à-dire des augmentations rapides et spectaculaires des performances à partir d'un certain seuil d'échelle. Ce seuil variant en fonction de la tâche et du modèle.

Par exemple, les modèles comportant relativement peu de paramètres - quelques millions seulement - n'ont pas réussi à résoudre des problèmes d'addition à trois chiffres ou de multiplication à deux chiffres, mais pour des dizaines de milliards de paramètres, la précision a grimpé en flèche dans certains modèles. Des sauts similaires ont été observés pour d'autres tâches, notamment le décodage de l'alphabet phonétique international, le décodage des lettres d'un mot, l'identification de contenu offensant dans des paragraphes d'hinglish (combinaison d'hindi et d'anglais) et la formulation d'équivalents en langue anglaise, traduit à partir de proverbes kiswahili.

Introduction

Mais les chercheurs se sont rapidement rendu compte que la complexité d'un modèle n'était pas le seul facteur déterminant. Des capacités inattendues pouvaient être obtenues à partir de modèles plus petits avec moins de paramètres - ou formés sur des ensembles de données plus petits - si les données étaient d'une qualité suffisamment élevée. En outre, la formulation d'une requête influe sur la précision de la réponse du modèle. Par exemple, lorsque Dyer et ses collègues ont posé la question de l'emoji de film en utilisant un format à choix multiples, l'amélioration de la précision a été moins soudaine qu'avec une augmentation graduelle de sa complexité. L'année dernière, dans un article présenté à NeurIPS, réunion phare du domaine, des chercheurs de Google Brain ont montré comment un modèle invité à s'expliquer (capacité appelée raisonnement en chaîne) pouvait résoudre correctement un problème de mots mathématiques, alors que le même modèle sans cette invitation progressivement précisée n'y parvenait pas.

 Yi Tay, scientifique chez Google Brain qui a travaillé sur l'étude systématique de ces percées, souligne que des travaux récents suggèrent que l'incitation par de pareilles chaînes de pensées modifie les courbes d'échelle et, par conséquent, le point où l'émergence se produit. Dans leur article sur NeurIPS, les chercheurs de Google ont montré que l'utilisation d'invites via pareille chaines de pensée progressives pouvait susciter des comportements émergents qui n'avaient pas été identifiés dans l'étude BIG-bench. De telles invites, qui demandent au modèle d'expliquer son raisonnement, peuvent aider les chercheurs à commencer à étudier les raisons pour lesquelles l'émergence se produit.

Selon Ellie Pavlick, informaticienne à l'université Brown qui étudie les modèles computationnels du langage, les découvertes récentes de ce type suggèrent au moins deux possibilités pour expliquer l'émergence. La première est que, comme le suggèrent les comparaisons avec les systèmes biologiques, les grands modèles acquièrent réellement de nouvelles capacités de manière spontanée. "Il se peut très bien que le modèle apprenne quelque chose de fondamentalement nouveau et différent que lorsqu'il était de taille inférieure", a-t-elle déclaré. "C'est ce que nous espérons tous, qu'il y ait un changement fondamental qui se produise lorsque les modèles sont mis à l'échelle.

L'autre possibilité, moins sensationnelle, est que ce qui semble être émergent pourrait être l'aboutissement d'un processus interne, basé sur les statistiques, qui fonctionne par le biais d'un raisonnement de type chaîne de pensée. Les grands LLM peuvent simplement être en train d'apprendre des heuristiques qui sont hors de portée pour ceux qui ont moins de paramètres ou des données de moindre qualité.

Mais, selon elle, pour déterminer laquelle de ces explications est la plus probable, il faut mieux comprendre le fonctionnement des LLM. "Comme nous ne savons pas comment ils fonctionnent sous le capot, nous ne pouvons pas dire laquelle de ces choses se produit.

Pouvoirs imprévisibles et pièges

Demander à ces modèles de s'expliquer pose un problème évident : Ils sont des menteurs notoires. Nous nous appuyons de plus en plus sur ces modèles pour effectuer des travaux de base", a déclaré M. Ganguli, "mais je ne me contente pas de leur faire confiance, je vérifie leur travail". Parmi les nombreux exemples amusants, Google a présenté en février son chatbot d'IA, Bard. Le billet de blog annonçant le nouvel outil montre Bard en train de commettre une erreur factuelle.

L'émergence mène à l'imprévisibilité, et l'imprévisibilité - qui semble augmenter avec l'échelle - rend difficile pour les chercheurs d'anticiper les conséquences d'une utilisation généralisée.

"Il est difficile de savoir à l'avance comment ces modèles seront utilisés ou déployés", a déclaré M. Ganguli. "Et pour étudier les phénomènes émergents, il faut avoir un cas en tête, et on ne sait pas, avant d'avoir étudié l'influence de l'échelle. quelles capacités ou limitations pourraient apparaître.

Dans une analyse des LLM publiée en juin dernier, les chercheurs d'Anthropic ont cherché à savoir si les modèles présentaient certains types de préjugés raciaux ou sociaux, à l'instar de ceux précédemment signalés dans les algorithmes non basés sur les LLM utilisés pour prédire quels anciens criminels sont susceptibles de commettre un nouveau délit. Cette étude a été inspirée par un paradoxe apparent directement lié à l'émergence : Lorsque les modèles améliorent leurs performances en passant à l'échelle supérieure, ils peuvent également augmenter la probabilité de phénomènes imprévisibles, y compris ceux qui pourraient potentiellement conduire à des biais ou à des préjudices.

"Certains comportements nuisibles apparaissent brusquement dans certains modèles", explique M. Ganguli. Il se réfère à une analyse récente des LLM, connue sous le nom de BBQ benchmark, qui a montré que les préjugés sociaux émergent avec un très grand nombre de paramètres. "Les grands modèles deviennent brusquement plus biaisés. Si ce risque n'est pas pris en compte, il pourrait compromettre les sujets de ces modèles."

Mais il propose un contrepoint : Lorsque les chercheurs demandent simplement au modèle de ne pas se fier aux stéréotypes ou aux préjugés sociaux - littéralement en tapant ces instructions - le modèle devient moins biaisé dans ses prédictions et ses réponses. Ce qui suggère que certaines propriétés émergentes pourraient également être utilisées pour réduire les biais. Dans un article publié en février, l'équipe d'Anthropic a présenté un nouveau mode d'"autocorrection morale", dans lequel l'utilisateur incite le programme à être utile, honnête et inoffensif.

Selon M. Ganguli, l'émergence révèle à la fois un potentiel surprenant et un risque imprévisible. Les applications de ces grands LLM prolifèrent déjà, de sorte qu'une meilleure compréhension de cette interaction permettra d'exploiter la diversité des capacités des modèles de langage.

"Nous étudions la manière dont les gens utilisent réellement ces systèmes", a déclaré M. Ganguli. Mais ces utilisateurs sont également en train de bricoler, en permanence. "Nous passons beaucoup de temps à discuter avec nos modèles, et c'est là que nous commençons à avoir une bonne intuition de la confiance ou du manque de confiance.

Auteur: Ornes Stephen

Info: https://www.quantamagazine.org/ - 16 mars 2023. Trad DeepL et MG

[ dialogue ] [ apprentissage automatique ] [ au-delà du jeu d'imitation ] [ dualité ]

 

Commentaires: 0

Ajouté à la BD par miguel