Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 266
Temps de recherche: 0.06s

big brother consumériste

Nulle part où se cacher : Les collecteurs de données sont venus pour capter votre vie privée - et ils l'ont trouvée

La manière dont vos données sont stockées et partagées évolue et votre activité en ligne peut être utilisée pour vous catégoriser d'une manière qui modifie radicalement votre vie. Il existe des moyens de reprendre le contrôle.

Un vendredi de 2021, je suis entré dans un hôtel d'Exeter, au Royaume-Uni, à 17:57:35. Le lendemain matin, j'ai fait 9 minutes de route pour me rendre à l'hôpital le plus proche. J'y suis resté trois jours. Le trajet de retour, qui dure normalement 1 heure 15 minutes, a duré 1 heure 40 minutes. La raison de cette lenteur : mon tout nouveau bébé dormait à l'arrière.

Ce ne sont pas les détails d'un journal. Il s'agit plutôt de ce que Google sait de la naissance de ma fille, sur la base de mon seul historique de localisation.

Un aperçu des données de ce week-end révèle que ce n'est pas tout ce que les entreprises savent de moi. Netflix se souvient que j'ai regardé toute une série d'émissions de bien-être, dont Gilmore Girls et How to Lose a Guy in 10 Days (Comment perdre un homme en 10 jours). Instagram a enregistré que j'ai "aimé" un post sur l'induction du travail, puis que je ne me suis pas reconnectée pendant une semaine.

Et alors ? Nous savons tous maintenant que nous sommes suivis en ligne et que les données collectées sur nous sont à la fois granulaires et constantes. Peut-être aimez-vous que Netflix et Instagram connaissent si bien vos goûts en matière de cinéma et de mode.

Mais un nombre croissant d'enquêtes et de poursuites judiciaires révèlent un nouveau paysage du suivi en ligne dans lequel la portée des entreprises qui collectent des données est plus insidieuse que beaucoup d'entre nous ne le pensent. En y regardant de plus près, j'ai découvert que mes données personnelles pouvaient avoir une incidence sur tout, depuis mes perspectives d'emploi et mes demandes de prêt jusqu'à mon accès aux soins de santé. En d'autres termes, elles peuvent façonner ma vie quotidienne d'une manière dont je n'avais pas conscience. "Le problème est énorme et il y a toujours de nouvelles horreurs", déclare Reuben Binns, de l'université d'Oxford.

On pourrait vous pardonner de penser qu'avec l'introduction d'une législation comme le règlement général sur la protection des données (RGPD) - des règles de l'Union européenne mises en œuvre en 2018 qui donnent aux gens un meilleur accès aux données que les entreprises détiennent sur eux et limitent ce que les entreprises peuvent en faire - la confidentialité des données n'est plus un vrai problème. Vous pouvez toujours refuser les cookies si vous ne voulez pas être suivi, n'est-ce pas ? Mais lorsque je dis cela à Pam Dixon, du groupe de recherche à but non lucratif World Privacy Forum, elle se met à rire d'incrédulité. "Tu y crois vraiment ?" me dit-elle.

Les gratteurs de données

Des centaines d'amendes ont été infligées pour violation du GDPR, notamment à Google, British Airways et Amazon. Mais les experts en données affirment qu'il ne s'agit là que de la partie émergée de l'iceberg. Une étude réalisée l'année dernière par David Basin de l'ETH Zurich, en Suisse, a révélé que 95 % des sites web pourraient enfreindre les règles du GDPR. Même l'objectif de la législation visant à faciliter la compréhension des données que nous acceptons de fournir n'a pas été atteint. Depuis l'entrée en vigueur de la législation, les recherches montrent que les accords de confidentialité sont devenus plus compliqués, rein de moins. Et si vous pensiez que les bloqueurs de publicité et les réseaux privés virtuels (VPN) - qui masquent l'adresse IP de votre ordinateur - vous protégeaient, détrompez-vous. Bon nombre de ces services vendent également vos données.

Nous commençons à peine à saisir l'ampleur et la complexité du paysage de la traque en ligne. Quelques grands noms - Google, Meta, Amazon et Microsoft - détiennent l'essentiel du pouvoir, explique Isabel Wagner, professeur associé de cybersécurité à l'université de Bâle, en Suisse. Mais derrière ces grands acteurs, un écosystème diversifié de milliers, voire de millions, d'acheteurs, de vendeurs, de serveurs, de traqueurs et d'analyseurs partagent nos données personnelles.

Qu'est-ce que tout cela signifie pour l'utilisateur lambda que je suis ? Pour le savoir, je me suis rendu chez HestiaLabs à Lausanne, en Suisse, une start-up fondée par Paul-Olivier Dehaye, mathématicien et lanceur d'alerte clé dans le scandale de l'utilisation des données de Facebook par la société de conseil politique Cambridge Analytica. Cette société a utilisé des données personnelles pour influencer l'élection de Donald Trump à la présidence des États-Unis en 2016. L'enquête de Dehaye sur Cambridge Analytica a montré de manière frappante à quel point l'influence des entreprises qui achètent et vendent des données est profonde. Il a créé HestiaLabs pour changer cette situation.

(Photo : Votre téléphone suit votre position même si les données mobiles sont désactivées)

Avant d'arriver, j'ai demandé mes données personnelles à diverses entreprises, un processus plus compliqué qu'il ne devrait l'être à l'ère du RGPD. Je rencontre Charles Foucault-Dumas, le chef de projet de HestiaLabs, au siège de l'entreprise - un modeste espace de co-working situé en face de la gare de Lausanne. Nous nous asseyons et téléchargeons mes fichiers dans son portail sur mesure.

Mes données s'étalent devant moi, visualisées sous la forme d'une carte de tous les endroits où je suis allé, de tous les posts que j'ai aimés et de toutes les applications qui ont contacté un annonceur. Dans les lieux que je fréquente régulièrement, comme la crèche de ma fille, des centaines de points de données se transforment en taches semblables à de la peinture. À l'adresse de mon domicile, il y a une énorme cible impossible à manquer. C'est fascinant. Et un peu terrifiant.

L'une des plus grandes surprises est de savoir quelles applications de mon téléphone contactent des entreprises tierces en mon nom. Au cours de la semaine écoulée, c'est un navigateur web que j'utilise parce qu'il se décrit comme "le respect de la vie privée avant tout" qui a été le plus grand contrevenant, en contactant 29 entreprises. Mais pratiquement toutes les applications de mon téléphone, du service d'épicerie au bloc-notes virtuel, étaient occupées à contacter d'autres entreprises pendant que je vaquais à mes occupations.

En règle générale, une entreprise qui souhaite vendre un produit ou un service s'adresse à une agence de publicité, qui se met en relation avec des plates-formes chargées de la diffusion des publicités, qui utilisent des échanges publicitaires, lesquels sont reliés à des plates-formes d'approvisionnement, qui placent les publicités sur les sites web des éditeurs. Chaque fois que vous ouvrez un site web ou que vous survolez momentanément un message sur un média social, cette machine - dont la valeur est estimée à 150 milliards de livres sterling par an - se met en marche.

Que partageaient exactement ces entreprises à mon sujet ? Pour le savoir, il faudrait que je fasse des demandes auprès de chacune d'entre elles. Et même avec celles que j'ai contactées avec l'aide de HestiaLabs, ce n'est pas toujours clair.

Prenons l'exemple d'Instagram. Il m'a fourni des données montrant qu'il a enregistré 333 "intérêts" en mon nom. Certains d'entre eux sont très éloignés de la réalité : le rugby, le festival Burning Man, la promotion immobilière, et même "femme à chats". Lecteur, je n'ai jamais eu de chat. Mais d'autres sont plus précis, et un certain nombre d'entre eux, sans surprise, sont liés au fait que je suis devenue parent, qu'il s'agisse de marques telles que Huggies et Peppa Pig ou de sujets tels que les berceaux et le sevrage pour bébés.

Je me demande comment ces données ont pu affecter non seulement mes achats, mais aussi la vie de ma fille. Son amour pour le cochon rose de dessin animé est-il vraiment organique, ou ces vidéos nous ont-elles été "servies" en raison des informations qu'Instagram a transmises à mon sujet ? Est-ce que les posts sur le sevrage dirigé par les bébés se sont retrouvés partout dans mon fil d'actualité - et ont donc influencé la façon dont ma fille a été initiée à la nourriture - par hasard, ou parce que j'avais été ciblée ? Je n'ai pas accès à cette chaîne de causes et d'effets, et je ne sais pas non plus comment ces divers "intérêts" ont pu me catégoriser pour d'éventuels spécialistes du marketing.

Il est pratiquement impossible de démêler l'écheveau complexe des transactions de données dans l'ombre. Les données personnelles sont souvent reproduites, divisées, puis introduites dans des algorithmes et des systèmes d'apprentissage automatique. En conséquence, explique M. Dixon, même avec une législation comme le GDPR, nous n'avons pas accès à toutes nos données personnelles. "Nous avons affaire à deux strates de données. Il y a celles qui peuvent être trouvées", dit-elle. "Mais il y a une autre strate que vous ne pouvez pas voir, que vous n'avez pas le droit légal de voir - aucun d'entre nous ne l'a."

Profilage personnel

Des rapports récents donnent un aperçu de la situation. En juin, une enquête de The Markup a révélé que ce type de données cachées est utilisé par les publicitaires pour nous classer en fonction de nos convictions politiques, de notre état de santé et de notre profil psychologique. Pourrais-je être considérée comme une "mère accro au portable", une "indulgente", une "facilement dégonflée" ou une "éveillée" ? Je n'en ai aucune idée, mais je sais qu'il s'agit là de catégories utilisées par les plateformes publicitaires en ligne.

Il est troublant de penser que je suis stéréotypée d'une manière inconnue. Une autre partie de moi se demande si cela a vraiment de l'importance. Je comprends l'intérêt d'une publicité qui tient compte de mes préférences, ou de l'ouverture de mon application de cartographie qui met en évidence des restaurants et des musées qui pourraient m'intéresser ou que j'ai déjà visités. Mais croyez-moi, il y a peu de façons de faire grimacer un expert en données plus rapidement qu'avec la désinvolture de ce compromis.

D'une part, l'utilisation de ces données va bien au-delà de la vente de publicité, explique M. Dixon. Quelque chose d'apparemment anodin comme le fait de faire des achats dans des magasins discount (signe d'un revenu inférieur) ou d'acheter des articles de sport (signe que vous faites de l'exercice) peut avoir une incidence sur tout, de l'attrait de votre candidature à l'université au montant de votre assurance maladie. "Il ne s'agit pas d'une simple publicité", précise M. Dixon. "Il s'agit de la vie réelle.

Une législation récente aux États-Unis a contraint certaines de ces entreprises à entrer dans la lumière. Le Vermont's 2018 Data Broker Act, par exemple, a révélé que les courtiers en données enregistrés dans l'État - mais qui sont également actifs ailleurs - vendent des informations personnelles à des propriétaires et des employeurs potentiels, souvent par l'intermédiaire de tierces parties. En juillet, le Bureau américain de protection financière des consommateurs a appris que cette deuxième strate cachée de données comprenait également des informations utilisées pour établir un "score de consommation", employé de la même manière qu'un score de crédit. "Les choses que vous avez faites, les sites web que vous avez visités, les applications que vous utilisez, tout cela peut alimenter des services qui vérifient si vous êtes un locataire convenable ou décident des conditions à vous offrir pour un prêt ou une hypothèque", explique M. Binns.

À HestiaLabs, je me rends compte que j'ai moi aussi été concrètement affectée, non seulement par les publicités que je vois, mais aussi par la façon dont les algorithmes ont digéré mes données. Dans les "inférences" de LinkedIn, je suis identifiée à la fois comme "n'étant pas un leader humain" et "n'étant pas un leader senior". Et ce, bien que j'aie dirigé une équipe de 20 personnes à la BBC et que j'aie été rédacteur en chef de plusieurs sites de la BBC auparavant - des informations que j'ai moi-même introduites dans LinkedIn. Comment cela peut-il affecter mes opportunités de carrière ? Lorsque j'ai posé la question à LinkedIn, un porte-parole m'a répondu que ces déductions n'étaient pas utilisées "de quelque manière que ce soit pour informer les suggestions de recherche d'emploi".

Malgré cela, nous savons, grâce à des poursuites judiciaires, que des données ont été utilisées pour exclure les femmes des annonces d'emploi dans le secteur de la technologie sur Facebook. En conséquence, le propriétaire de la plateforme, Meta, a cessé d'offrir cette option aux annonceurs en 2019. Mais les experts en données affirment qu'il existe de nombreuses solutions de contournement, comme le fait de ne cibler que les personnes ayant des intérêts stéréotypés masculins. "Ces préjudices ne sont pas visibles pour les utilisateurs individuels à ce moment-là. Ils sont souvent très abstraits et peuvent se produire longtemps après", explique M. Wagner.

À mesure que les données collectées sur notre vie quotidienne prolifèrent, la liste des préjudices signalés par les journaux ne cesse de s'allonger. Des applications de suivi de l'ovulation - ainsi que des messages textuels, des courriels et des recherches sur le web - ont été utilisés pour poursuivre des femmes ayant avorté aux États-Unis depuis que l'arrêt Roe v Wade a été annulé l'année dernière. Des prêtres ont été démasqués pour avoir utilisé l'application de rencontres gay Grindr. Un officier militaire russe a même été traqué et tué lors de sa course matinale, prétendument grâce à des données accessibles au public provenant de l'application de fitness Strava. La protection des données est censée prévenir bon nombre de ces préjudices. "Mais il y a manifestement une énorme lacune dans l'application de la loi", déclare M. Binns.

Le problème réside en partie d'un manque de transparence. De nombreuses entreprises s'orientent vers des modèles "préservant la vie privée", qui divisent les points de données d'un utilisateur individuel et les dispersent sur de nombreux serveurs informatiques, ou les cryptent localement. Paradoxalement, il est alors plus difficile d'accéder à ses propres données et d'essayer de comprendre comment elles ont été utilisées.

Pour sa part, M. Dehaye, de HestiaLabs, est convaincu que ces entreprises peuvent et doivent nous rendre le contrôle. "Si vous allez consulter un site web en ce moment même, en quelques centaines de millisecondes, de nombreux acteurs sauront qui vous êtes et sur quel site vous avez mis des chaussures dans un panier d'achat il y a deux semaines. Lorsque l'objectif est de vous montrer une publicité pourrie, ils sont en mesure de résoudre tous ces problèmes", explique-t-il. Mais lorsque vous faites une demande de protection de la vie privée, ils se disent : "Oh, merde, comment on fait ça ?".

Il ajoute : "Mais il y a un moyen d'utiliser cette force du capitalisme qui a résolu un problème dans une industrie de plusieurs milliards de dollars pour vous - pas pour eux".

J'espère qu'il a raison. En marchant dans Lausanne après avoir quitté HestiaLabs, je vois un homme qui s'attarde devant un magasin de couteaux, son téléphone rangé dans sa poche. Une femme élégante porte un sac Zara dans une main, son téléphone dans l'autre. Un homme devant le poste de police parle avec enthousiasme dans son appareil.

Pour moi, et probablement pour eux, ce sont des moments brefs et oubliables. Mais pour les entreprises qui récoltent les données, ce sont des opportunités. Ce sont des signes de dollars. Et ce sont des points de données qui ne disparaîtront peut-être jamais.

Reprendre le contrôle

Grâce aux conseils de M. Dehaye et des autres experts que j'ai interrogés, lorsque je rentre chez moi, je vérifie mes applications et je supprime celles que je n'utilise pas. Je supprime également certaines de celles que j'utilise mais qui sont particulièrement désireuses de contacter des entreprises, en prévoyant de ne les utiliser que sur mon ordinateur portable. (J'ai utilisé une plateforme appelée TC Slim pour me dire quelles entreprises mes applications contactent). J'installe également un nouveau navigateur qui (semble-t-il) accorde la priorité à la protection de la vie privée. Selon M. Wagner, les applications et les navigateurs open source et à but non lucratif peuvent constituer des choix plus sûrs, car ils ne sont guère incités à collecter vos données.

Je commence également à éteindre mon téléphone plus souvent lorsque je ne l'utilise pas. En effet, votre téléphone suit généralement votre position même lorsque les données mobiles et le Wi-Fi sont désactivés ou que le mode avion est activé. De plus, en me connectant à mes préférences Google, je refuse d'enregistrer l'historique de mes positions, même si la nostalgie - pour l'instant - m'empêche de demander que toutes mes données antérieures soient supprimées.

Nous pouvons également réinitialiser notre relation avec le suivi en ligne en changeant notre façon de payer, explique Mme Dixon. Elle suggère d'utiliser plusieurs cartes de crédit et d'être "très prudent" quant au portefeuille numérique que nous utilisons. Pour les achats susceptibles de créer un signal "négatif", comme ceux effectués dans un magasin discount, il est préférable d'utiliser de l'argent liquide, si possible. M. Dixon conseille également de ne pas utiliser d'applications ou de sites web liés à la santé, si possible. "Ce n'est tout simplement pas un espace clair et sûr", dit-elle.

En réalité, quelles que soient les mesures que vous prenez, les entreprises trouveront toujours de nouveaux moyens de contourner le problème. "C'est un jeu où l'on ne peut que perdre", affirme M. Dehaye. C'est pourquoi la solution ne dépend pas des individus. "Il s'agit d'un véritable changement de société.

En réunissant suffisamment de voix individuelles, M. Dehaye pense que nous pouvons changer le système - et que tout commence par le fait que vous demandiez vos données. Dites aux entreprises : "Si vous vous dérobez, notre confiance est perdue"", déclare-t-il. "Et dans ce monde de données, si les gens ne font pas confiance à votre entreprise, vous êtes mort.

Auteur: Ruggeri Amanda

Info: https://blog.shiningscience.com/2023/08/nowhere-to-hide-data-harvesters-came.html, 26 août 2023

[ idiosyncrasie numérique ] [ capitalisme de surveillance ] [ internet marchand ]

 

Commentaires: 0

Ajouté à la BD par miguel

rapetissement

Des mathématiciens identifient le seuil à partir duquel les formes cèdent. Une nouvelle preuve établit la limite à laquelle une forme devient si ondulée qu'elle ne peut être écrasée plus avant.

En ajoutant un nombre infini de torsions aux courbes d'une sphère, il est possible de la réduire en une minuscule boule sans en déformer les distances.

Dans les années 1950, quatre décennies avant qu'il ne remporte le prix Nobel pour ses contributions à la théorie des jeux et que son histoire n'inspire le livre et le film "A Beautiful Mind", le mathématicien John Nash a démontré l'un des résultats les plus remarquables de toute la géométrie. Ce résultat impliquait, entre autres, que l'on pouvait froisser une sphère pour en faire une boule de n'importe quelle taille sans jamais la déformer. Il a rendu cela possible en inventant un nouveau type d'objet géométrique appelé " inclusion ", qui situe une forme à l'intérieur d'un espace plus grand, un peu comme lorsqu'on insère un poster bidimensionnel dans un tube tridimensionnel.

Il existe de nombreuses façons d'encastrer une forme. Certaines préservent la forme naturelle - comme l'enroulement de l'affiche dans un cylindre - tandis que d'autres la plissent ou la découpent pour l'adapter de différentes manières.

De manière inattendue, la technique de Nash consiste à ajouter des torsions à toutes les courbes d'une forme, rendant sa structure élastique et sa surface ébouriffée. Il a prouvé que si l'on ajoutait une infinité de ces torsions, on pouvait réduire la sphère en une minuscule boule. Ce résultat avait étonné les mathématiciens qui pensaient auparavant qu'il fallait des plis nets pour froisser la sphère de cette manière.

Depuis, les mathématiciens ont cherché à comprendre précisément les limites des techniques pionnières de Nash. Il avait montré que l'on peut froisser la sphère en utilisant des torsions, mais n'avait pas démontré exactement la quantité de torsions nécessaire, au minimum, pour obtenir ce résultat. En d'autres termes, après Nash, les mathématiciens ont voulu quantifier le seuil exact entre planéité et torsion, ou plus généralement entre douceur et rugosité, à partir duquel une forme comme la sphère commence à se froisser.

Et dans une paire de parutions récentes ils l'ont fait, au moins pour une sphère située dans un espace de dimension supérieure. Dans un article publié en septembre 2018 et en mars 2020, Camillo De Lellis, de l'Institute for Advanced Study de Princeton, dans le New Jersey, et Dominik Inauen, de l'université de Leipzig, ont identifié un seuil exact pour une forme particulière. Des travaux ultérieurs, réalisés en octobre 2020 par Inauen et Wentao Cao, aujourd'hui de l'Université normale de la capitale à Pékin, ont prouvé que le seuil s'appliquait à toutes les formes d'un certain type général.

Ces deux articles améliorent considérablement la compréhension des mathématiciens des inclusions de Nash. Ils établissent également un lien insolite entre les encastrements et les flux de fluides.

"Nous avons découvert des points de contact étonnants entre les deux problèmes", a déclaré M. De Lellis.

Les rivières tumultueuses peuvent sembler n'avoir qu'un vague rapport avec les formes froissées, mais les mathématiciens ont découvert en 2009 qu'elles pouvaient en fait être étudiées à l'aide des mêmes techniques. Il y a trois ans, des mathématiciens, dont M. De Lellis, ont utilisé les idées de Nash pour comprendre le point auquel un écoulement devient turbulent. Ils ont ré-imaginé un fluide comme étant composé d'écoulements tordus et ont prouvé que si l'on ajoutait juste assez de torsions à ces écoulements, le fluide prenait soudainement une caractéristique clé de la turbulence.

Les nouveaux travaux sur les inclusion(embeddings) s'appuient sur une leçon cruciale tirée de ces travaux antérieurs sur la turbulence, suggérant que les mathématiciens disposent désormais d'un cadre général pour identifier des points de transition nets dans toute une série de contextes mathématiques. 

Maintenir la longueur

Les mathématiciens considèrent aujourd'hui que les formes, comme la sphère, ont leurs propres propriétés géométriques intrinsèques : Une sphère est une sphère quel que soit l'endroit où vous la trouvez.

Mais vous pouvez prendre une forme abstraite et l'intégrer dans un espace géométrique plus grand. Lorsque vous l'intégrez, vous pouvez vouloir préserver toutes ses propriétés. Vous pouvez également exiger que seules certaines propriétés restent constantes, par exemple, que les longueurs des courbes sur sa surface restent identiques. De telles intégrations sont dites "isométriques".

Les incorporations isométriques conservent les longueurs mais peuvent néanmoins modifier une forme de manière significative. Commencez, par exemple, par une feuille de papier millimétré avec sa grille de lignes perpendiculaires. Pliez-la autant de fois que vous le souhaitez. Ce processus peut être considéré comme un encastrement isométrique. La forme obtenue ne ressemblera en rien au plan lisse de départ, mais la longueur des lignes de la grille n'aura pas changé.

(En illustration est montré  un gros plan de la forme sinueuse et ondulante d'un encastrement de Nash., avec ce commentaire - Les encastrements tordus de Nash conservent un degré surprenant de régularité, même s'ils permettent de modifier radicalement une surface.)

Pendant longtemps, les mathématiciens ont pensé que les plis nets étaient le seul moyen d'avoir les deux caractéristiques à la fois : une forme froissée avec des longueurs préservées.

"Si vous permettez aux plis de se produire, alors le problème est beaucoup plus facile", a déclaré Tristan Buckmaster de l'université de Princeton.

Mais en 1954, John Nash a identifié un type remarquablement différent d'incorporation isométrique qui réussit le même tour de force. Il utilisait des torsions hélicoïdales plutôt que des plis et des angles vifs.

Pour avoir une idée de l'idée de Nash, recommencez avec la surface lisse d'une sphère. Cette surface est composée de nombreuses courbes. Prenez chacune d'entre elles et tordez-la pour former une hélice en forme de ressort. Après avoir reformulé toutes les courbes de la sorte, il est possible de comprimer la sphère. Cependant, un tel processus semble violer les règles d'un encastrement isométrique - après tout, un chemin sinueux entre deux points est toujours plus long qu'un chemin droit.

Mais, de façon remarquable, Nash a montré qu'il existe un moyen rigoureux de maintenir les longueurs même lorsque l'on refabrique des courbes à partir de torsades. Tout d'abord, rétrécissez la sphère de manière uniforme, comme un ballon qui se dégonfle. Ensuite, ajoutez des spirales de plus en plus serrées à chaque courbe. En ajoutant un nombre infini de ces torsions, vous pouvez finalement redonner à chaque courbe sa longueur initiale, même si la sphère originale a été froissée.

Les travaux de Nash ont nécessité une exploration plus approfondie. Techniquement, ses résultats impliquent que l'on ne peut froisser une sphère que si elle existe en quatre dimensions spatiales. Mais en 1955, Nicolaas Kuiper a étendu les travaux de Nash pour qu'ils s'appliquent à la sphère standard à trois dimensions. À partir de là, les mathématiciens ont voulu comprendre le point exact auquel, en tordant suffisamment les courbes d'une sphère, on pouvait la faire s'effondrer.

Fluidité de la forme

Les formes pliées et tordues diffèrent les unes des autres sur un point essentiel. Pour comprendre comment, vous devez savoir ce que les mathématiciens veulent dire lorsqu'ils affirment que quelque chose est "lisse".

Un exemple classique de régularité est la forme ascendante et descendante d'une onde sinusoïdale, l'une des courbes les plus courantes en mathématiques. Une façon mathématique d'exprimer cette régularité est de dire que vous pouvez calculer la "dérivée" de l'onde en chaque point. La dérivée mesure la pente de la courbe en un point, c'est-à-dire le degré d'inclinaison ou de déclin de la courbe.

En fait, vous pouvez faire plus que calculer la dérivée d'une onde sinusoïdale. Vous pouvez également calculer la dérivée de la dérivée ou, la dérivée "seconde", qui saisit le taux de changement de la pente. Cette quantité permet de déterminer la courbure de la courbe - si la courbe est convexe ou concave près d'un certain point, et à quel degré.

Et il n'y a aucune raison de s'arrêter là. Vous pouvez également calculer la dérivée de la dérivée de la dérivée (la "troisième" dérivée), et ainsi de suite. Cette tour infinie de dérivées est ce qui rend une onde sinusoïdale parfaitement lisse dans un sens mathématique exact. Mais lorsque vous pliez une onde sinusoïdale, la tour de dérivées s'effondre. Le long d'un pli, la pente de la courbe n'est pas bien définie, ce qui signifie qu'il est impossible de calculer ne serait-ce qu'une dérivée première.

Avant Nash, les mathématiciens pensaient que la perte de la dérivée première était une conséquence nécessaire du froissement de la sphère tout en conservant les longueurs. En d'autres termes, ils pensaient que le froissement et la régularité étaient incompatibles. Mais Nash a démontré le contraire.

En utilisant sa méthode, il est possible de froisser la sphère sans jamais plier aucune courbe. Tout ce dont Nash avait besoin, c'était de torsions lisses. Cependant, l'infinité de petites torsions requises par son encastrement rend la notion de courbure en dérivée seconde insensée, tout comme le pliage détruit la notion de pente en dérivée première. Il n'est jamais clair, où que ce soit sur une des surfaces de Nash, si une courbe est concave ou convexe. Chaque torsion ajoutée rend la forme de plus en plus ondulée et rainurée, et une surface infiniment rainurée devient rugueuse.

"Si vous étiez un skieur sur la surface, alors partout, vous sentiriez des bosses", a déclaré Vincent Borrelli de l'Université de Lyon, qui a travaillé en 2012 avec des collaborateurs pour créer les premières visualisations précises des encastrements de Nash.

Les nouveaux travaux expliquent la mesure exacte dans laquelle une surface peut maintenir des dérivés même si sa structure cède.

Trouver la limite

Les mathématiciens ont une notation précise pour décrire le nombre de dérivées qui peuvent être calculées sur une courbe.

Un encastrement qui plie une forme est appelé C0. Le C représente la continuité et l'exposant zéro signifie que les courbes de la surface encastrée n'ont aucune dérivée, pas même une première. Il existe également des encastrements avec des exposants fractionnaires, comme C0,1/2, qui plissent encore les courbes, mais moins fortement. Puis il y a les incorporations C1 de Nash, qui écrasent les courbes uniquement en appliquant des torsions lisses, conservant ainsi une dérivée première.

(Un graphique à trois panneaux illustre les différents degrés de lissage des lettres O, U et B. DU simple au complexe)

Avant les travaux de Nash, les mathématiciens s'étaient principalement intéressés aux incorporations isométriques d'un certain degré d'uniformité standard, C2 et plus. Ces encastrements C2 pouvaient tordre ou courber des courbes, mais seulement en douceur. En 1916, l'influent mathématicien Hermann Weyl a émis l'hypothèse que l'on ne pouvait pas modifier la forme de la sphère à l'aide de ces courbes douces sans détruire les distances. Dans les années 1940, les mathématiciens ont résolu le problème de Weyl, en prouvant que les encastrements isométriques en C2 ne pouvaient pas froisser la sphère.

Dans les années 1960, Yurii Borisov a découvert qu'un encastrement C1,1/13 pouvait encore froisser la sphère, alors qu'un encastrement C1,2/3 ne le pouvait pas. Ainsi, quelque part entre les enrobages C1 de Nash et les enrobages C2 légèrement courbés, le froissement devient possible. Mais pendant des décennies après les travaux de Borisov, les mathématiciens n'ont pas réussi à trouver une limite exacte, si tant est qu'elle existe.

"Une nouvelle vision fondamentale [était] nécessaire", a déclaré M. Inauen.

Si les mathématiciens n'ont pas pu progresser, ils ont néanmoins trouvé d'autres applications aux idées de Nash. Dans les années 1970, Mikhael Gromov les a reformulées en un outil général appelé "intégration convexe", qui permet aux mathématiciens de construire des solutions à de nombreux problèmes en utilisant des sous-structures sinueuses. Dans un exemple, qui s'est avéré pertinent pour les nouveaux travaux, l'intégration convexe a permis de considérer un fluide en mouvement comme étant composé de nombreux sous-flux tordus.

Des décennies plus tard, en 2016, Gromov a passé en revue les progrès progressifs réalisés sur les encastrements de la sphère et a conjecturé qu'un seuil existait en fait, à C1,1/2. Le problème était qu'à ce seuil, les méthodes existantes s'effondraient.

"Nous étions bloqués", a déclaré Inauen.

Pour progresser, les mathématiciens avaient besoin d'un nouveau moyen de faire la distinction entre des incorporations de douceur différente. De Lellis et Inauen l'ont trouvé en s'inspirant de travaux sur un phénomène totalement différent : la turbulence.

Une énergie qui disparaît

Tous les matériaux qui entrent en contact ont un frottement, et nous pensons que ce frottement est responsable du ralentissement des choses. Mais depuis des années, les physiciens ont observé une propriété remarquable des écoulements turbulents : Ils ralentissent même en l'absence de friction interne, ou viscosité.

En 1949, Lars Onsager a proposé une explication. Il a supposé que la dissipation sans frottement était liée à la rugosité extrême (ou au manque de douceur) d'un écoulement turbulent : Lorsqu'un écoulement devient suffisamment rugueux, il commence à s'épuiser.

En 2018, Philip Isett a prouvé la conjecture d'Onsager, avec la contribution de Buckmaster, De Lellis, László Székelyhidi et Vlad Vicol dans un travail séparé. Ils ont utilisé l'intégration convexe pour construire des écoulements tourbillonnants aussi rugueux que C0, jusqu'à C0,1/3 (donc sensiblement plus rugueux que C1). Ces flux violent une règle formelle appelée conservation de l'énergie cinétique et se ralentissent d'eux-mêmes, du seul fait de leur rugosité.

"L'énergie est envoyée à des échelles infiniment petites, à des échelles de longueur nulle en un temps fini, puis disparaît", a déclaré Buckmaster.

Des travaux antérieurs datant de 1994 avaient établi que les écoulements sans frottement plus lisses que C0,1/3 (avec un exposant plus grand) conservaient effectivement de l'énergie. Ensemble, les deux résultats ont permis de définir un seuil précis entre les écoulements turbulents qui dissipent l'énergie et les écoulements non turbulents qui conservent l'énergie.

Les travaux d'Onsager ont également fourni une sorte de preuve de principe que des seuils nets pouvaient être révélés par l'intégration convexe. La clé semble être de trouver la bonne règle qui tient d'un côté du seuil et échoue de l'autre. De Lellis et Inauen l'ont remarqué.

"Nous avons pensé qu'il existait peut-être une loi supplémentaire, comme la [loi de l'énergie cinétique]", a déclaré Inauen. "Les enchâssements isométriques au-dessus d'un certain seuil la satisfont, et en dessous de ce seuil, ils pourraient la violer".

Après cela, il ne leur restait plus qu'à aller chercher la loi.

Maintenir l'accélération

La règle qu'ils ont fini par étudier a trait à la valeur de l'accélération des courbes sur une surface. Pour la comprendre, imaginez d'abord une personne patinant le long d'une forme sphérique avant qu'elle ne soit encastrée. Elle ressent une accélération (ou une décélération) lorsqu'elle prend des virages et monte ou descend des pentes. Leur trajectoire forme une courbe.

Imaginez maintenant que le patineur court le long de la même forme après avoir été incorporé. Pour des encastrements isométriques suffisamment lisses, qui ne froissent pas la sphère ou ne la déforment pas de quelque manière que ce soit, le patineur devrait ressentir les mêmes forces le long de la courbe encastrée. Après avoir reconnu ce fait, De Lellis et Inauen ont ensuite dû le prouver : les enchâssements plus lisses que C1,1/2 conservent l'accélération.

En 2018, ils ont appliqué cette perspective à une forme particulière appelée la calotte polaire, qui est le sommet coupé de la sphère. Ils ont étudié les enchâssements de la calotte qui maintiennent la base de la calotte fixe en place. Puisque la base de la calotte est fixe, une courbe qui se déplace autour d'elle ne peut changer d'accélération que si la forme de la calotte au-dessus d'elle est modifiée, par exemple en étant déformée vers l'intérieur ou l'extérieur. Ils ont prouvé que les encastrements plus lisses que C1,1/2 - même les encastrements de Nash - ne modifient pas l'accélération et ne déforment donc pas le plafond. 

"Cela donne une très belle image géométrique", a déclaré Inauen.

En revanche, ils ont utilisé l'intégration convexe pour construire des enrobages de la calotte plus rugueux que C1,1/2. Ces encastrements de Nash tordent tellement les courbes qu'ils perdent la notion d'accélération, qui est une quantité dérivée seconde. Mais l'accélération de la courbe autour de la base reste sensible, puisqu'elle est fixée en place. Ils ont montré que les encastrements en dessous du seuil pouvaient modifier l'accélération de cette courbe, ce qui implique qu'ils déforment également le plafond (car si le plafond ne se déforme pas, l'accélération reste constante ; et si l'accélération n'est pas constante, cela signifie que le plafond a dû se déformer).

Deux ans plus tard, Inauen et Cao ont prolongé l'article précédent et prouvé que la valeur de C1,1/2 prédite par Gromov était en fait un seuil qui s'appliquait à toute forme, ou "collecteur", avec une limite fixe. Au-dessus de ce seuil, les formes ne se déforment pas, au-dessous, elles se déforment. "Nous avons généralisé le résultat", a déclaré Cao.

L'une des principales limites de l'article de Cao et Inauen est qu'il nécessite l'intégration d'une forme dans un espace à huit dimensions, au lieu de l'espace à trois dimensions que Gromov avait en tête. Avec des dimensions supplémentaires, les mathématiciens ont gagné plus de place pour ajouter des torsions, ce qui a rendu le problème plus facile.

Bien que les résultats ne répondent pas complètement à la conjecture de Gromov, ils fournissent le meilleur aperçu à ce jour de la relation entre l'aspect lisse et le froissement. "Ils donnent un premier exemple dans lequel nous voyons vraiment cette dichotomie", a déclaré M. De Lellis.

À partir de là, les mathématiciens ont un certain nombre de pistes à suivre. Ils aimeraient notamment résoudre la conjecture en trois dimensions. En même temps, ils aimeraient mieux comprendre les pouvoirs de l'intégration convexe.

Cet automne, l'Institute for Advanced Study accueillera un programme annuel sur le sujet. Il réunira des chercheurs issus d'un large éventail de domaines dans le but de mieux comprendre les idées inventées par Nash. Comme l'a souligné Gromov dans son article de 2016, les formes sinueuses de Nash ne faisaient pas simplement partie de la géométrie. Comme cela est désormais clair, elles ont ouvert la voie à un tout nouveau "pays" des mathématiques, où des seuils aigus apparaissent en de nombreux endroits.

Auteur: Internet

Info: https://www.quantamagazine.org/mathematicians-identify-threshold-at-which-shapes-give-way-20210603/Mordechai Rorvig, rédacteur collaborateur, , 3 juin 2021

[ ratatinement ] [ limite de conservation ] [ apparences ] [ topologie ] [ recherche ] [ densification ]

 

Commentaires: 0

Ajouté à la BD par miguel

question

Réel ou imaginaire ? Comment votre cerveau fait la différence.

De nouvelles expériences montrent que le cerveau fait la distinction entre les images mentales perçues et imaginées en vérifiant si elles franchissent un "seuil de réalité".

(image - Nous confondons rarement les images qui traversent notre imagination avec des perceptions de la réalité, bien que les mêmes zones du cerveau traitent ces deux types d'images).

S'agit-il de la vraie vie ? S'agit-il d'un fantasme ?

Ce ne sont pas seulement les paroles de la chanson "Bohemian Rhapsody" de Queen. Ce sont aussi les questions auxquelles le cerveau doit constamment répondre lorsqu'il traite des flux de signaux visuels provenant des yeux et des images purement mentales issues de l'imagination. Des études de scintigraphie cérébrale ont montré à plusieurs reprises que le fait de voir quelque chose et de l'imaginer suscite des schémas d'activité neuronale très similaires. Pourtant, pour la plupart d'entre nous, les expériences subjectives qu'elles produisent sont très différentes.

"Je peux regarder par la fenêtre en ce moment même et, si je le veux, imaginer une licorne marchant dans la rue", explique Thomas Naselaris, professeur associé à l'université du Minnesota. La rue semblerait réelle et la licorne ne le serait pas. "C'est très clair pour moi", a-t-il ajouté. Le fait de savoir que les licornes sont mythiques n'entre guère en ligne de compte : Un simple cheval blanc imaginaire semblerait tout aussi irréel.

Alors pourquoi ne sommes-nous pas constamment en train d'halluciner ?" s'interroge Nadine Dijkstra, chercheuse postdoctorale à l'University College de Londres. Une étude qu'elle a dirigée, récemment publiée dans Nature Communications, apporte une réponse intrigante : Le cerveau évalue les images qu'il traite en fonction d'un "seuil de réalité". Si le signal passe le seuil, le cerveau pense qu'il est réel ; s'il ne le passe pas, le cerveau pense qu'il est imaginé.

Ce système fonctionne bien la plupart du temps, car les signaux imaginaires sont généralement faibles. Mais si un signal imaginé est suffisamment fort pour franchir le seuil, le cerveau le prend pour la réalité.

Bien que le cerveau soit très compétent pour évaluer les images dans notre esprit, il semble que "ce type de vérification de la réalité soit une lutte sérieuse", a déclaré Lars Muckli, professeur de neurosciences visuelles et cognitives à l'université de Glasgow. Les nouvelles découvertes soulèvent la question de savoir si des variations ou des altérations de ce système pourraient entraîner des hallucinations, des pensées envahissantes ou même des rêves.

"Ils ont fait un excellent travail, à mon avis, en prenant une question dont les philosophes débattent depuis des siècles et en définissant des modèles avec des résultats prévisibles et en les testant", a déclaré M. Naselaris.

Quand les perceptions et l'imagination se mélangent

L'étude de Dijkstra sur les images imaginées est née dans les premiers jours de la pandémie de Covid-19, lorsque les quarantaines et les fermetures d'usines ont interrompu son programme de travail. S'ennuyant, elle a commencé à parcourir la littérature scientifique sur l'imagination, puis a passé des heures à éplucher des documents pour trouver des comptes rendus historiques sur la façon dont les scientifiques ont testé un concept aussi abstrait. C'est ainsi qu'elle est tombée sur une étude réalisée en 1910 par la psychologue Mary Cheves West Perky.

Perky a demandé à des participants d'imaginer des fruits en regardant un mur vide. Pendant qu'ils le faisaient, elle a secrètement projeté des images extrêmement faibles de ces fruits - si faibles qu'elles étaient à peine visibles - sur le mur et a demandé aux participants s'ils voyaient quelque chose. Aucun d'entre eux n'a cru voir quelque chose de réel, mais ils ont commenté la vivacité de leur image imaginaire. "Si je n'avais pas su que j'imaginais, j'aurais cru que c'était réel", a déclaré l'un des participants.

La conclusion de Perky était que lorsque notre perception d'une chose correspond à ce que nous savons que nous imaginons, nous supposons qu'elle est imaginaire. Ce phénomène a fini par être connu en psychologie sous le nom d'effet Perky. "C'est un grand classique", déclare Bence Nanay, professeur de psychologie philosophique à l'université d'Anvers. Il est devenu en quelque sorte "obligatoire, lorsqu'on écrit sur l'imagerie, de donner son avis sur l'expérience Perky".

Dans les années 1970, le chercheur en psychologie Sydney Joelson Segal a ravivé l'intérêt pour les travaux de Perky en actualisant et en modifiant l'expérience. Dans une étude de suivi, Segal a demandé aux participants d'imaginer quelque chose, comme la ligne d'horizon de la ville de New York, pendant qu'il projetait faiblement quelque chose d'autre sur le mur, par exemple une tomate. Ce que les participants voyaient était un mélange de l'image imaginée et de l'image réelle, comme la ligne d'horizon de la ville de New York au coucher du soleil. Les résultats obtenus par Segal suggèrent que la perception et l'imagination peuvent parfois "se mélanger littéralement", a déclaré Nanay.

Toutes les études visant à reproduire les résultats de Perky n'ont pas abouti. Certaines d'entre elles ont impliqué des essais répétés pour les participants, ce qui a brouillé les résultats : Une fois que les gens savent ce que vous essayez de tester, ils ont tendance à modifier leurs réponses en fonction de ce qu'ils pensent être correct, a déclaré Naselaris.

Sous la direction de Steve Fleming, expert en métacognition à l'University College London, Dijkstra a donc mis au point une version moderne de l'expérience qui permet d'éviter ce problème. Dans leur étude, les participants n'ont jamais eu l'occasion de modifier leurs réponses car ils n'ont été testés qu'une seule fois. Les travaux ont permis de modéliser et d'examiner l'effet Perky et deux autres hypothèses concurrentes sur la manière dont le cerveau distingue la réalité de l'imagination.

Quand imagination et perception se mélangent

L'étude de Dijkstra sur les images imaginées est née dans les premiers jours de la pandémie de Covid-19, lorsque les quarantaines et les fermetures d'usines ont interrompu son programme de travail. S'ennuyant, elle a commencé à consulter la littérature scientifique sur l'imagination, puis a passé des heures à éplucher les journaux pour trouver des comptes rendus historiques sur la façon dont les scientifiques ont testé un concept aussi abstrait. C'est ainsi qu'elle est tombée sur une étude réalisée en 1910 par la psychologue Mary Cheves West Perky.

Perky a demandé à des participants d'imaginer des fruits en regardant un mur vide. Pendant qu'ils le faisaient, elle a secrètement projeté des images extrêmement faibles de ces fruits - si faibles qu'elles étaient à peine visibles - sur le mur et a demandé aux participants s'ils voyaient quelque chose. Aucun d'entre eux n'a cru voir quelque chose de réel, mais ils ont commenté la vivacité de leur image imaginaire. "Si je n'avais pas su que j'imaginais, j'aurais cru que c'était réel", a déclaré l'un des participants.

La conclusion de Perky était que lorsque notre perception d'une chose correspond à ce que nous savons que nous imaginons, nous supposons qu'elle est imaginaire. Ce phénomène a fini par être connu en psychologie sous le nom d'effet Perky. "C'est un grand classique", déclare Bence Nanay, professeur de psychologie philosophique à l'université d'Anvers. Il est devenu en quelque sorte "obligatoire, lorsqu'on écrit sur l'imagerie, de donner son avis sur l'expérience Perky".

Dans les années 1970, le chercheur en psychologie Sydney Joelson Segal a ravivé l'intérêt pour les travaux de Perky en actualisant et en modifiant l'expérience. Dans une étude de suivi, Segal a demandé aux participants d'imaginer quelque chose, comme la ligne d'horizon de la ville de New York, pendant qu'il projetait faiblement quelque chose d'autre sur le mur, par exemple une tomate. Ce que les participants voyaient était un mélange de l'image imaginée et de l'image réelle, comme la ligne d'horizon de la ville de New York au coucher du soleil. Les résultats obtenus par Segal suggèrent que la perception et l'imagination peuvent parfois "se mélanger littéralement", a déclaré Nanay.

Toutes les études visant à reproduire les résultats de Perky n'ont pas abouti. Certaines d'entre elles ont impliqué des essais répétés pour les participants, ce qui a brouillé les résultats : Une fois que les gens savent ce que vous essayez de tester, ils ont tendance à modifier leurs réponses en fonction de ce qu'ils pensent être correct, a déclaré Naselaris.

Sous la direction de Steve Fleming, expert en métacognition à l'University College London, Dijkstra a donc mis au point une version moderne de l'expérience qui permet d'éviter ce problème. Dans leur étude, les participants n'ont jamais eu l'occasion de modifier leurs réponses car ils n'ont été testés qu'une seule fois. Les travaux ont permis de modéliser et d'examiner l'effet Perky et deux autres hypothèses concurrentes sur la manière dont le cerveau distingue la réalité de l'imagination.

Réseaux d'évaluation

L'une de ces hypothèses alternatives affirme que le cerveau utilise les mêmes réseaux pour la réalité et l'imagination, mais que les scanners cérébraux d'imagerie par résonance magnétique fonctionnelle (IRMf) n'ont pas une résolution suffisamment élevée pour permettre aux neuroscientifiques de discerner les différences dans la manière dont les réseaux sont utilisés. L'une des études de Muckli, par exemple, suggère que dans le cortex visuel du cerveau, qui traite les images, les expériences imaginaires sont codées dans une couche plus superficielle que les expériences réelles.

Avec l'imagerie cérébrale fonctionnelle, "nous plissons les yeux", explique Muckli. Dans chaque équivalent d'un pixel d'un scanner cérébral, il y a environ 1 000 neurones, et nous ne pouvons pas voir ce que fait chacun d'entre eux.

L'autre hypothèse, suggérée par des études menées par Joel Pearson à l'université de Nouvelle-Galles du Sud, est que les mêmes voies cérébrales codent à la fois pour l'imagination et la perception, mais que l'imagination n'est qu'une forme plus faible de la perception.

Pendant le confinement de la pandémie, Dijkstra et Fleming ont recruté des participants pour une étude en ligne. Ils ont demandé à 400 participants de regarder une série d'images statiques et d'imaginer des lignes diagonales s'inclinant vers la droite ou vers la gauche. Entre chaque essai, ils devaient évaluer la vivacité de l'image sur une échelle de 1 à 5. Ce que les participants ne savaient pas, c'est qu'au cours du dernier essai, les chercheurs ont lentement augmenté l'intensité d'une faible image projetée de lignes diagonales - inclinées soit dans la direction que les participants devaient imaginer, soit dans la direction opposée. Les chercheurs ont ensuite demandé aux participants si ce qu'ils voyaient était réel ou imaginé.

Dijkstra s'attendait à trouver l'effet Perky, c'est-à-dire que lorsque l'image imaginée correspondait à l'image projetée, les participants considéreraient la projection comme le produit de leur imagination. Au lieu de cela, les participants étaient beaucoup plus enclins à penser que l'image était réellement présente.

Pourtant, il y avait au moins un écho de l'effet Perky dans ces résultats : Les participants qui pensaient que l'image était là la voyaient plus clairement que les participants qui pensaient qu'il s'agissait de leur imagination.

Dans une deuxième expérience, Dijkstra et son équipe n'ont pas présenté d'image lors du dernier essai. Mais le résultat a été le même : les personnes qui considéraient que ce qu'elles voyaient était plus vivant étaient également plus susceptibles de le considérer comme réel.

Ces observations suggèrent que l'imagerie dans notre esprit et les images réelles perçues dans le monde se mélangent, a déclaré Mme Dijkstra. "Lorsque ce signal mixte est suffisamment fort ou vif, nous pensons qu'il reflète la réalité. Il est probable qu'il existe un seuil au-delà duquel les signaux visuels semblent réels au cerveau et en deçà duquel ils semblent imaginaires, pense-t-elle. Mais il pourrait également s'agir d'un continuum plus graduel.

Pour savoir ce qui se passe dans un cerveau qui tente de distinguer la réalité de l'imagination, les chercheurs ont réanalysé les scanners cérébraux d'une étude antérieure au cours de laquelle 35 participants avaient imaginé et perçu avec vivacité diverses images, allant de l'arrosoir au coq.

Conformément à d'autres études, ils ont constaté que les schémas d'activité dans le cortex visuel étaient très similaires dans les deux scénarios. "L'imagerie vive ressemble davantage à la perception, mais il est moins évident de savoir si la perception faible ressemble davantage à l'imagerie", a déclaré M. Dijkstra. Il y a des indices selon lesquels le fait de regarder une image faible pourrait produire un schéma similaire à celui de l'imagination, mais les différences n'étaient pas significatives et doivent être examinées de manière plus approfondie.

(image photo - Les scanners des fonctions cérébrales montrent que les images imaginées et perçues déclenchent des schémas d'activité similaires, mais que les signaux sont plus faibles pour les images imaginées (à gauche).

Ce qui est clair, c'est que le cerveau doit être capable de réguler avec précision la force d'une image mentale pour éviter la confusion entre l'imaginaire et la réalité. "Le cerveau doit faire preuve d'un grand sens de l'équilibre", explique M. Naselaris. "Dans un certain sens, il va interpréter l'imagerie mentale aussi littéralement que l'imagerie visuelle.

Les chercheurs ont découvert que l'intensité du signal pouvait être lue ou régulée dans le cortex frontal, qui analyse les émotions et les souvenirs (entre autres fonctions). Mais on ne sait pas encore exactement ce qui détermine la vivacité d'une image mentale ou la différence entre l'intensité du signal d'imagerie et le seuil de réalité. Il pourrait s'agir d'un neurotransmetteur, de modifications des connexions neuronales ou de quelque chose de totalement différent, a déclaré Naselaris.

Il pourrait même s'agir d'un sous-ensemble de neurones différent et non identifié qui fixe le seuil de réalité et détermine si un signal doit être dévié vers une voie pour les images imaginées ou une voie pour les images réellement perçues - une découverte qui relierait parfaitement la première et la troisième hypothèse, a déclaré Muckli.

Même si les résultats sont différents des siens, qui soutiennent la première hypothèse, Muckli apprécie leur raisonnement. Il s'agit d'un "article passionnant", a-t-il déclaré. C'est une "conclusion intrigante".

Selon Peter Tse, professeur de neurosciences cognitives au Dartmouth College, l'imagination est un processus qui va bien au-delà de la simple observation de quelques lignes sur un fond bruyant. L'imagination, dit-il, c'est la capacité de regarder ce qu'il y a dans votre placard et de décider ce que vous allez faire pour le dîner, ou (si vous êtes les frères Wright) de prendre une hélice, de la coller sur une aile et de l'imaginer en train de voler.

Les différences entre les résultats de Perky et ceux de Dijkstra pourraient être entièrement dues à des différences dans leurs procédures. Mais elles laissent également entrevoir une autre possibilité : nous pourrions percevoir le monde différemment de nos ancêtres.

L'étude de Mme Dijkstra ne portait pas sur la croyance en la réalité d'une image, mais plutôt sur le "sentiment" de la réalité. Les auteurs supposent qu'en raison de la banalisation des images projetées, des vidéos et autres représentations de la réalité au XXIe siècle, notre cerveau a peut-être appris à évaluer la réalité d'une manière légèrement différente qu'il y a un siècle.

Même si les participants à cette expérience "ne s'attendaient pas à voir quelque chose, ils s'y attendaient quand même plus que si vous étiez en 1910 et que vous n'aviez jamais vu de projecteur de votre vie", a déclaré M. Dijkstra. Le seuil de réalité est donc probablement beaucoup plus bas aujourd'hui que par le passé, de sorte qu'il faut peut-être une image imaginée beaucoup plus vive pour franchir le seuil et troubler le cerveau.

Une base pour les hallucinations

Ces résultats soulèvent la question de savoir si le mécanisme pourrait s'appliquer à un large éventail de conditions dans lesquelles la distinction entre l'imagination et la perception disparaît. M. Dijkstra suppose, par exemple, que lorsque les gens commencent à s'endormir et que la réalité commence à se confondre avec le monde des rêves, leur seuil de réalité pourrait s'abaisser. Dans des cas comme la schizophrénie, où il y a une "rupture générale de la réalité", il pourrait y avoir un problème d'étalonnage, a déclaré M. Dijkstra.

"Dans la psychose, il se peut que l'imagerie soit si bonne qu'elle atteigne le seuil, ou que le seuil soit décalé", a déclaré Karolina Lempert, professeur adjoint de psychologie à l'université Adelphi, qui n'a pas participé à l'étude. Certaines études ont montré que les personnes qui ont des hallucinations présentent une sorte d'hyperactivité sensorielle, ce qui suggère que le signal de l'image est augmenté. Mais des recherches supplémentaires sont nécessaires pour établir le mécanisme par lequel les hallucinations apparaissent, a-t-elle ajouté. "Après tout, la plupart des personnes qui font l'expérience d'images vivantes n'ont pas d'hallucinations.

Nanay pense qu'il serait intéressant d'étudier les seuils de réalité des personnes souffrant d'hyperphantasie, une imagination extrêmement vive qu'elles confondent souvent avec la réalité. De même, il existe des situations dans lesquelles les personnes souffrent d'expériences imaginées très fortes qu'elles savent ne pas être réelles, comme dans le cas d'hallucinations sous l'effet de drogues ou de rêves lucides. Dans des conditions telles que le syndrome de stress post-traumatique, les gens "commencent souvent à voir des choses qu'ils ne voulaient pas voir", et cela leur semble plus réel que cela ne devrait l'être, a déclaré M. Dijkstra.

Certains de ces problèmes peuvent être liés à des défaillances des mécanismes cérébraux qui aident normalement à faire ces distinctions. Dijkstra pense qu'il serait utile d'étudier les seuils de réalité des personnes atteintes d'aphantasie, l'incapacité d'imaginer consciemment des images mentales.

Les mécanismes par lesquels le cerveau distingue ce qui est réel de ce qui est imaginaire pourraient également être liés à la manière dont il distingue les images réelles des images factices (inauthentiques). Dans un monde où les simulations se rapprochent de la réalité, il sera de plus en plus difficile de faire la distinction entre les vraies et les fausses images, a déclaré M. Lempert. "Je pense que cette question est plus importante que jamais.

Mme Dijkstra et son équipe s'efforcent à présent d'adapter leur expérience pour qu'elle fonctionne dans un scanner cérébral. "Maintenant que le confinement est terminé, je veux à nouveau examiner des cerveaux", a-t-elle déclaré.

Elle espère enfin découvrir s'il est possible de manipuler ce système pour rendre l'imagination plus réelle. Par exemple, la réalité virtuelle et les implants neuronaux font actuellement l'objet de recherches pour des traitements médicaux, notamment pour aider les aveugles à retrouver la vue. La capacité de rendre les expériences plus ou moins réelles, dit-elle, pourrait être très importante pour ces applications.

Cela n'a rien d'extraordinaire, étant donné que la réalité est une construction du cerveau.

"Sous notre crâne, tout est inventé", explique Muckli. "Nous construisons entièrement le monde, dans sa richesse, ses détails, ses couleurs, ses sons, son contenu et son excitation. ... Il est créé par nos neurones".

Cela signifie que la réalité d'une personne sera différente de celle d'une autre, a déclaré M. Dijkstra : "La frontière entre l'imagination et la réalité n'est pas si solide.

Auteur: Internet

Info: https://www.quantamagazine.org/ Yasemin Saplakoglu, Staff Writer, May 24, 2023

[ intellection ]

 

Commentaires: 0

Ajouté à la BD par miguel

dichotomie

Un nouvel opus magnum postule l'existence d'un lien mathématique caché, semblable à la connexion entre l'électricité et le magnétisme.

En 2018, alors qu'il s'apprêtait à recevoir la médaille Fields, la plus haute distinction en mathématiques, Akshay Venkatesh avait un morceau de papier dans sa poche. Il y avait inscrit un tableau d'expressions mathématiques qui, depuis des siècles, jouent un rôle clé dans la théorie des nombres.

Bien que ces expressions aient occupé une place prépondérante dans les recherches de Venkatesh au cours de la dernière décennie, il les gardait sur lui non pas comme un souvenir de ce qu'il avait accompli, mais comme un rappel de quelque chose qu'il ne comprenait toujours pas.

Les colonnes du tableau étaient remplies d'expressions mathématiques à l'allure énigmatique : À l'extrême gauche se trouvaient des objets appelés périodes, et à droite, des objets appelés fonctions L, qui pourraient être la clé pour répondre à certaines des questions les plus importantes des mathématiques modernes. Le tableau suggérait une sorte de relation entre les deux. Dans un livre publié en 2012 avec Yiannis Sakellaridis, de l'université Johns Hopkins, Venkatesh avait trouvé un sens à cette relation : Si on leur donne une période, ils peuvent déterminer s'il existe une fonction L associée.

Mais ils ne pouvaient pas encore comprendre la relation inverse. Il était impossible de prédire si une fonction L donnée avait une période correspondante. Lorsqu'ils ont examiné les fonctions L, ils ont surtout constaté un certain désordre.

C'est pourquoi Venkatesh a gardé le papier dans sa poche. Il espérait que s'il fixait la liste suffisamment longtemps, les traits communs de cette collection apparemment aléatoire de fonctions L lui apparaîtraient clairement. Au bout d'un an, ce n'était pas le cas.

"Je n'arrivais pas à comprendre le principe qui sous-tendait ce tableau", a-t-il déclaré.

2018 fut une année importante pour Venkatesh à plus d'un titre. En plus de recevoir la médaille Fields, il a également quitté l'université de Stanford, où il se trouvait depuis une dizaine d'années, pour rejoindre l'Institute for Advanced Study à Princeton, dans le New Jersey.

Sakellaridis et lui ont également commencé à discuter avec David Ben-Zvi, un mathématicien de l'université du Texas, à Austin, qui passait le semestre à l'institut. Ben-Zvi avait construit sa carrière dans un domaine parallèle des mathématiques, en étudiant le même type de questions sur les nombres que Sakellaridis et Venkatesh, mais d'un point de vue géométrique. Lorsqu'il a entendu Venkatesh parler de cette table mystérieuse qu'il emportait partout avec lui, Ben-Zvi a presque immédiatement commencé à voir une nouvelle façon de faire communiquer les périodes et les fonctions L entre elles.

Ce moment de reconnaissance a été à l'origine d'une collaboration de plusieurs années qui s'est concrétisée en juillet dernier, lorsque Ben-Zvi, Sakellaridis et Venkatesh ont publié un manuscrit de 451 pages. L'article crée une traduction dans les deux sens entre les périodes et les fonctions L en refondant les périodes et les fonctions L en termes d'une paire d'espaces géométriques utilisés pour étudier des questions fondamentales en physique.

Ce faisant, il réalise un rêve de longue date dans le cadre d'une vaste initiative de recherche en mathématiques appelée "programme Langlands". Les mathématiciens qui travaillent sur des questions dans le cadre de ce programme cherchent à jeter des ponts entre des domaines disparates pour montrer comment des formes avancées de calcul (d'où proviennent les périodes) peuvent être utilisées pour répondre à des questions ouvertes fondamentales en théorie des nombres (d'où proviennent les fonctions L), ou comment la géométrie peut être utilisée pour répondre à des questions fondamentales en arithmétique.

Ils espèrent qu'une fois ces ponts établis, les techniques pourront être portées d'un domaine mathématique à un autre afin de répondre à des questions importantes qui semblent insolubles dans leur propre domaine.

Le nouvel article est l'un des premiers à relier les aspects géométriques et arithmétiques du programme, qui, pendant des décennies, ont progressé de manière largement isolée. En créant ce lien et en élargissant effectivement le champ d'application du programme Langlands tel qu'il a été conçu à l'origine, le nouvel article fournit un cadre conceptuel unique pour une multitude de connexions mathématiques.

"Il unifie un grand nombre de phénomènes disparates, ce qui réjouit toujours les mathématiciens", a déclaré Minhyong Kim, directeur du Centre international des sciences mathématiques d'Édimbourg, en Écosse.

Connecter eulement  

Le programme Langlands a été lancé par Robert Langlands, aujourd'hui professeur émérite à l'Institute for Advanced Study. Il a débuté en 1967 par une lettre manuscrite de 17 pages adressée par Langlands, alors jeune professeur à l'université de Princeton, à Andre Weil, l'un des mathématiciens les plus connus au monde. Langlands proposait d'associer des objets importants du calcul, appelés formes automorphes, à des objets de l'algèbre, appelés groupes de Galois. Les formes automorphes sont une généralisation des fonctions périodiques telles que le sinus en trigonométrie, dont les sorties se répètent à l'infini lorsque les entrées augmentent. Les groupes de Galois sont des objets mathématiques qui décrivent comment des entités appelées champs (comme les nombres réels ou rationnels) changent lorsqu'on leur ajoute de nouveaux éléments.

Les paires comme celle entre les formes automorphes et les groupes de Galois sont appelées dualités. Elles suggèrent que différentes classes d'objets se reflètent l'une l'autre, ce qui permet aux mathématiciens d'étudier l'une en fonction de l'autre.

Des générations de mathématiciens se sont efforcées de prouver l'existence de la dualité supposée de Langlands. Bien qu'ils n'aient réussi à l'établir que pour des cas limités, même ces cas limités ont souvent donné des résultats spectaculaires. Par exemple, en 1994, lorsque Andrew Wiles a démontré que la dualité proposée par Langlands était valable pour une classe particulière d'exemples, il a prouvé le dernier théorème de Fermat, l'un des résultats les plus célèbres de l'histoire des mathématiques.

En poursuivant le programme de Langlands, les mathématiciens l'ont également élargi dans de nombreuses directions.

L'une de ces directions a été l'étude de dualités entre des objets arithmétiques apparentés, mais distincts, de ceux qui intéressaient Langlands. Dans leur livre de 2012, Sakellaridis et Venkatesh ont étudié une dualité entre les périodes, qui sont étroitement liées aux formes automorphes, et les fonctions L, qui sont des sommes infinies attachées aux groupes de Galois. D'un point de vue mathématique, les périodes et les L-fonctions sont des objets d'espèces totalement différentes, sans traits communs évidents.

Les périodes sont devenues des objets d'intérêt mathématique dans les travaux d'Erich Hecke dans les années 1930.

Les fonctions L sont des sommes infinies utilisées depuis les travaux de Leonhard Euler au milieu du 18e siècle pour étudier des questions fondamentales sur les nombres. La fonction L la plus célèbre, la fonction zêta de Riemann, est au cœur de l'hypothèse de Riemann, qui peut être considérée comme une prédiction sur la répartition des nombres premiers. L'hypothèse de Riemann est sans doute le plus important problème non résolu en mathématiques.

Langlands était conscient des liens possibles entre les fonctions L et les périodes, mais il les considérait comme une question secondaire dans son projet de relier différents domaines des mathématiques.

"Dans un article, [Langlands] considérait que l'étude des périodes et des fonctions L ne valait pas la peine d'être étudiée", a déclaré M. Sakellaridis.

Bienvenue dans la machine

Bien que Robert Langlands n'ait pas insisté sur le lien entre les périodes et les fonctions L, Sakellaridis et Venkatesh les considéraient comme essentiels pour élargir et approfondir les liens entre des domaines mathématiques apparemment éloignés, comme l'avait proposé Langlands.

Dans leur livre de 2012, ils ont développé une sorte de machine qui prend une période en entrée, effectue un long calcul et produit une fonction L. Cependant, toutes les périodes ne produisent pas des L-fonctions correspondantes, et la principale avancée théorique de leur livre était de comprendre lesquelles le font. (Ce travail s'appuie sur des travaux antérieurs d'Atsushi Ichino et de Tamotsu Ikeda à l'université de Kyoto).

Mais leur approche avait deux limites. Premièrement, elle n'explique pas pourquoi une période donnée produit une fonction L donnée. La machine qui transforme l'une en l'autre était une boîte noire. C'était comme s'ils avaient construit un distributeur automatique qui produisait souvent de manière fiable quelque chose à manger chaque fois que vous mettiez de l'argent, sauf qu'il était impossible de savoir ce que ce serait à l'avance, ou si la machine mangerait l'argent sans distribuer d'en-cas.

Dans tous les cas, vous deviez déposer votre argent - votre période - puis "faire un long calcul et voir quelle fonction L vous obteniez parmi un zoo de fonctions", a déclaré M. Venkatesh.

La deuxième chose qu'ils n'ont pas réussi à faire dans leur livre, c'est de comprendre quelles fonctions L ont des périodes associées. Certaines en ont. D'autres non. Ils n'ont pas réussi à comprendre pourquoi.

Ils ont continué à travailler après la publication du livre, en essayant de comprendre pourquoi la connexion fonctionnait et comment faire fonctionner la machine dans les deux sens - non seulement en obtenant une fonction L à partir d'une période, mais aussi dans l'autre sens.

En d'autres termes, ils voulaient savoir que s'ils mettaient 1,50 $ dans le distributeur automatique, cela signifiait qu'ils allaient recevoir un sachet de Cheetos. De plus, ils voulaient pouvoir dire que s'ils tenaient un sachet de Cheetos, cela signifiait qu'ils avaient mis 1,50 $ dans le distributeur automatique.

Parce qu'elles relient des objets qui, à première vue, n'ont rien en commun, les dualités sont puissantes. Vous pourriez fixer un alignement d'objets mathématiques pendant une éternité sans percevoir la correspondance entre les fonctions L et les périodes.

"La manière dont elles sont définies et données, cette période et cette fonction L, n'a rien d'évident", explique Wee Teck Gan, de l'université nationale de Singapour.

Pour traduire des choses superficiellement incommensurables, il faut trouver un terrain d'entente. L'un des moyens d'y parvenir pour des objets tels que les fonctions L et les périodes, qui trouvent leur origine dans la théorie des nombres, est de les associer à des objets géométriques.

Pour prendre un exemple ludique, imaginez que vous avez un triangle. Mesurez la longueur de chaque côté et vous obtiendrez un ensemble de nombres qui vous indiquera comment écrire une fonction L. Prenez un autre triangle et, au lieu de mesurer les longueurs, regardez les trois angles intérieurs - vous pouvez utiliser ces angles pour définir une période. Ainsi, au lieu de comparer directement les fonctions L et les périodes, vous pouvez comparer les triangles qui leur sont associés. On peut dire que les triangles "indexent" les L-fonctions et les périodes - si une période correspond à un triangle avec certains angles, alors les longueurs de ce triangle correspondent à une L-fonction correspondante.

Si une période correspond à un triangle avec certains angles, les longueurs de ce triangle correspondent à une fonction L. "Cette période et cette fonction L, il n'y a pas de relation évidente dans la façon dont elles vous sont données. L'idée était donc que si vous pouviez comprendre chacune d'entre elles d'une autre manière, d'une manière différente, vous pourriez découvrir qu'elles sont très comparables", a déclaré M. Gan.

Dans leur ouvrage de 2012, Sakellaridis et Venkatesh ont réalisé une partie de cette traduction. Ils ont trouvé un moyen satisfaisant d'indexer des périodes en utilisant un certain type d'objet géométrique. Mais ils n'ont pas pu trouver une façon similaire de penser aux fonctions L.

Ben-Zvi pensait pouvoir le faire.

Le double marteau de Maxwell

Alors que les travaux de Sakellaridis et Venkatesh se situaient légèrement à côté de la vision de Langlands, Ben-Zvi travaillait dans un domaine des mathématiques qui se situait dans un univers totalement différent - une version géométrique du programme de Langlands.

Le programme géométrique de Langlands a débuté au début des années 1980, lorsque Vladimir Drinfeld et Alexander Beilinson ont suggéré une sorte de dualité de second ordre. Drinfeld et Beilinson ont proposé que la dualité de Langlands entre les groupes de Galois et les formes automorphes puisse être interprétée comme une dualité analogue entre deux types d'objets géométriques. Mais lorsque Ben-Zvi a commencé à travailler dans le programme géométrique de Langlands en tant qu'étudiant diplômé à l'université de Harvard dans les années 1990, le lien entre le programme géométrique et le programme original de Langlands était quelque peu ambitieux.

"Lorsque le programme géométrique de Langlands a été introduit pour la première fois, il s'agissait d'une séquence d'étapes psychologiques pour passer du programme original de Langlands à cet énoncé géométrique qui semblait être un tout autre genre d'animal", a déclaré M. Ben-Zvi.

En 2018, lorsque M. Ben-Zvi a passé une année sabbatique à l'Institute for Advanced Study, les deux parties se sont rapprochées, notamment dans les travaux publiés la même année par Vincent Lafforgue, chercheur à l'Institut Fourier de Grenoble. Pourtant, M. Ben-Zvi prévoyait d'utiliser son séjour sabbatique de 2018 à l'IAS pour effectuer des recherches sur l'aspect géométrique du programme Langlands. Son plan a été perturbé lorsqu'il est allé écouter un exposé de Venkatesh.

"Mon fils et la fille d'Akshay étaient des camarades de jeu, et nous étions amis sur le plan social, et j'ai pensé que je devrais assister à certaines des conférences qu'Akshay a données au début du semestre", a déclaré Ben-Zvi.

Lors de l'une de ces premières conférences, Venkatesh a expliqué qu'il fallait trouver un type d'objet géométrique capable d'indexer à la fois les périodes et les fonctions L, et il a décrit certains de ses récents progrès dans cette direction. Il s'agissait d'essayer d'utiliser des espaces géométriques issus d'un domaine des mathématiques appelé géométrie symplectique, que Ben-Zvi connaissait bien pour avoir travaillé dans le cadre du programme géométrique de Langlands.

"Akshay et Yiannis ont poussé dans une direction où ils ont commencé à voir des choses dans la géométrie symplectique, et cela m'a fait penser à plusieurs choses", a déclaré M. Ben-Zvi.

L'étape suivante est venue de la physique.

Pendant des décennies, les physiciens et les mathématiciens ont utilisé les dualités pour trouver de nouvelles descriptions du fonctionnement des forces de la nature. Le premier exemple, et le plus célèbre, est celui des équations de Maxwell, écrites pour la première fois à la fin du XIXe siècle, qui relient les champs électriques et magnétiques. Ces équations décrivent comment un champ électrique changeant crée un champ magnétique, et comment un champ magnétique changeant crée à son tour un champ électrique. Ils peuvent être décrits conjointement comme un champ électromagnétique unique. Dans le vide, "ces équations présentent une merveilleuse symétrie", a déclaré M. Ben-Zvi. Mathématiquement, l'électricité et le magnétisme peuvent changer de place sans modifier le comportement du champ électromagnétique commun.

Parfois, les chercheurs s'inspirent de la physique pour prouver des résultats purement mathématiques. Par exemple, dans un article de 2008, les physiciens Davide Gaiotto et Edward Witten ont montré comment les espaces géométriques liés aux théories quantiques des champs de l'électromagnétisme s'intègrent dans le programme géométrique de Langlands. Ces espaces sont présentés par paires, une pour chaque côté de la dualité électromagnétique : les espaces G hamiltoniens et leur dual : Les espaces Ğ hamiltoniens (prononcés espaces G-hat).

Ben-Zvi avait pris connaissance de l'article de Gaiotto-Witten lors de sa publication, et il avait utilisé le cadre physique qu'il fournissait pour réfléchir à des questions relatives à la géométrie de Langlands. Mais ce travail - sans parler de l'article de physique qui l'a motivé - n'avait aucun lien avec le programme original de Langlands.

Jusqu'à ce que Ben-Zvi se retrouve dans le public de l'IAS en train d'écouter Venkatesh. Il a entendu Venkatesh expliquer qu'à la suite de leur livre de 2012, lui et Sakellaridis en étaient venus à penser que la bonne façon géométrique d'envisager les périodes était en termes d'espaces Hamiltoniens G. Mais Venkatesh a admis qu'ils ne savaient pas quel type d'objet géométrique associer aux L-fonctions. 

Cela a mis la puce à l'oreille de Ben-Zvi. Une fois que Sakellaridis et Venkatesh ont relié les périodes aux espaces G hamiltoniens, les objets géométriques duaux des fonctions L sont devenus immédiatement clairs : les espaces Ğ dont Gaiotto et Witten avaient dit qu'ils étaient les duaux des espaces G. Pour Ben-Zvi, toutes ces dualités, entre l'arithmétique, la géométrie et la physique, semblaient converger. Même s'il ne comprenait pas toute la théorie des nombres, il était convaincu que tout cela faisait partie d'une "grande et belle image".

To G or Not to Ğ

Au printemps 2018, Ben-Zvi, Sakellaridis et Venkatesh se sont rencontrés régulièrement au restaurant du campus de l'Institute for Advanced Study ; pendant quelques mois, ils ont cherché à savoir comment interpréter les données extraites des L-fonctions comme une recette pour construire des Ğ-espaces hamiltoniens. Dans l'image qu'ils ont établie, la dualité entre les périodes et les fonctions L se traduit par une dualité géométrique qui prend tout son sens dans le programme géométrique de Langlands et trouve son origine dans la dualité entre l'électricité et le magnétisme. La physique et l'arithmétique deviennent des échos l'une de l'autre, d'une manière qui se répercute sur l'ensemble du programme de Langlands.

"On pourrait dire que le cadre original de Langlands est maintenant un cas particulier de ce nouveau cadre", a déclaré M. Gan.

En unifiant des phénomènes disparates, les trois mathématiciens ont apporté une partie de l'ordre intrinsèque à la relation entre l'électricité et le magnétisme à la relation entre les périodes et les fonctions L.

"L'interprétation physique de la correspondance géométrique de Langlands la rend beaucoup plus naturelle ; elle s'inscrit dans cette image générale des dualités", a déclaré Kim. "D'une certaine manière, ce que [ce nouveau travail] fait est un moyen d'interpréter la correspondance arithmétique en utilisant le même type de langage.

Le travail a ses limites. Les trois mathématiciens prouvent en particulier  la dualité entre les périodes et les fonctions L sur des systèmes de nombres qui apparaissent en géométrie, appelés champs de fonctions, plutôt que sur des champs de nombres - comme les nombres réels - qui sont le véritable domaine d'application du programme de Langlands.

"L'image de base est censée s'appliquer aux corps de nombres. Je pense que tout cela sera finalement développé pour les corps de nombres", a déclaré M. Venkatesh.

Même sur les champs de fonctions, le travail met de l'ordre dans la relation entre les périodes et les fonctions L. Pendant les mois où Venkatesh a transporté un imprimé dans sa poche, lui et Sakellaridis n'avaient aucune idée de la raison pour laquelle ces fonctions L devraient être celles qui sont associées aux périodes. Aujourd'hui, la relation est logique dans les deux sens. Ils peuvent la traduire librement en utilisant un langage commun.

"J'ai connu toutes ces périodes et j'ai soudain appris que je pouvais retourner chacune d'entre elles et qu'elle se transformait en une autre que je connaissais également. C'est une prise de conscience très choquante", a déclaré M. Venkatesh.



 

Auteur: Internet

Info: https://www.quantamagazine.org. Kevin Hartnett, contributing Writer, October 12, 2023 https://www.quantamagazine.org/echoes-of-electromagnetism-found-in-number-theory-20231012/?mc_cid=cc4eb576af&mc_eid=78bedba296

[ fonction L p-adique ] [ fonction périodique ]

 

Commentaires: 0

Ajouté à la BD par miguel

physique fondamentale

La "problèmatique de la mesure" en théorie quantique pourrait être une pilule empoisonnée pour la réalité objective

La résolution d'un problème quantique notoire pourrait nécessiter l'abandon de certaines des hypothèses les plus chères à la science concernant le monde physique.

Imaginez qu'un physicien observe un système quantique dont le comportement s'apparente à celui d'une pièce de monnaie : qui peut tomber sur pile ou face. Il effectue le jeu de pile ou face quantique et obtient pile. Pourrait-il être certain que son résultat est un fait objectif, absolu et indiscutable sur le monde ? Si la pièce était simplement du type de celles que nous voyons dans notre expérience quotidienne, le résultat du lancer serait le même pour tout le monde : pile ou face ! Mais comme pour la plupart des choses en physique quantique, le résultat d'un jeu de pile ou face quantique serait un "ça dépend" beaucoup plus compliqué. Il existe des scénarios théoriquement plausibles dans lesquels un autre observateur pourrait trouver que le résultat de la pièce de notre physicien est pile ou face.

Au cœur de cette bizarrerie se trouve ce que l'on appelle le problème de la mesure. La mécanique quantique standard rend compte de ce qui se passe lorsque l'on mesure un système quantique : en substance, la mesure provoque l'"effondrement" aléatoire des multiples états possibles du système en un seul état défini. Mais cette comptabilité ne définit pas ce qui constitue une mesure, d'où le problème de la mesure.

Les tentatives visant à éviter le problème de la mesure, par exemple en envisageant une réalité dans laquelle les états quantiques ne s'effondrent pas du tout, ont conduit les physiciens sur un terrain étrange où les résultats des mesures peuvent être subjectifs. "L'un des principaux aspects du problème de la mesure est l'idée que les événements observés ne sont pas absolus", explique Nicholas Ormrod, de l'université d'Oxford. En bref, c'est la raison pour laquelle notre pile ou face quantique imaginaire pourrait être pile d'un point de vue et face d'un autre.

Mais ce scénario apparemment problématique est-il physiquement plausible ou s'agit-il simplement d'un artefact de notre compréhension incomplète du monde quantique ? Pour répondre à ces questions, il faut mieux comprendre les théories dans lesquelles le problème de la mesure peut se poser. C'est exactement ce qu'Ormrod, Vilasini Venkatesh de l'École polytechnique fédérale de Zurich et Jonathan Barrett d'Oxford ont réussi à faire. Dans une prépublication récente, le trio a prouvé un théorème qui montre pourquoi certaines théories, comme la mécanique quantique, ont un problème de mesure en premier lieu et comment on pourrait développer des théories alternatives pour l'éviter, préservant ainsi l'"absoluité" de tout événement observé. De telles théories banniraient, par exemple, la possibilité qu'une pièce de monnaie soit tirée à pile ou face par un observateur et qu'elle soit tirée à pile ou face par un autre.

Mais leurs travaux montrent également que la préservation d'un tel caractère absolu a un coût que de nombreux physiciens jugeraient prohibitif. "C'est la démonstration qu'il n'existe pas de solution indolore à ce problème", explique M. Ormrod. "Si nous parvenons un jour à retrouver l'absoluité, nous devrons alors renoncer à certains principes physiques qui nous tiennent vraiment à cœur".

 L'article d'Ormrod, Venkatesh et Barrett "aborde la question de savoir quelles catégories de théories sont incompatibles avec l'absoluité des événements observés et si l'absoluité peut être maintenue dans certaines théories, en même temps que d'autres propriétés souhaitables", explique Eric Cavalcanti, de l'université Griffith, en Australie. (M. Cavalcanti, le physicien Howard Wiseman et leurs collègues ont défini le terme "absoluité des événements observés" dans des travaux antérieurs qui ont jeté les bases de l'étude d'Ormrod, Venkatesh et Barrett).

S'en tenir à l'absoluité des événements observés pourrait signifier que le monde quantique est encore plus étrange que ce que nous savons.

LE CŒUR DU PROBLÈME

Pour comprendre ce qu'Ormrod, Venkatesh et Barrett ont réalisé, il faut suivre un cours accéléré sur les arcanes des fondations quantiques. Commençons par considérer notre système quantique hypothétique qui, lorsqu'il est observé, peut donner soit pile, soit face.

Dans les manuels de théorie quantique, avant l'effondrement, on dit que le système se trouve dans une superposition de deux états, et cet état quantique est décrit par une construction mathématique appelée fonction d'onde, qui évolue dans le temps et l'espace. Cette évolution est à la fois déterministe et réversible : étant donné une fonction d'onde initiale, on peut prédire ce qu'elle sera à un moment donné, et on peut en principe remonter l'évolution pour retrouver l'état antérieur. La mesure de la fonction d'onde entraîne cependant son effondrement, mathématiquement parlant, de sorte que le système de notre exemple apparaît comme étant soit pile, soit face.

Ce processus d'effondrement est la source obscure du problème de la mesure : il s'agit d'une affaire irréversible et unique, et personne ne sait même ce qui définit le processus ou les limites de la mesure. Qu'est-ce qu'une "mesure" ou, d'ailleurs, un "observateur" ? Ces deux éléments ont-ils des contraintes physiques, telles que des tailles minimales ou maximales ? Doivent-ils également être soumis à divers effets quantiques difficiles à saisir, ou peuvent-ils être considérés comme immunisés contre de telles complications ? Aucune de ces questions n'a de réponse facile et acceptée, mais les théoriciens ne manquent pas de solutions.

Étant donné le système de l'exemple, un modèle qui préserve l'absoluité de l'événement observé - c'est-à-dire que c'est soit pile, soit face pour tous les observateurs - est la théorie de Ghirardi-Rimini-Weber (GRW). Selon cette théorie, les systèmes quantiques peuvent exister dans une superposition d'états jusqu'à ce qu'ils atteignent une taille encore indéterminée, à partir de laquelle la superposition s'effondre spontanément et aléatoirement, indépendamment de l'observateur. Quel que soit le résultat - pile ou face dans notre exemple - il sera valable pour tous les observateurs.

Mais la théorie GRW, qui appartient à une catégorie plus large de théories de "l'effondrement spontané", semble aller à l'encontre d'un principe physique chéri depuis longtemps : la préservation de l'information. Tout comme un livre brûlé pourrait, en principe, être lu en réassemblant ses pages à partir de ses cendres (en ignorant l'émission initiale de rayonnement thermique du livre brûlé, pour des raisons de simplicité), la préservation de l'information implique que l'évolution d'un système quantique dans le temps permette de connaître ses états antérieurs. En postulant un effondrement aléatoire, la théorie GRW détruit la possibilité de savoir ce qui a conduit à l'état d'effondrement, ce qui, selon la plupart des témoignages, signifie que l'information sur le système avant sa transformation est irrémédiablement perdue. "La théorie GRW serait un modèle qui renonce à la préservation de l'information, préservant ainsi l'absoluité des événements", explique M. Venkatesh.

Un contre-exemple qui autorise la non-absoluité des événements observés est l'interprétation de la mécanique quantique selon le principe des "mondes multiples". Selon cette interprétation, la fonction d'onde de notre exemple se ramifiera en de multiples réalités contemporaines, de sorte que dans un "monde", le système sortira pile, tandis que dans un autre, il sortira face. Dans cette conception, il n'y a pas d'effondrement. "La question de savoir ce qui se passe n'est donc pas absolue ; elle est relative à un monde", explique M. Ormrod. Bien entendu, en essayant d'éviter le problème de mesure induit par l'effondrement, l'interprétation des mondes multiples introduit la ramification abrutissante des fonctions d'onde et la prolifération galopante des mondes à chaque bifurcation de la route quantique - un scénario désagréable pour beaucoup.

Néanmoins, l'interprétation des mondes multiples est un exemple de ce que l'on appelle les théories perspectivistes, dans lesquelles le résultat d'une mesure dépend du point de vue de l'observateur.

ASPECTS CRUCIAUX DE LA RÉALITÉ

Pour prouver leur théorème sans s'embourber dans une théorie ou une interprétation particulière, mécanique quantique ou autre, Ormrod, Venkatesh et Barrett se sont concentrés sur les théories perspectivistes qui obéissent à trois propriétés importantes. Une fois encore, il nous faut un peu de courage pour saisir l'importance de ces propriétés et pour apprécier le résultat plutôt profond de la preuve des chercheurs.

La première propriété est appelée nonlocalité de Bell (B). Elle fut identifiée pour la première fois en 1964 par le physicien John Bell dans un théorème éponyme et s'est avérée être un fait empirique incontesté de notre réalité physique. Supposons qu'Alice et Bob aient chacun accès à l'une des deux particules décrites par un état unique. Alice et Bob effectuent des mesures individuelles de leurs particules respectives et le font pour un certain nombre de paires de particules préparées de manière similaire. Alice choisit son type de mesure librement et indépendamment de Bob, et vice versa. Le fait qu'Alice et Bob choisissent leurs paramètres de mesure de leur plein gré est une hypothèse importante. Ensuite, lorsqu'ils compareront leurs résultats, le duo constatera que les résultats de leurs mesures sont corrélés d'une manière qui implique que les états des deux particules sont inséparables : connaître l'état de l'une permet de connaître l'état de l'autre. Les théories capables d'expliquer de telles corrélations sont dites non locales de Bell.

La deuxième propriété est la préservation de l'information (I). Les systèmes quantiques qui présentent une évolution déterministe et réversible satisfont à cette condition. Mais la condition est plus générale. Imaginez que vous portiez aujourd'hui un pull-over vert. Dans une théorie préservant l'information, il devrait toujours être possible, en principe, de retrouver la couleur de votre pull dans dix ans, même si personne ne vous a vu le porter. Mais "si le monde ne préserve pas l'information, il se peut que dans 10 ans, il n'y ait tout simplement aucun moyen de savoir de quelle couleur était le pull que je portais", explique M. Ormrod.

La troisième est une propriété appelée dynamique locale (L). Considérons deux événements dans deux régions de l'espace-temps. S'il existe un cadre de référence dans lequel les deux événements semblent simultanés, on dit que les régions de l'espace sont "séparées comme dans l'espace". La dynamique locale implique que la transformation d'un système dans l'une de ces régions ne peut affecter causalement la transformation d'un système dans l'autre région à une vitesse supérieure à celle de la lumière, et vice versa, une transformation étant toute opération qui prend un ensemble d'états d'entrée et produit un ensemble d'états de sortie. Chaque sous-système subit sa propre transformation, de même que le système dans son ensemble. Si la dynamique est locale, la transformation du système complet peut être décomposée en transformations de ses parties individuelles : la dynamique est dite séparable. "La [contrainte] de la dynamique locale permet de s'assurer que l'on ne simule pas Bell [la non-localité]", explique M. Venkatesh.

Dans la théorie quantique, les transformations peuvent être décomposées en leurs éléments constitutifs. "La théorie quantique est donc dynamiquement séparable", explique M. Ormrod. En revanche, lorsque deux particules partagent un état non local de Bell (c'est-à-dire lorsque deux particules sont intriquées, selon la théorie quantique), on dit que l'état est inséparable des états individuels des deux particules. Si les transformations se comportaient de la même manière, c'est-à-dire si la transformation globale ne pouvait pas être décrite en termes de transformations de sous-systèmes individuels, alors le système entier serait dynamiquement inséparable.

Tous les éléments sont réunis pour comprendre le résultat du trio. Le travail d'Ormrod, Venkatesh et Barrett se résume à une analyse sophistiquée de la manière dont les théories "BIL" (celles qui satisfont aux trois propriétés susmentionnées) traitent une expérience de pensée faussement simple. Imaginons qu'Alice et Bob, chacun dans son propre laboratoire, effectuent une mesure sur l'une des deux particules. Alice et Bob effectuent chacun une mesure, et tous deux effectuent exactement la même mesure. Par exemple, ils peuvent tous deux mesurer le spin de leur particule dans le sens haut-bas.

Charlie et Daniela observent Alice et Bob et leurs laboratoires de l'extérieur. En principe, Charlie et Daniela devraient pouvoir mesurer le spin des mêmes particules, par exemple dans le sens gauche-droite. Dans une théorie préservant l'information, cela devrait être possible.

Prenons l'exemple spécifique de ce qui pourrait se produire dans la théorie quantique standard. Charlie, par exemple, considère Alice, son laboratoire et la mesure qu'elle effectue comme un système soumis à une évolution déterministe et réversible. En supposant qu'il contrôle totalement le système dans son ensemble, Charlie peut inverser le processus de manière à ce que la particule revienne à son état d'origine (comme un livre brûlé qui serait reconstitué à partir de ses cendres). Daniela fait de même avec Bob et son laboratoire. Charlie et Daniela effectuent maintenant chacun une mesure différente sur leurs particules respectives dans le sens gauche-droite.

En utilisant ce scénario, l'équipe a prouvé que les prédictions de toute théorie de la BIL pour les résultats des mesures des quatre observateurs contredisent le caractère absolu des événements observés. En d'autres termes, "toutes les théories de la BIL ont un problème de mesure", explique M. Ormrod.

CHOISISSEZ VOTRE POISON

Les physiciens se trouvent donc dans une impasse désagréable : soit ils acceptent le caractère non absolu des événements observés, soit ils renoncent à l'une des hypothèses de la théorie de la BIL.

Venkatesh pense qu'il y a quelque chose de convaincant dans le fait de renoncer à l'absoluité des événements observés. Après tout, dit-elle, la physique a réussi à passer d'un cadre newtonien rigide à une description einsteinienne de la réalité, plus nuancée et plus fluide. "Nous avons dû ajuster certaines notions de ce que nous pensions être absolu. Pour Newton, l'espace et le temps étaient absolus", explique M. Venkatesh. Mais dans la conception de l'univers d'Albert Einstein, l'espace et le temps ne font qu'un, et cet espace-temps unique n'est pas quelque chose d'absolu mais peut se déformer d'une manière qui ne correspond pas au mode de pensée newtonien.

D'autre part, une théorie perspectiviste qui dépend des observateurs crée ses propres problèmes. En particulier, comment peut-on faire de la science dans les limites d'une théorie où deux observateurs ne peuvent pas se mettre d'accord sur les résultats des mesures ? "Il n'est pas évident que la science puisse fonctionner comme elle est censée le faire si nous ne parvenons pas à des prédictions pour des événements observés que nous considérons comme absolus", explique M. Ormrod.

Donc, si l'on insiste sur le caractère absolu des événements observés, il faut faire un compromis. Ce ne sera pas la non-localité de Bell ou la préservation de l'information : la première repose sur des bases empiriques solides, et la seconde est considérée comme un aspect important de toute théorie de la réalité. L'accent est mis sur la dynamique locale, en particulier sur la séparabilité dynamique.

La séparabilité dynamique est "une sorte d'hypothèse du réductionnisme", explique M. Ormrod. "On peut expliquer les grandes choses en termes de petits morceaux.

Le fait de préserver le caractère absolu des événements observés pourrait signifier que ce réductionnisme ne tient pas : tout comme un état non local de Bell ne peut être réduit à certains états constitutifs, il se peut que la dynamique d'un système soit également holistique, ce qui ajoute un autre type de nonlocalité à l'univers. Il est important de noter que le fait d'y renoncer ne met pas une théorie en porte-à-faux avec les théories de la relativité d'Einstein, tout comme les physiciens ont soutenu que la non-localité de Bell ne nécessite pas d'influences causales superluminales ou non locales, mais simplement des états non séparables.

"Peut-être que la leçon de Bell est que les états des particules distantes sont inextricablement liés, et que la leçon des nouveaux théorèmes est que leur dynamique l'est aussi", ont écrit Ormrod, Venkatesh et Barrett dans leur article.

"J'aime beaucoup l'idée de rejeter la séparabilité dynamique, car si cela fonctionne, alors ... nous aurons le beurre et l'argent du beurre", déclare Ormrod. "Nous pouvons continuer à croire ce que nous considérons comme les choses les plus fondamentales du monde : le fait que la théorie de la relativité est vraie, que l'information est préservée, et ce genre de choses. Mais nous pouvons aussi croire à l'absoluité des événements observés".

Jeffrey Bub, philosophe de la physique et professeur émérite à l'université du Maryland, College Park, est prêt à avaler quelques pilules amères si cela signifie vivre dans un univers objectif. "Je voudrais m'accrocher à l'absoluité des événements observés", déclare-t-il. "Il me semble absurde d'y renoncer simplement à cause du problème de la mesure en mécanique quantique. À cette fin, Bub pense qu'un univers dans lequel les dynamiques ne sont pas séparables n'est pas une si mauvaise idée. "Je pense que je serais provisoirement d'accord avec les auteurs pour dire que la non-séparabilité [dynamique] est l'option la moins désagréable", déclare-t-il.

Le problème est que personne ne sait encore comment construire une théorie qui rejette la séparabilité dynamique - à supposer qu'elle soit possible à construire - tout en conservant les autres propriétés telles que la préservation de l'information et la non-localité de Bell.

UNE NON LOCALITÉ PLUS PROFONDE

Howard Wiseman, de l'université Griffith, qui est considéré comme une figure fondatrice de ces réflexions théoriques, apprécie l'effort d'Ormrod, Venkatesh et Barrett pour prouver un théorème qui s'applique à la mécanique quantique sans lui être spécifique. "C'est bien qu'ils poussent dans cette direction", déclare-t-il. "Nous pouvons dire des choses plus générales sans faire référence à la mécanique quantique.

 Il souligne que l'expérience de pensée utilisée dans l'analyse ne demande pas à Alice, Bob, Charlie et Daniela de faire des choix - ils font toujours les mêmes mesures. Par conséquent, les hypothèses utilisées pour prouver le théorème n'incluent pas explicitement une hypothèse sur la liberté de choix, car personne n'exerce un tel choix. Normalement, moins il y a d'hypothèses, plus la preuve est solide, mais ce n'est peut-être pas le cas ici, explique Wiseman. En effet, la première hypothèse, selon laquelle la théorie doit tenir compte de la non-localité de Bell, exige que les agents soient dotés d'un libre arbitre. Tout test empirique de la non-localité de Bell implique qu'Alice et Bob choisissent de leur plein gré les types de mesures qu'ils effectuent. Par conséquent, si une théorie est nonlocale au sens de Bell, elle reconnaît implicitement le libre arbitre des expérimentateurs. "Ce que je soupçonne, c'est qu'ils introduisent subrepticement une hypothèse de libre arbitre", déclare Wiseman.

Cela ne veut pas dire que la preuve est plus faible. Au contraire, elle aurait été plus forte si elle n'avait pas exigé une hypothèse de libre arbitre. En l'occurrence, le libre arbitre reste une exigence. Dans ces conditions, la portée la plus profonde de ce théorème pourrait être que l'univers est non local d'une manière entièrement nouvelle. Si tel est le cas, cette nonlocalité serait égale ou supérieure à la nonlocalité de Bell, dont la compréhension a ouvert la voie aux communications quantiques et à la cryptographie quantique. Personne ne sait ce qu'un nouveau type de nonlocalité - suggéré par la non-séparabilité dynamique - signifierait pour notre compréhension de l'univers.

En fin de compte, seules les expériences permettront de trouver la bonne théorie, et les physiciens quantiques ne peuvent que se préparer à toute éventualité. "Indépendamment de l'opinion personnelle de chacun sur la meilleure [théorie], toutes doivent être explorées", déclare M. Venkatesh. "En fin de compte, nous devrons examiner les expériences que nous pouvons réaliser. Cela pourrait être dans un sens ou dans l'autre, et il est bon de s'y préparer."

Auteur: Internet

Info: https://www.scientificamerican.com, Par Anil Ananthaswamy le 22 mai 2023

[ enchevêtrement quantique ] [ régions de l'espace-temps ] [ monde subatomique ]

 

Commentaires: 0

Ajouté à la BD par miguel

intrications

Vers une science de la complexité
La physique quantique n’est pas une théorie de l’univers ; elle n’est qu’un formalisme génial qui permet d’abandonner les vieilles notions simplistes d’objet physique et de force physique, au centre de la physique de Galilée, Newton et Einstein, pour migrer vers les notions plus riches et plus souples de fonctions d’état (que l’on continue d’appeler, à tort, fonctions d’onde) et d’opérateurs. Il n’y a plus d’objet (ni d’onde, ni de particule, ni rien) : il y a un processus qui, à un moment donné, est décrit par une fonction d’état. Cette fonction évolue dans le temps. Faire une mesure (une observation quantifiée) consiste à appliquer à cette fonction d’état un opérateur qui spécifie la mesure que l’on fait, mais qui, en retour, modifie la fonction d’état. Ce formalisme ne dit rien de l’évolution réelle du Réel. Il permet seulement, dans certains cas, de prédire le résultat d’une mesure spécifique sur le Réel.

Le piège relativiste et le piège quantique.
Pour le dire en suivant Niels Bohr, la physique quantique n’est pas une ontologie : elle ne dit rien du Réel, mais explicite seulement certains de nos rapports avec le Réel. Ceci résume d’un mot la célèbre controverse entre ces deux Juifs géniaux que furent Einstein et Bohr. Einstein voulait fonder une ontologie post-newtonienne ("Connaître la pensée de Dieu"), alors que Bohr ne voulait que développer une phénoménologie opératoire et avait renoncé, dans une posture typiquement kantienne, à toute forme d’ontologie ("Ne dites pas à Dieu ce qu’Il doit faire").

Le problème, tel qu’il se présente aujourd’hui, se résume à ceci. L’ontologie relativiste, parce qu’elle n’a pas su quitter le mécanicisme déterministe et analytique des modernes, aboutit à des impasses monstrueuses qui, pour sauver le modèle, appellent des hypothèses de plus en plus invraisemblables et abracadabrantesques. Quant à la phénoménologie quantique, si elle se cantonne à demeurer une pure phénoménologie, elle se réduit à une technique mathématique plus ou moins efficiente dans les cas les plus simples et elle n’est guère satisfaisante pour l’esprit qui, toujours, a soif d’ontologie ; mais, si elle se laisse tenter à se prendre pour une ontologie (ce qui est de plus en plus souvent le cas, surtout en physique des hautes énergies et des "particules" élémentaires), elle aboutit à des absurdités logiques, et des "théories" fumeuses (comme la supersymétrie, les cordes, etc.) tentent en vain de masquer les inconsistances.

Nous sommes au seuil de ce que Thomas Kuhn appela une "mutation paradigmatique" majeure dans le monde de la science fondamentale. Spiritualité et physique sont en train de converger.

Notre époque appelle à refonder radicalement une nouvelle ontologie qui devra prendre garde à éviter, à la fois, le piège relativiste (l’ontologie mécaniciste) et le piège quantique (la phénoménologie subjectiviste). La physique complexe est la seule voie connue actuellement qui puisse tenter de relever ce défi. Mais les institutions physiciennes en place veillent à ne pas laisser saccager leur fonds de commerce. Nous sommes au seuil de ce que Thomas Kuhn appela une "mutation paradigmatique" majeure dans le monde de la science fondamentale. Spiritualité et physique sont en train de converger.

Les sciences modernes.
Toutes les sciences modernes se sont construites à partir du refus de la Renaissance de continuer le paradigme aristotélicien d’un univers organiciste, finaliste, géocentrique, limité, divisé en monde céleste et en monde sublunaire et dirigé par le principe de l’harmonie des sphères. Parmi les premiers, Galilée et Descartes éradiquèrent ce paradigme aristotélicien et le remplacèrent par un paradigme platonicien (donc pythagoricien et atomiste) qui allait devenir le moteur de la pensée entre 1500 et 2000. Ce paradigme moderne repose tout entier sur le mécanicisme. Plongé dans un espace et un temps infinis, l’univers serait un assemblage de briques élémentaires appelées "atomes", interagissant entre eux au moyen de forces élémentaires partout les mêmes (un univers isotrope) et parfaitement quantifiables (un univers mathématique) où tout effet a une cause et où cause et effet sont proportionnés selon des rapports mesurables et permanents, soumis à des lois mathématiques éternelles. Le hasard y joue le rôle central de moteur des évolutions.

Cette vision du monde fut fructueuse et permit de grandes avancées, dont les très nombreuses retombées techniques ont radicalement transformé le monde des hommes et leur ont permis, dans bien des cas, de les libérer des contraintes "naturelles" qui pesaient sur eux. Cependant, les sciences modernes, dès la fin du XIXe siècle, mais surtout depuis 1950, se sont heurtées, partout, au "mur de la complexité".

Le mur de la complexité.
Ce "mur de la complexité" a fait prendre conscience que certains systèmes où le nombre des ingrédients et les densités d’interaction entre eux étaient très grands ne pouvaient plus être compris selon le paradigme mécaniste : ils ne sont pas que des assemblages d’élémentaires, car leur tout est irréductible à la simple somme de leurs parties ; là s’observent des propriétés émergentes qui n’appartiennent à aucun des ingrédients impliqués et qui surgissent sans cause particulière, comme solution globale à un problème global. Aristote ressuscite, et les traditions indiennes et chinoises viennent à sa rescousse…

Ce fut la thermodynamique qui, la première, osa les questions de fond dont la toute première, résolument contradictoire avec les sciences mécanistes, fut celle de l’irréversibilité ; celle de la flèche du temps, celle du Devenir en lieu et place de l’Etre. L’univers réel n’est pas une machine mécanique réversible, soumise à des lois mécaniques prédictibles.

Pour le dire autrement, les sciences classiques font des merveilles pourvu que les systèmes auxquels elles s’intéressent soient d’un niveau de complexité très bas. Alors, l’approximation mécaniste peut être efficace et donne de bons résultats, parfois spectaculaires (il est plus facile d’envoyer une fusée sur Mars que de modéliser la préparation d’un bon cassoulet). Après la thermodynamique, les sciences de la vie et l’étude des sociétés vivantes ont bien dû constater que le "mur de la complexité" était, pour elles aussi, infranchissable si elles restaient à l’intérieur du paradigme mécaniste. Disons-le tout cru : la Vie n’est pas réductible à la Matière, ni la Pensée à la Vie… On commence maintenant à comprendre que même la Matière n’est réductible ni à elle-même, ni à de l’énergie pure. Au fond : rien n’est réductible à rien. Tout ce qui existe n’existe que par soi et pour soi ; c’est l’émergence locale d’un flux cosmique de devenir. Mais tout ce qui existe est aussi partie prenante d’un tout plus grand qui l’englobe… Et tout ce qui existe est, en même temps, le résultat des interactions infinies entre les ingrédients multiples qui le constituent en interagissant entre eux. Rien de ce qui existe n’est un assemblage construit "de l’extérieur", mais bien plutôt quelque chose qui "pousse de l’intérieur".

Cette dernière remarque permet d’alimenter une réflexion de fond. Nous avons pris l’habitude de parler et de penser en termes d’objets : cette table, ce chien, ce nuage, etc. Et il nous semble naturel de faire de ces mots les images de ce qui existe, en leur gardant une atemporalité abstraite et idéalisante qui ne correspond à rien de réel. Cette table, ce chien et ce nuage auront changé – un peu, beaucoup, énormément – dans trois minutes, dans trois jours, dans trois ans, etc. Rien n’est permanent dans le réel, même si nos habitudes de pensée, par l’usage de mots figés et abstraits, alimentent notre illusion que tout reste "fondamentalement" identique à soi. Ce qui est notoirement faux.

Tout cela relève d’un débat métaphysique qui n’a pas vraiment sa place ici. Disons seulement que la philosophie occidentale est obsédée par la notion d’un Etre immuable qui se cacherait "derrière" les accidents et évolutions de tout ce qui existe. Le pensée complexe prend l’exact contre-pied de cette croyance. Il n’y a pas d’Etre ; tout est processus. Ce chien appelé "Médor" est l’image, ici et maintenant, d’un processus canin particulier (un individu chien singulier) qui exprime un processus canin global (une lignée canine remontant à des ancêtres chacals, loups et renards) qui, à son tour, est un mode particulier d’expression du processus Vie sur notre petite Terre. Et cette terre elle-même constitue un processus planétaire, lié au processus solaire, lié au processus d’une galaxie parmi d’autres, appelée "voie lactée". Le processus chien appelé "Médor" est la résultante de milliards de processus cellulaires qui furent tous déclenchés par la rencontre d’un ovule fertile et d’un spermatozoïde.

Les mots s’arrêtent à la surface des choses.
Ce que nos mots appellent un "objet" n’est que la photographie extérieure et instantanée d’un processus qui a commencé, comme tout le reste, avec le big-bang. Il n’y a au fond qu’un seul processus unique : le cosmos pris comme un tout. Ce processus cosmique engendre des processus particuliers, de plus en plus complexes, de plus en plus intriqués les uns aux autres, qui sont autant de processus émergeants. Nous appelons "objet" la surface extérieure apparente d’un processus volumique intérieur qui engendre cette surface. Cette surface objectale n’est que l’emballage apparent de la réalité processuelle sous-jacente.

Les mots s’arrêtent à la surface des choses, à leur apparence, que notre mental débarrasse de tout ce qui change pour n’en garder que les caractéristiques atemporelles qui ne changent pas ou peu. Médor est ce chien qui est un berger noir et feu, couché là au soleil, avec quatre pattes, une queue touffue, une truffe noire, deux yeux pétillants, deux oreilles dressées, etc. "Médor" désigne l’ensemble de ces caractéristiques objectales censées être temporairement permanentes. Mais, en fait, "Médor" désigne l’entrelacs de milliers de milliards de processus cellulaires intriqués et corrélés, fédérés par l’intention commune de survivre le mieux possible, dans un environnement peu maîtrisé mais globalement favorable, appelé domesticité.

La méthode analytique, mise à l’honneur par René Descartes, part d’un principe parfaitement arbitraire – et qui se révèlera faux – que le tout est l’exacte somme de ses parties. Que pour comprendre un système, il "suffit" de le démonter en ses constituants, puis ceux-ci en les leurs, et ainsi de suite, pour atteindre les élémentaires constitutifs du tout et les comprendre, pour, ensuite, les remonter, étage par étage, afin d’obtenir "logiquement" la compréhension du tout par la compréhension de chacune de ses parties. On trouve là le fondement ultime du mécanicisme qui fait de tout, à l’instar de la machine, un assemblage de parties ayant et gardant une identité propre irréfragable. Le piston et la soupape sont piston et soupape qu’ils soient, ou non, montés ensemble ou démontés séparément.

Tout l’analycisme repose sur cette hypothèse largement fausse que les interactions entre éléments n’altèrent pas la nature de ces éléments. Ils restent intègres et identifiables qu’il y ait, ou non, des interactions avec d’autres "objets". Encore une fois, l’analycisme est une approche qui n’est jouable que pour les systèmes rudimentaires où l’hypothèse mécaniste est approximativement acceptable, c’est-à-dire à des niveaux de complexité ridiculement bas.

Un bon exemple de système complexe "simple" où le principe d’analycité est mis à mal est la mayonnaise. Rien de plus simple, en effet : trois ingrédients et un battage à bonne température. Une fois que la réaction d’émulsion s’est enclenchée et que la mayonnaise a pris, on ne pourra pas la faire "déprendre", même en battant le tout en sens inverse. Il y a là une irréversibilité liée aux relations émulsives qui unissent entre elles, selon des schémas complexes, des milliards de molécules organiques intriquées les unes aux autres par des ponts "hydrogène", des forces de van der Waals, des quasi-cristallisations, etc. Dans l’émulsion "mayonnaise", il n’y a plus de molécules d’huile, de molécules de jaune d’œuf, etc. Il y a un tout inextricablement corrélé et intriqué, un magma biochimique où plus aucune molécule ne garde sa propre identité. Le tout a absorbé les particularités constitutives des parties pour engendrer, par émergence, quelque chose de neuf appelé "mayonnaise" qui est tout sauf un assemblage de molécules distinctes.

Un autre exemple typique est fourni par les modèle "en goutte liquide" des noyaux atomiques. Le noyau d’hélium n’est pas un assemblage de deux protons et de deux neutrons (comme le neutron n’est pas un assemblage d’un proton avec un électron avec quelques bricoles de plus). Un noyau d’hélium est une entité unitaire, unique et unitive que l’on peut engendrer en faisant se télescoper violemment nos quatre nucléons. Ceux-ci, une fois entrés en interaction forte, constituent un objet à part entière où plus aucun neutron ou proton n’existe comme tel. Si l’on percute ce noyau d’hélium avec suffisamment de violence, il peut se faire qu’il vole en éclat et que ces fragments, après un très court temps d’instabilité, reconstituent protons et neutrons. Cela donne l’illusion que ces protons et neutrons seraient restés entiers au sein du noyau. Il n’en est rien.

Un système devient d’autant plus complexe que la puissance des interactions en son sein transforme radicalement la nature et l’identité des ingrédients qui y interviennent. De là, deux conséquences majeures. Primo : un système vraiment complexe est un tout sans parties distinctes discernables, qui se comporte et évolue comme un tout unique, sans composant. Les méthodes analytiques y sont donc inopérantes. Secundo : lorsqu’on tente de "démonter" un système vraiment complexe, comme le préconise Descartes, on le tue purement et simplement, pour la bonne raison qu’en le "démontant", on détruit les interactions qui en constituent l’essentiel.

Le processus d’émergence.
Tout ce qui existe pousse "du dedans" et rien n’est assemblé "du dehors". Tout ce qui existe est le développement, par prolifération interne, d’un germe initial (que ce soit un nuage, un flocon de neige, un cristal, un brin d’herbe, un arbre, une méduse, un chien ou un être humain). Rien dans la Nature n’est assemblé comme le seraient les diverses pièces usinées d’un moteur d’automobile. Seuls les artéfacts humains sont des produits d’assemblage qui appellent deux éléments n’existant pas dans le Nature : des pièces usinées préfabriquées et un ouvrier ou robot monteur. Dans la nature, il n’existe pas de pièces préfabriquées exactement selon le plan de montage. Il n’y a d’ailleurs aucun plan de montage. La Nature procède par émergence, et non pas par assemblage.

Le processus d’émergence se nourrit des matériaux qu’il trouve à son contact. Il n’y a pas de plan préconçu et, souvent, la solution trouvée naturellement est approximative et imprécise ; l’à-peu-près est acceptable dans la Nature. Par exemple, il est bien rare qu’un cristal naturel soit exempt d’anomalies, de disruptions, d’anisotropies, d’inhomogénéité, etc.

Si l’on veut bien récapituler, au contraire des procédés d’assemblage des artefacts humains, les processus d’émergence qui forgent tout ce qui existe dans la Nature ne connaissent ni plan de montage, ni pièces préfabriquées, ni ouvrier monteur, ni outillage externe, ni banc d’essai. Tout s’y fait de proche en proche, par essais et erreurs, avec les matériaux qui sont là. C’est d’ailleurs la présence dense des matériaux utiles qui, le plus souvent, sera le déclencheur d’un processus d’émergence. C’est parce qu’une solution est sursaturée qu’un processus de cristallisation pourra se mettre en marche autour d’un germe – souvent hétérogène, d’ailleurs – ; c’est un petit grain de poussière, présent dans un nuage sursaturé et glacial, qui permettra au flocon de neige de se développer et de produire ses fascinantes et fragiles géométries.

Le cerveau humain est autre chose qu’un ordinateur.
Il en va de même dans le milieu humain, où les relations se tissent au gré des rencontres, selon des affinités parfois mystérieuses ; un groupe organisé peut émerger de ces rencontres assez fortuites. Des organisations pourront se mettre en place. Les relations entre les humains pourront rester lâches et distantes, mais des processus quasi fusionnels pourront aussi s’enclencher autour d’une passion commune, par exemple autour d’un projet motivant ou autour d’une nécessité locale de survie collective, etc. La vie quotidienne regorge de telles émergences humaines. Notamment, l’émergence d’une rumeur, d’un buzz comme on dit aujourd’hui, comme celle d’Orléans qu’a étudiée Edgar en 1969 : il s’agit d’un bel exemple, typique d’un processus d’émergence informationnelle qu’aucune technique analytique ou mécanique ne permet de démanteler.

L’assemblage et l’émergence ne participent pas du tout de la même logique. Essayer de comprendre une logique d’émergence au moyen d’une analogie assembliste, est voué à l’échec. Ainsi, toutes les fausses analogies entre le fonctionnement assembliste ou programmatique d’un ordinateur et le fonctionnement émergentiste de la pensée dans un cerveau humain sont définitivement stériles. De façon symétrique, il est absurde de rêver d’un arbre, produit d’on ne sait quelles vastes mutations génétiques, dont les fruits seraient des automobiles toutes faites, pendant au bout de ses branches.

Parce que l’assemblisme est une démarche additive et programmatique, les mathématiques peuvent y réussir des merveilles de modélisation. En revanche, l’émergentisme n’est pas mathématisable puisqu’il n’est en rien ni additif, ni programmatique ; c’est probablement la raison profonde pour laquelle les sciences classiques ne s’y intéressent pas. Pourtant, tout ce qui existe dans l’univers est le fruit d’une émergence !

L’illusion du principe de causalité.
Toute la physique classique et, derrière elle, une bonne part de la pensée occidentale acceptent l’idée de la détermination mécanique de l’évolution de toute chose selon des lois causales universelles et imprescriptibles. Des quatre causes mises en évidence par Aristote, la science moderne n’a retenu que la cause initiale ou efficiente. Tout ce qui se produit serait le résultat d’une cause qui lui serait antérieure. Ceci semble du bon sens, mais l’est bien moins qu’il n’y paraît.

De plus, la vulgate scientifique moderne insiste : tout ce qui se produit serait le résultat d’une cause identifiable, ce qui permet de représenter l’évolution des choses comme des chaînes linéaires de causes et d’effets. Chaque effet est effet de sa cause et cause de ses effets. Cette concaténation des causes et des effets est une représentation commode, par son mécanisme même, mais fausse.

Tout ce qui arrive ici et maintenant est un résultat possible de tout ce qui est arrivé partout, depuis toujours.

Chaque événement local est le résultat d’une infinité de causes. Par exemple, Paul, par dépit amoureux, lance une pierre dans le carreau de la chambre de Virginie. L’effet est le bris de la vitre ; la cause est la pierre. Problème résolu ? Il suffit de poser toute la séries des "pourquoi" pour se rendre compte qu’il faut encore savoir pourquoi la maison de Virginie est là, pourquoi sa chambre donne sur la rue, pourquoi un caillou traînait sur le trottoir, pourquoi Paul a rencontré Virginie et pourquoi il en est tombé amoureux, et pourquoi il a été débouté par Virginie (dont le cœur bat pour Pierre : pourquoi donc ?), pourquoi Paul le prend mal, pourquoi il est violent, pourquoi il veut se venger, pourquoi il lance le caillou efficacement et pourquoi celui-ci atteint sa cible, etc., à l’infini. Si l’on veut bien prendre la peine de continuer ces "pourquoi", on en arrive très vite à l’idée que la vitre de la fenêtre de Virginie a volé en éclat parce que tout l’univers, depuis le big-bang, a comploté pour qu’il en soit ainsi. Pour le dire autrement : tout ce qui arrive ici et maintenant est un résultat possible de tout ce qui est arrivé partout, depuis toujours. Cette conclusion est l’essence même du processualisme, qui s’oppose dans toutes ses dimensions au déterminisme mécaniste.

Processualisme contre déterminisme.
Tout effet possède une vraie infinité de causes… et donc n’en possède aucune ! Toutes ces "causes" potentielles qui convergent en un lieu donné, à un moment donné, induisent un événement contingent et non pas nécessaire. Une myriade de bonnes raisons auraient pu faire que la vitre de Virginie ne soit pas brisée, ne serait-ce que parce que la fenêtre eût été ouverte ou le volet baissé. De plus, lorsqu’une infinité de causes se présentent, on comprend qu’il y ait rarement un seul et unique scénario qui puisse y répondre (ce cas rare est précisément celui du déterminisme mécaniste, qui n’opère que dans des univers pauvres et rudimentaires, sans mémoire locale). En fait, dans un monde complexe, un tel faisceau causal ouvre un faisceau de possibles parmi lesquels un choix devra se faire.

Chacun n’est que cela : le point de jonction entre le cône convergent de tous ses héritages venant du passé et le cône divergent de tous ses legs allant vers le futur.

Dans un petit ouvrage magnifique intitulé Le sablier, Maurice Maeterlinck proposait une vision pouvant se résumer ainsi. Chacun de nous est le goulot étroit d’un sablier avec, au-dessous, tout le sable accumulé venu de tout l’univers, depuis l’aube des temps, qui converge vers soi, et, au-dessus, l’éventail de toutes les influences qui engendreront, au fil du temps, des êtres, des choses, des idées, des conséquences. Chacun n’est que cela : le point de jonction entre le cône convergent de tous ses héritages venant du passé et le cône divergent de tous ses legs allant vers le futur.

Le paragraphe précédent a posé un problème qui a été esquivé et sur lequel il faut revenir : le cône convergent des causes infinies induit, ici et maintenant, un cône divergent de possibles entre lesquels le processus devra choisir. Cette notion de choix intrinsèque est évidemment incompatible avec quelque vision mécaniste et déterministe que ce soit. Mais, qui plus est, elle pose la question des critères de choix. Quels sont-ils ? Pourquoi ceux-là et non d’autres ? S’il y a des choix à faire et que ces choix visent une optimisation (le meilleur choix), cela signifie qu’il y a une "économie" globale qui préside à la logique d’évolution du processus. Chaque processus possède une telle logique intrinsèque, une telle approche économique globale de soi. A un instant donné, le processus est dans un certain état global qui est son présent et qui inclut tout son passé (donc toute sa mémoire). Cet état intrinsèque est confronté à un milieu qui offre des matériaux, des opportunités, des champs causaux, plus ou moins riches. De cette dialectique entre le présent du processus et son milieu, lui aussi au présent, naîtra un champ de possibles (plus ou moins riche selon la complexité locale). Il existe donc une tension intérieure entre ce que le processus est devenu au présent, et ce qu’il pourrait devenir dans son futur immédiat. Cette tension intérieure doit être dissipée (au sens qu’Ilya Prigogine donna à sa notion de "structure dissipative"). Et cette dissipation doit être optimale (c’est là que surgit l’idée d’économie logique, intrinsèque du processus).

L’intention immanente du monde.
Il faut donc retenir que cette tension intérieure est une in-tension, c’est-à-dire une intention. La pensée complexe implique nécessairement un intentionnalisme qui s’oppose farouchement aussi bien au déterminisme qu’au hasardisme propres à la science moderne. "Ni hasard, ni nécessité" fut d’ailleurs le titre d’un de mes ouvrages, publié par Oxus en 2013 et préfacé par… mon ami Edgar Morin – il n’y a pas de hasard !

Cette idée d’intention est violemment rejetée par les sciences modernes qui, malicieusement, mais erronément, y voient une forme d’intervention divine au sein de la machinerie cosmique. Bien entendu, rien de tel n’est supposé dans la notion d’intention qu’il faut comprendre comme résolument intrinsèque et immanente, sans aucun Deus ex machina. Mais quelle est donc cette "intention" cosmique qui guide tous les choix, à tous les niveaux, du plus global (l’univers pris comme un tout) au plus local (chaque processus particulier, aussi infime et éphémère soit-il) ? La plus simple du monde : accomplir tout ce qui est accomplissable, ici et maintenant. Rien de plus. Rien de moins.

Mon lecteur l’aura compris, la pensée complexe repose sur cinq notions-clés (processualisme, holisme, émergentisme, indéterminisme et intentionnalisme) qui, chacune, se placent à l’exact opposé des fondements de la science moderne : atomisme, analycisme, assemblisme, mécanicisme et hasardisme. Cette opposition incontournable marque une profonde révolution épistémologique et une immense mutation paradigmatique.

Auteur: Halévy Marc

Info: 30 mars 2019

[ tour d'horizon ] [ pentacle ] [ monothéïsme ] [ bricolage ] [ sens unique temporel ]

 

Commentaires: 0

Ajouté à la BD par miguel