Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 25
Temps de recherche: 0.0382s

kabbalisme

Selon Isaac Luria, le Divin primordial, pur esprit, qui remplit tout, dut d’abord se retirer de lui-même en lui-même pour créer l’espace qui abriterait sa création. Cette contraction de l’essence de Dieu en lui-même afin de laisser un espace pour l’univers avait eu pour effet de retirer l’essence de Dieu toujours plus loin de cet univers. Telle était la solution que Luria proposait pour rendre compte de la façon dont Tout avait été créé à partir de rien, mystère des mystères. Le néant avait lui aussi été créé. Le néant était le volume duquel Dieu retira son essence qui remplissait tout. Le commentaire du XVIIe siècle que lisait Pauli interprétait le récit de Luria comme une métaphore de l’essence de l’homme. Il affirmait que le tsimtsum renvoyait à la barrière entre l’homme, c’est-à-dire la conscience individuelle de l’homme, et Dieu. Ce rideau à travers lequel l’homme ne pouvait pas voir lui donnait l’apparence d’un moi indépendant de Dieu et l’illusion d’une liberté de décision.
A l’intérieur du vide créé par le tsimtsum, Dieu fit rayonner sa lumière divine. Cette lumière infinie pénétrait l’espace comme une balise, entrant en collision avec des fragments de l’essence de Dieu qui était encore en plein processus de retrait. L’univers, créé de la collision cosmique de ces deux manifestations divines, allait occuper l’espace ainsi libéré. Les sephirot avaient la tâche de donner un lieu à la lumière divine, tels des réceptacles conçus pour la contenir. Mais tragédie : les sephirot inférieures, éloignées de Dieu et donc privées de certaines des qualités divines, furent débordées ; incapables de contenir la lumière divine, elles se brisèrent et, volant en éclats, éparpillèrent leurs précieux contenus dans tous les coins de l’espace nouvellement créé. C’était la shevira, la brisure des vases. Non, disait le commentaire, ce n’était pas une tragédie, car il ne pouvait rien exister qui ne fût intentionnel. C’était la catharsis d’une nouvelle naissance, d’un nouveau commencement, d’une nouvelle création. Les convulsions, la douleur, la brisure du vase qui accompagnent l’entrée au monde de chaque nouveau-né sont de même une catharsis nécessaire, séparant le potentiel de l’effectif. C’est ce qui se passe dans la shevira. C’est à cause de la shevira que ce monde, que nous appelons "réel", est imparfait, en désordre et composées de parties, livré au mal. Le saint dessein de la Création est tikkun, le rassemblement de toutes ces étincelles divines venant des quatre coins de l’univers, pour restaurer l’ordre primordial, divin.

Auteur: Keve Tom

Info: Dans "Trois explications du monde", pages 385-386

[ cosmogonie ] [ ordonnancement ] [ tsimtsoum ] [ origine des origines ]

 
Mis dans la chaine

Commentaires: 0

Ajouté à la BD par Coli Masson

nanomonde

Le carbone en effet est un élément singulier : c'est le seul qui soit capable de s'unir avec lui-même en longues chaines stables sans grande dépense d'énergie, et à la vie sur terre (la seule que nous connaissions jusqu'ici) il faut justement de longues chaines. C'est pourquoi le carbone est l'élément clef de la substance vivante - mais sa promotion, son entrée dans le monde vivant, n'est pas aisée, elle doit suivre un itinéraire obligé, compliqué, qui n'a été éclairci (et pas définitivement encore) que ces dernières années. Si l'avatar organique du carbone ne se déroulait pas quotidiennement autour de nous, à l'échelle de milliards de tonnes par semaine, partout où affleure le vert d'une feuille, le nom de miracle lui reviendrait de plein droit.

L'atome dont nous parlons, accompagné de ses deux satellites* qui le maintiennent à l'état de gaz, fut donc entrainé par le vent le long d'un espalier de vigne, dans l'année 1848, il eut la chance de frôler une feuille, d'y pénétrer et d'y être fixé par un rayon de soleil. Si mon langage se fait ici imprécis et allusif, ce n'est pas seulement en raison de mon ignorance : cet événement décisif, ce fulgurant travail à trois - de l'anhydride carbonique, de la lumière et du vert végétal - n'a pas jusqu'à présent été décrit en termes définitifs, et peut-être ne le sera-t'il pas pendant longtemps encore, tellement il est différent de cette autre chimie "organique" qui est l'oeuvre encombrante, lente et puissante de l'humain ; et cependant cette chimie fine et déliée a été "inventée" il y a deux ou trois milliards d'années par nos soeurs silencieuses, les plantes, qui n'expérimentent et ne discutent pas, et dont la température est identique à celle de l'ambiance où nous vivons. Si comprendre c'est se faire une image, nous ne nous ferons jamais une image d'un happening à l'échelle du millionnième de milimètre, dont le rythme est le millionnième de seconde et dont les acteurs, par leur essence mêmes, sont invisibles. Toute description verbale sera donc défaillante  et l'une vaudra l'autre : acceptons donc la suivante.

Il entre dans la feuille, se heurtant à d'innombrables, mais inutiles ici, molécules d'azote et d'hydrogène. Il adhère à une grosse molécule compliquée qui l'active et reçoit en même temps le message décisif du ciel, sous la forme fulgurante d'un petit paquet de lumière solaire. En un instant, comme un insecte devenu la proie de l'araignée, il est séparé de son oxygène, combiné avec de l'hydrogène et (croit-on) du phosphore, pour être finalement inséré dans une chaine, longue ou courte - peu importe -, mais qui est la chaine de la vie. Tout cela se fait rapidement, en silence, à la température et à la pression de l'athmosphère, et gratuitement. Chers collègues, quand nous auront appris à en faire autant, nous seront sicut Deus et nous aurons ainsi résolu le problème de la faim dans le monde.

Auteur: Levi Primo

Info: Le système périodique, livre de poche, pp 245-247 *Le carbone a 2 électrons sur la 1e couche qui ne peut contenir que 2 électrons au maximum: et 4 électrons sur la 2e couche qui pourrait en abriter 8 en tout:

[ végétaux ] [ épigenèse ] [ homme-végétal ] [ tétravalence ] [ photosynthèse ]

 

Commentaires: 0

Ajouté à la BD par miguel

cosmologie

Des planètes-océans en phase de résoudre cette énigme sur les exoplanètes 

Pourquoi détecte-t-on si peu d'exoplanètes d'environ deux fois la taille de la Terre ? Sur la base de simulations informatiques, une équipe de l'Institut Max-Planck d'astronomie (MPIA) et des universités de Genève (UNIGE) et Berne (UNIBE) révèle que la migration de planètes subneptuniennes glacées - des planètes-océans - pourrait expliquer cette absence.

( photo :  Au fur et à mesure que les planètes-océans glacées et riches en eau migrent vers leur étoile, la glace fond et finit par former une épaisse atmosphère de vapeur d'eau, qui augmente leur rayon.) 

À mesure que ces planètes se rapprochent de leur étoile centrale, la glace d'eau qui s'évapore forme une atmosphère qui les fait apparaître plus grandes qu'à l'état gelé, bien au-delà d'un double rayon terrestre. Simultanément, des petites planètes rocheuses, plus grandes que la Terre, perdent progressivement une partie de leur enveloppe gazeuse d'origine, ce qui entraîne une diminution importante de leur rayon. Ces résultats ouvrent de nouvelles perspectives pour l'étude des exoplanètes. Ils sont à découvrir dans Nature Astronomy.

En 2017, le télescope spatial Kepler a révélé l'absence de planètes ayant une taille d'environ deux rayons terrestres. Ce "vide" dans la distribution des rayons des planètes est appelé "rift subneptunien". "Son existence est l'une des contraintes observationnelles les plus importantes pour comprendre l'origine et la composition des exoplanètes dont le rayon est compris entre celui de la Terre et celui de Neptune", explique Julia Venturini, boursière Ambizione du FNS, collaboratrice scientifique au Département d'astronomie de l'UNIGE, membre du PRN PlanetS et coauteure de l'étude. "Comme d'autres groupes de recherche, nous avions prédit sur la base de nos calculs, avant même les observations de 2017, qu'un tel rift devait exister", ajoute Christoph Mordasini, professeur à la division de recherche spatiale et sciences planétaires (WP) de l'UNIBE, membre du PRN PlanetS et coauteur de l'étude.

D'où vient le rift subneptunien?

Deux types d'exoplanètes peuplent l'intervalle de rayon entre un et quatre rayons terrestres. D'une part, des planètes rocheuses - des " super-Terres " - plus grandes que la Terre. D'autre part, des planètes gazeuses appelées planètes subneptuniennes (ou mini-Neptunes) dont certaines, les planètes-océans, pourraient abriter une quantité d'eau si importante que leur surface serait recouverte d'un océan glacé de plusieurs dizaines de kilomètres de profondeur. Parmi ces deux types de planètes, les super-Terres et les Subneptuniennes, les astronomes en découvrent très peu avec un rayon de deux fois celui de la Terre.

Pour expliquer l'apparition de ce "rift", le mécanisme le plus souvent suggéré est que les planètes perdent une partie de leur atmosphère d'origine sous l'effet de l'irradiation de l'étoile. "Cette explication suppose que les planètes se forment et restent très proches de leur étoile, où elles seraient sèches, sans eau", précise Julia Venturini. "Cependant, cette explication contredit les modèles de formation, qui montrent que les planètes d'une taille comprise entre deux et quatre rayons terrestres, les planètes-océans, proviennent généralement des régions glacées les plus éloignées du système stellaire".

De nombreux indices suggèrent donc que certaines planètes pourraient s'éloigner de leur lieu de naissance au cours de leur évolution, en migrant vers l'intérieur ou vers l'extérieur de leur système. Cette migration permettrait aux planètes nées dans des régions froides et glacées, comme les planètes-océans, de terminer leur formation sur des orbites très proches de leur étoile.

Planètes-océans errantes

Au fur et à mesure que les planètes-océans glacées et riches en eau migrent vers leur étoile, la glace fond et finit par former une épaisse atmosphère de vapeur d'eau. Ce processus entraîne une augmentation de leur rayon vers des valeurs légèrement plus élevées, au-delà d'un double rayon terrestre. Inversement, les super-Terres, pauvres en eau, "rétrécissent" en perdant les gaz volatils de leur atmosphère d'origine, tels que l'hydrogène et l'hélium, sous l'influence de l'étoile.

Les modèles informatiques combinés de formation et d'évolution indiquent ainsi que la migration des planètes-océans contribue de manière significative au grand nombre de planètes détectées avec un rayon plus grand que deux rayons terrestres alors que l'évaporation atmosphérique des super-Terres contribue au surnombre des planètes plus petites que deux rayons terrestres. Au centre de ces deux populations se trouve le rift subneptunien. "Nous avions déjà obtenu ce résultat en 2020. La nouvelle étude le confirme avec un modèle de formation différent. Cela renforce la conclusion selon laquelle les planètes subneptuniennes sont principalement des mondes d'eau". précise Julia Venturini, qui a aussi dirigé l'étude de 2020.

D'autres travaux à venir

En plus d'expliquer un phénomène jusque-là mystérieux, ces travaux ouvrent de nouvelles perspectives pour l'étude des exoplanètes. "Si nous étendions nos résultats à des régions plus tempérées, où l'eau est liquide, cela pourrait suggérer l'existence de mondes aquatiques dotés d'océans liquides profonds", explique Christoph Mordasini. "De telles planètes pourraient potentiellement abriter la vie et constitueraient des cibles relativement simples pour la recherche de biomarqueurs en raison de leur taille".

Des observations avec des télescopes comme le James Webb Space Telescope ou l'Extremely Large Telescope, en cours de construction, pourraient également être utiles. Elles permettraient de déterminer la composition atmosphériques des planètes en fonction de leur taille, ce qui permettrait de tester les simulations décrites.

Auteur: Internet

Info: https://www.techno-science.net/, Adrien le 17/02/2024, Source: Université de Genève

[ autres mondes ] [ exobiologie ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

syncrétisme

Les modernes ont développé quatre répertoires différents qu’ils croient incompatibles pour accommoder la prolifération des quasi-objets*.

Le premier répertoire traite de la réalité extérieure d’une nature dont nous ne sommes pas maîtres, qui existe en dehors de nous et qui n’a ni nos passions ni nos désirs, bien que nous soyons capables de la mobiliser et de la construire.

Le deuxième répertoire traite du lien social, de ce qui attache les humains entre eux, des passions et des désirs qui nous agitent, des forces personnifiées qui structurent la société, laquelle nous dépasse tous bien que nous la construisions.

Le troisième traite de la signification et du sens, des actants qui composent les histoires que nous nous racontons, des épreuves qu’ils subissent, des aventures qu’ils traversent, des tropes et des genres qui les organisent, des grands récits qui nous dominent infiniment, bien qu’ils soient en même temps simple texte et discours.

Le quatrième enfin parle de l'Être et déconstruit ce que nous oublions toujours lorsque nous avons le seul souci de l’étant, bien que la différence de l’Être soit distribuée à travers les étants, coextensifs à leur existence même.

Ces ressources ne sont incompatibles que dans la vision officielle de la Constitution. En pratique, nous sommes bien en peine de distinguer les quatre. Nous mêlons sans vergogne nos désirs aux choses, le sens au social, le collectif aux récits. Dès que nous suivons à la trace quelque quasi-objet, il nous apparaît tantôt chose, tantôt récit, tantôt lien social, sans se réduire jamais à un simple étant. Notre pompe à vide dessine le ressort de l’air, mais trace aussi la société du XVIIe siècle et définit également un nouveau genre littéraire, celui du récit d’expérience en laboratoire. Faut-il, en la suivant, prétendre que tout est rhétorique, ou que tout est naturel, ou que tout est construit socialement, ou que tout est arraisonnement ? Faut-il supposer que la même pompe est dans son essence parfois objet, parfois lien social et parfois discours ? Ou qu’elle est un peu des trois ? Qu’elle est parfois un simple étant, et parfois marquée, décalée, brisée par la différence ? Et si c’était nous, les modernes, qui divisions artificiellement une trajectoire unique, laquelle ne serait d’abord ni objet, ni sujet, ni effet de sens, ni pur étant ? Si la séparation des quatre répertoires ne s’appliquait qu’à des états stabilisés et tardifs ?

Rien ne prouve que ces ressources demeurent incompatibles lorsque nous passons des essences aux événements, de la purification à la médiation, de la dimension moderne à la dimension non moderne, de la révolution à la contre-révolution copernicienne. Des quasi-objets quasi-sujets, nous dirons simplement qu’ils tracent des réseaux. Ils sont réels, bien réels, et nous les humains nous ne les avons pas faits. Mais ils sont collectifs puisqu’ils nous attachent les uns aux autres, qu’ils circulent entre nos mains et nous définissent par leur circulation même. Ils sont discursifs pourtant, narrés, historiques, passionnés, et peuplés d’actants aux formes autonomes. Ils sont instables et risqués, existentiels et porteurs d’être. Cette liaison des quatre répertoires nous permet de construire une demeure assez vaste pour y abriter l’Empire du Milieu, la véritable maison commune du monde non moderne en même temps que sa Constitution.

La synthèse est impossible tant que nous demeurons modernes pour de bon, puisque la nature, le discours, la société, l’Être nous dépassent infiniment et que ces quatre ensembles ne se définissent que par leur séparation, laquelle maintient nos garanties constitutionnelles. Mais la continuité devient possible si nous ajoutons aux garanties la pratique qu’elle permet parce qu’elle la dénie. Les modernes ont bien raison de vouloir à la fois la réalité, le langage, la société et l’être. Ils n’ont tort que de les croire à jamais contradictoires. Au lieu de toujours analyser le parcours des quasi-objets en séparant ces ressources, ne pouvons-nous pas écrire comme si elles devaient se lier continûment les unes aux autres ? Nous sortirions probablement de la prostration postmoderne.

J’avoue que j’en ai par-dessus la tête de me retrouver pour toujours enfermé dans le seul langage ou prisonnier des seules représentations sociales. Je veux accéder aux choses mêmes et non à leurs phénomènes. Le réel n’est pas lointain, mais accessible en tous les objets mobilisés de par le monde. La réalité extérieure n’abonde-t-elle pas au beau milieu de nous ?

Nous en avons plus qu’assez d’être pour toujours dominés par une nature transcendante, inconnaissable, inaccessible, exacte, et simplement vraie, peuplée d’entités assoupies comme la Belle au bois dormant jusqu’au jour où les charmants savants les découvrent enfin. Nos collectifs sont plus actifs, plus productifs, plus socialisés que les ennuyeuses choses-en-soi ne nous le laissaient prévoir.

N’êtes-vous pas un peu lassés de ces sociologies construites sur du social, et qui se tiennent par la seule répétition des mots "pouvoir" et "légitimité" parce qu’elles ne peuvent encaisser ni le monde des objets ni celui des langages qui les construisent pourtant ? Nos collectifs sont plus réels, plus naturalisés, plus discursifs que les ennuyeux hommes-entre-eux ne nous le laissaient prévoir.

Nous sommes fatigués des jeux de langage et de l’éternel scepticisme de la déconstruction du sens. Le discours n’est pas un monde en soi, mais une population d’actants qui se mêlent aux choses comme aux sociétés, qui font tenir les unes et les autres, et qui les tiennent. S’intéresser aux textes ne nous éloigne pas de la réalité car les choses ont droit, elles aussi, à la dignité d’être des récits. Quant aux textes, pourquoi leur dénier la grandeur d’être le lien social qui nous fait tenir ensemble ? 

Je n’en puis plus d’être accusé, moi et mes contemporains, d’avoir oublié l’Être, de vivre dans un bas monde vidé de toute sa substance, de tout son sacré, de tout son art, ou de devoir, afin de retrouver ces trésors, perdre le monde historique, scientifique et social dans lequel je vis. S’appliquer aux sciences, aux techniques, aux marchés, aux choses, ne nous éloigne pas plus de la différence de l’Être et des étants, que de la société, de la politique, ou du langage.

Réels comme la nature, narrés comme le discours, collectifs comme la société, existentiels comme l’Être, tels sont les quasi-objets que les modernes ont fait proliférer, tels il convient de les suivre en redevenant simplement ce que nous n’avons jamais cessé d’être, des non-modernes.

Auteur: Latour Bruno

Info: Nous n'avons jamais été modernes. Essai d'anthropologie symétrique. Lier les quatre répertoires modernes. pp 57-59 *hybrides nature-culture, des collectifs où les choses ne sont pas séparés de la société mais s'y combinent en collectifs de toutes sortes.

[ géolinguistique ] [ taxonomies intriquées ] [ tétravalence sociale ] [ psycho-sociologie ]

 
Commentaires: 1
Ajouté à la BD par miguel

chimiosynthèse

Les cellules souterraines produisent de l'« oxygène sombre » sans lumière

Dans certaines profondes nappes souterraines, les cellules disposent d’une astuce chimique pour produire de l’oxygène qui pourrait alimenter des écosystèmes souterrains entiers.

(Photo - Dans un monde ensoleillé, la photosynthèse fournit l’oxygène indispensable à la vie. Au fond des profondeurs, la vie trouve un autre chemin.)

Les scientifiques se sont rendu compte que le sol et les roches sous nos pieds abritent une vaste biosphère dont le volume global est près de deux fois supérieur à celui de tous les océans de la planète. On sait peu de choses sur ces organismes souterrains, qui représentent l’essentiel de la masse microbienne de la planète et dont la diversité pourrait dépasser celle des formes de vie vivant en surface. Leur existence s’accompagne d’une grande énigme : les chercheurs ont souvent supposé que bon nombre de ces royaumes souterrains étaient des zones mortes pauvres en oxygène, habitées uniquement par des microbes primitifs qui maintiennent leur métabolisme au ralenti et se débrouillent grâce aux traces de nutriments. À mesure que ces ressources s’épuisent, pensait-on, l’environnement souterrain devient sans vie à mesure que l’on s’enfonce.

Dans une nouvelle recherche publiée le mois dernier dans Nature Communications , les chercheurs ont présenté des preuves qui remettent en question ces hypothèses. Dans des réservoirs d'eau souterraine situés à 200 mètres sous les champs de combustibles fossiles de l'Alberta, au Canada, ils ont découvert des microbes abondants qui produisent des quantités étonnamment importantes d'oxygène, même en l'absence de lumière. Les microbes génèrent et libèrent tellement de ce que les chercheurs appellent " l'oxygène noir " que c'est comme découvrir " le même quantité d'oxygène que celle  issue de la photosynthèse dans la forêt amazonienne ", a déclaré Karen Lloyd , microbiologiste souterrain à l'Université du Tennessee qui n'était pas partie de l’étude. La quantité de gaz diffusé hors des cellules est si grande qu’elle semble créer des conditions favorables à une vie dépendante de l’oxygène dans les eaux souterraines et les strates environnantes.

"Il s'agit d'une étude historique", a déclaré Barbara Sherwood Lollar , géochimiste à l'Université de Toronto qui n'a pas participé aux travaux. Les recherches antérieures ont souvent porté sur les mécanismes susceptibles de produire de l'hydrogène et d'autres molécules vitales pour la vie souterraine, mais cette création de molécules contenant de l'oxygène a été largement négligée car ces molécules sont très rapidement consommées dans l'environnement souterrain. Jusqu’à présent, " aucune étude n’a rassemblé tout cela comme celle-ci ", a-t-elle déclaré.

La nouvelle étude a porté sur les aquifères profonds de la province canadienne de l’Alberta, qui possède des gisements souterrains si riches en goudron, en sables bitumineux et en hydrocarbures qu’elle a été surnommée " le Texas du Canada ". Parce que ses énormes industries d'élevage de bétail et d'agriculture dépendent fortement des eaux souterraines, le gouvernement provincial surveille activement l'acidité et la composition chimique de l'eau. Pourtant, personne n’avait étudié systématiquement la microbiologie des eaux souterraines.

Pour Emil Ruff , mener une telle enquête semblait être " une solution facile " en 2015 lorsqu'il a commencé son stage postdoctoral en microbiologie à l'Université de Calgary. Il ne savait pas que cette étude apparemment simple le mettrait à rude épreuve pendant les six prochaines années.

Profondeurs encombrées

Après avoir collecté l'eau souterraine de 95 puits à travers l'Alberta, Ruff et ses collègues ont commencé à faire de la microscopie de base : ils ont coloré des cellules microbiennes dans des échantillons d'eau souterraine avec un colorant à base d'acide nucléique et ont utilisé un microscope à fluorescence pour les compter. En radiodatant la matière organique présente dans les échantillons et en vérifiant les profondeurs auxquelles ils avaient été collectés, les chercheurs ont pu identifier l'âge des aquifères souterrains qu'ils exploitaient.

Une tendance dans les chiffres les intriguait. Habituellement, lors d'études sur les sédiments sous le fond marin, par exemple, les scientifiques constatent que le nombre de cellules microbiennes diminue avec la profondeur : les échantillons plus anciens et plus profonds ne peuvent pas abriter autant de vie car ils sont davantage privés des nutriments produits par les plantes photosynthétiques. et des algues près de la surface. Mais à la surprise de l'équipe de Ruff, les eaux souterraines plus anciennes et plus profondes contenaient plus de cellules que les eaux plus douces.

Les chercheurs ont ensuite commencé à identifier les microbes présents dans les échantillons, à l’aide d’outils moléculaires pour repérer leurs gènes marqueurs révélateurs. Beaucoup d’entre eux étaient des archées méthanogènes – des microbes simples et unicellulaires qui produisent du méthane après avoir consommé de l’hydrogène et du carbone suintant des roches ou de la matière organique en décomposition. De nombreuses bactéries se nourrissant du méthane ou des minéraux présents dans l’eau étaient également présentes.

Ce qui n'avait aucun sens, cependant, c'est que bon nombre de bactéries étaient des aérobies, des microbes qui ont besoin d'oxygène pour digérer le méthane et d'autres composés. Comment les aérobies pourraient-ils prospérer dans des eaux souterraines qui ne devraient pas contenir d’oxygène, puisque la photosynthèse est impossible ? Mais les analyses chimiques ont également révélé une grande quantité d’oxygène dissous dans les échantillons d’eau souterraine de 200 mètres de profondeur.

C'était du jamais vu. "On a sûrement foiré l'échantillon", fut la première réaction de Ruff.

Il a d’abord tenté de montrer que l’oxygène dissous dans les échantillons était le résultat d’une mauvaise manipulation. "C'est comme être Sherlock Holmes", a déclaré Ruff. " Vous essayez de trouver des preuves et des indications " pour réfuter vos hypothèses. Cependant, la teneur en oxygène dissous semblait constante sur des centaines d’échantillons. Une mauvaise manipulation ne pouvait pas l'expliquer.

Si l’oxygène dissous ne provenait pas d’une contamination, d’où venait-il ? Ruff s'est rendu compte qu'il près de quelque chose de grand, même si faire des affirmations controversées va à l'encontre de sa nature. Beaucoup de ses co-auteurs avaient également des doutes : cette découverte menaçait de briser les fondements de notre compréhension des écosystèmes souterrains.

Produire de l'oxygène pour tout le monde

En théorie, l’oxygène dissous dans les eaux souterraines pourrait provenir de plantes, de microbes ou de processus géologiques. Pour trouver la réponse, les chercheurs se sont tournés vers la spectrométrie de masse, une technique permettant de mesurer la masse des isotopes atomiques. En règle générale, les atomes d’oxygène provenant de sources géologiques sont plus lourds que l’oxygène provenant de sources biologiques. L’oxygène présent dans les eaux souterraines était léger, ce qui impliquait qu’il devait provenir d’une entité vivante. Les candidats les plus plausibles étaient les microbes.

Les chercheurs ont séquencé les génomes de l’ensemble de la communauté microbienne présente dans les eaux souterraines et ont repéré les voies et réactions biochimiques les plus susceptibles de produire de l’oxygène. Les réponses pointaient sans cesse vers une découverte faite il y a plus de dix ans par Marc Strous de l'Université de Calgary, auteur principal de la nouvelle étude et chef du laboratoire où travaillait Ruff.

Alors qu'il travaillait dans un laboratoire aux Pays-Bas à la fin des années 2000, Strous avait remarqué qu'un type de bactérie se nourrissant de méthane, souvent présente dans les sédiments des lacs et les boues d'épuration, avait un mode de vie étrange. Au lieu d'absorber l'oxygène de son environnement comme les autres aérobies, ces bactéries créent leur propre oxygène en utilisant des enzymes pour décomposer les composés solubles appelés nitrites (qui contiennent un groupe chimique composé d'azote et de deux atomes d'oxygène). Les bactéries utilisent l’oxygène auto-généré pour transformer le méthane en énergie.

Lorsque les microbes décomposent les composés de cette façon, on parle de dismutation. Jusqu’à présent, on pensait que cette méthode de production d’oxygène était rare dans la nature. Des expériences récentes en laboratoire impliquant des communautés microbiennes artificielles ont cependant révélé que l'oxygène produit par la dismutation peut s'échapper des cellules et se répandre dans le milieu environnant au profit d'autres organismes dépendants de l'oxygène, dans une sorte de processus symbiotique. Ruff pense que cela pourrait permettre à des communautés entières de microbes aérobies de prospérer dans les eaux souterraines, et potentiellement également dans les sols environnants.

Chimie pour la vie ailleurs

Cette découverte comble une lacune cruciale dans notre compréhension de l’évolution de l’immense biosphère souterraine et de la manière dont la dismutation contribue au cycle des composés se déplaçant dans l’environnement mondial. La simple possibilité que de l'oxygène soit présent dans les eaux souterraines " change notre compréhension du passé, du présent et de l'avenir du sous-sol ", a déclaré Ruff, qui est maintenant scientifique adjoint au Laboratoire de biologie marine de Woods Hole, Massachusetts.

Comprendre ce qui vit dans le sous-sol de notre planète est également " crucial pour transposer ces connaissances ailleurs ", a déclaré Sherwood Lollar. Le sol de Mars, par exemple, contient des composés perchlorates que certains microbes terrestres peuvent transformer en chlorure et en oxygène. Europe, la lune de Jupiter, possède un océan profond et gelé ; la lumière du soleil ne peut pas y pénétrer, mais l'oxygène pourrait potentiellement y être produit par dismutation microbienne au lieu de la photosynthèse. Les scientifiques ont observé des panaches de vapeur d’eau jaillissant de la surface d’Encelade, l’une des lunes de Saturne. Les panaches proviennent probablement d’un océan souterrain d’eau liquide. Si un jour nous trouvons de la vie sur d’autres mondes comme ceux-là, elle pourrait emprunter des voies de dismutation pour survivre.

Quelle que soit l'importance de la dismutation ailleurs dans l'univers, Lloyd est étonné de voir à quel point les nouvelles découvertes défient les idées préconçues sur les besoins de la vie et par l'ignorance scientifique qu'elles révèlent sur l'une des plus grandes biosphères de la planète. " C'est comme si nous avions toujours eu un œuf sur le visage ", a-t-elle déclaré.

Auteur: Internet

Info: https://www.quantamagazine.org/, Saugat Bolakhé, juillet 2023

[ perspectives extraterrestres ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste