Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 220
Temps de recherche: 0.0541s

physique fondamentale

La "problèmatique de la mesure" en théorie quantique pourrait être une pilule empoisonnée pour la réalité objective

La résolution d'un problème quantique notoire pourrait nécessiter l'abandon de certaines des hypothèses les plus chères à la science concernant le monde physique.

Imaginez qu'un physicien observe un système quantique dont le comportement s'apparente à celui d'une pièce de monnaie : qui peut tomber sur pile ou face. Il effectue le jeu de pile ou face quantique et obtient pile. Pourrait-il être certain que son résultat est un fait objectif, absolu et indiscutable sur le monde ? Si la pièce était simplement du type de celles que nous voyons dans notre expérience quotidienne, le résultat du lancer serait le même pour tout le monde : pile ou face ! Mais comme pour la plupart des choses en physique quantique, le résultat d'un jeu de pile ou face quantique serait un "ça dépend" beaucoup plus compliqué. Il existe des scénarios théoriquement plausibles dans lesquels un autre observateur pourrait trouver que le résultat de la pièce de notre physicien est pile ou face.

Au cœur de cette bizarrerie se trouve ce que l'on appelle le problème de la mesure. La mécanique quantique standard rend compte de ce qui se passe lorsque l'on mesure un système quantique : en substance, la mesure provoque l'"effondrement" aléatoire des multiples états possibles du système en un seul état défini. Mais cette comptabilité ne définit pas ce qui constitue une mesure, d'où le problème de la mesure.

Les tentatives visant à éviter le problème de la mesure, par exemple en envisageant une réalité dans laquelle les états quantiques ne s'effondrent pas du tout, ont conduit les physiciens sur un terrain étrange où les résultats des mesures peuvent être subjectifs. "L'un des principaux aspects du problème de la mesure est l'idée que les événements observés ne sont pas absolus", explique Nicholas Ormrod, de l'université d'Oxford. En bref, c'est la raison pour laquelle notre pile ou face quantique imaginaire pourrait être pile d'un point de vue et face d'un autre.

Mais ce scénario apparemment problématique est-il physiquement plausible ou s'agit-il simplement d'un artefact de notre compréhension incomplète du monde quantique ? Pour répondre à ces questions, il faut mieux comprendre les théories dans lesquelles le problème de la mesure peut se poser. C'est exactement ce qu'Ormrod, Vilasini Venkatesh de l'École polytechnique fédérale de Zurich et Jonathan Barrett d'Oxford ont réussi à faire. Dans une prépublication récente, le trio a prouvé un théorème qui montre pourquoi certaines théories, comme la mécanique quantique, ont un problème de mesure en premier lieu et comment on pourrait développer des théories alternatives pour l'éviter, préservant ainsi l'"absoluité" de tout événement observé. De telles théories banniraient, par exemple, la possibilité qu'une pièce de monnaie soit tirée à pile ou face par un observateur et qu'elle soit tirée à pile ou face par un autre.

Mais leurs travaux montrent également que la préservation d'un tel caractère absolu a un coût que de nombreux physiciens jugeraient prohibitif. "C'est la démonstration qu'il n'existe pas de solution indolore à ce problème", explique M. Ormrod. "Si nous parvenons un jour à retrouver l'absoluité, nous devrons alors renoncer à certains principes physiques qui nous tiennent vraiment à cœur".

 L'article d'Ormrod, Venkatesh et Barrett "aborde la question de savoir quelles catégories de théories sont incompatibles avec l'absoluité des événements observés et si l'absoluité peut être maintenue dans certaines théories, en même temps que d'autres propriétés souhaitables", explique Eric Cavalcanti, de l'université Griffith, en Australie. (M. Cavalcanti, le physicien Howard Wiseman et leurs collègues ont défini le terme "absoluité des événements observés" dans des travaux antérieurs qui ont jeté les bases de l'étude d'Ormrod, Venkatesh et Barrett).

S'en tenir à l'absoluité des événements observés pourrait signifier que le monde quantique est encore plus étrange que ce que nous savons.

LE CŒUR DU PROBLÈME

Pour comprendre ce qu'Ormrod, Venkatesh et Barrett ont réalisé, il faut suivre un cours accéléré sur les arcanes des fondations quantiques. Commençons par considérer notre système quantique hypothétique qui, lorsqu'il est observé, peut donner soit pile, soit face.

Dans les manuels de théorie quantique, avant l'effondrement, on dit que le système se trouve dans une superposition de deux états, et cet état quantique est décrit par une construction mathématique appelée fonction d'onde, qui évolue dans le temps et l'espace. Cette évolution est à la fois déterministe et réversible : étant donné une fonction d'onde initiale, on peut prédire ce qu'elle sera à un moment donné, et on peut en principe remonter l'évolution pour retrouver l'état antérieur. La mesure de la fonction d'onde entraîne cependant son effondrement, mathématiquement parlant, de sorte que le système de notre exemple apparaît comme étant soit pile, soit face.

Ce processus d'effondrement est la source obscure du problème de la mesure : il s'agit d'une affaire irréversible et unique, et personne ne sait même ce qui définit le processus ou les limites de la mesure. Qu'est-ce qu'une "mesure" ou, d'ailleurs, un "observateur" ? Ces deux éléments ont-ils des contraintes physiques, telles que des tailles minimales ou maximales ? Doivent-ils également être soumis à divers effets quantiques difficiles à saisir, ou peuvent-ils être considérés comme immunisés contre de telles complications ? Aucune de ces questions n'a de réponse facile et acceptée, mais les théoriciens ne manquent pas de solutions.

Étant donné le système de l'exemple, un modèle qui préserve l'absoluité de l'événement observé - c'est-à-dire que c'est soit pile, soit face pour tous les observateurs - est la théorie de Ghirardi-Rimini-Weber (GRW). Selon cette théorie, les systèmes quantiques peuvent exister dans une superposition d'états jusqu'à ce qu'ils atteignent une taille encore indéterminée, à partir de laquelle la superposition s'effondre spontanément et aléatoirement, indépendamment de l'observateur. Quel que soit le résultat - pile ou face dans notre exemple - il sera valable pour tous les observateurs.

Mais la théorie GRW, qui appartient à une catégorie plus large de théories de "l'effondrement spontané", semble aller à l'encontre d'un principe physique chéri depuis longtemps : la préservation de l'information. Tout comme un livre brûlé pourrait, en principe, être lu en réassemblant ses pages à partir de ses cendres (en ignorant l'émission initiale de rayonnement thermique du livre brûlé, pour des raisons de simplicité), la préservation de l'information implique que l'évolution d'un système quantique dans le temps permette de connaître ses états antérieurs. En postulant un effondrement aléatoire, la théorie GRW détruit la possibilité de savoir ce qui a conduit à l'état d'effondrement, ce qui, selon la plupart des témoignages, signifie que l'information sur le système avant sa transformation est irrémédiablement perdue. "La théorie GRW serait un modèle qui renonce à la préservation de l'information, préservant ainsi l'absoluité des événements", explique M. Venkatesh.

Un contre-exemple qui autorise la non-absoluité des événements observés est l'interprétation de la mécanique quantique selon le principe des "mondes multiples". Selon cette interprétation, la fonction d'onde de notre exemple se ramifiera en de multiples réalités contemporaines, de sorte que dans un "monde", le système sortira pile, tandis que dans un autre, il sortira face. Dans cette conception, il n'y a pas d'effondrement. "La question de savoir ce qui se passe n'est donc pas absolue ; elle est relative à un monde", explique M. Ormrod. Bien entendu, en essayant d'éviter le problème de mesure induit par l'effondrement, l'interprétation des mondes multiples introduit la ramification abrutissante des fonctions d'onde et la prolifération galopante des mondes à chaque bifurcation de la route quantique - un scénario désagréable pour beaucoup.

Néanmoins, l'interprétation des mondes multiples est un exemple de ce que l'on appelle les théories perspectivistes, dans lesquelles le résultat d'une mesure dépend du point de vue de l'observateur.

ASPECTS CRUCIAUX DE LA RÉALITÉ

Pour prouver leur théorème sans s'embourber dans une théorie ou une interprétation particulière, mécanique quantique ou autre, Ormrod, Venkatesh et Barrett se sont concentrés sur les théories perspectivistes qui obéissent à trois propriétés importantes. Une fois encore, il nous faut un peu de courage pour saisir l'importance de ces propriétés et pour apprécier le résultat plutôt profond de la preuve des chercheurs.

La première propriété est appelée nonlocalité de Bell (B). Elle fut identifiée pour la première fois en 1964 par le physicien John Bell dans un théorème éponyme et s'est avérée être un fait empirique incontesté de notre réalité physique. Supposons qu'Alice et Bob aient chacun accès à l'une des deux particules décrites par un état unique. Alice et Bob effectuent des mesures individuelles de leurs particules respectives et le font pour un certain nombre de paires de particules préparées de manière similaire. Alice choisit son type de mesure librement et indépendamment de Bob, et vice versa. Le fait qu'Alice et Bob choisissent leurs paramètres de mesure de leur plein gré est une hypothèse importante. Ensuite, lorsqu'ils compareront leurs résultats, le duo constatera que les résultats de leurs mesures sont corrélés d'une manière qui implique que les états des deux particules sont inséparables : connaître l'état de l'une permet de connaître l'état de l'autre. Les théories capables d'expliquer de telles corrélations sont dites non locales de Bell.

La deuxième propriété est la préservation de l'information (I). Les systèmes quantiques qui présentent une évolution déterministe et réversible satisfont à cette condition. Mais la condition est plus générale. Imaginez que vous portiez aujourd'hui un pull-over vert. Dans une théorie préservant l'information, il devrait toujours être possible, en principe, de retrouver la couleur de votre pull dans dix ans, même si personne ne vous a vu le porter. Mais "si le monde ne préserve pas l'information, il se peut que dans 10 ans, il n'y ait tout simplement aucun moyen de savoir de quelle couleur était le pull que je portais", explique M. Ormrod.

La troisième est une propriété appelée dynamique locale (L). Considérons deux événements dans deux régions de l'espace-temps. S'il existe un cadre de référence dans lequel les deux événements semblent simultanés, on dit que les régions de l'espace sont "séparées comme dans l'espace". La dynamique locale implique que la transformation d'un système dans l'une de ces régions ne peut affecter causalement la transformation d'un système dans l'autre région à une vitesse supérieure à celle de la lumière, et vice versa, une transformation étant toute opération qui prend un ensemble d'états d'entrée et produit un ensemble d'états de sortie. Chaque sous-système subit sa propre transformation, de même que le système dans son ensemble. Si la dynamique est locale, la transformation du système complet peut être décomposée en transformations de ses parties individuelles : la dynamique est dite séparable. "La [contrainte] de la dynamique locale permet de s'assurer que l'on ne simule pas Bell [la non-localité]", explique M. Venkatesh.

Dans la théorie quantique, les transformations peuvent être décomposées en leurs éléments constitutifs. "La théorie quantique est donc dynamiquement séparable", explique M. Ormrod. En revanche, lorsque deux particules partagent un état non local de Bell (c'est-à-dire lorsque deux particules sont intriquées, selon la théorie quantique), on dit que l'état est inséparable des états individuels des deux particules. Si les transformations se comportaient de la même manière, c'est-à-dire si la transformation globale ne pouvait pas être décrite en termes de transformations de sous-systèmes individuels, alors le système entier serait dynamiquement inséparable.

Tous les éléments sont réunis pour comprendre le résultat du trio. Le travail d'Ormrod, Venkatesh et Barrett se résume à une analyse sophistiquée de la manière dont les théories "BIL" (celles qui satisfont aux trois propriétés susmentionnées) traitent une expérience de pensée faussement simple. Imaginons qu'Alice et Bob, chacun dans son propre laboratoire, effectuent une mesure sur l'une des deux particules. Alice et Bob effectuent chacun une mesure, et tous deux effectuent exactement la même mesure. Par exemple, ils peuvent tous deux mesurer le spin de leur particule dans le sens haut-bas.

Charlie et Daniela observent Alice et Bob et leurs laboratoires de l'extérieur. En principe, Charlie et Daniela devraient pouvoir mesurer le spin des mêmes particules, par exemple dans le sens gauche-droite. Dans une théorie préservant l'information, cela devrait être possible.

Prenons l'exemple spécifique de ce qui pourrait se produire dans la théorie quantique standard. Charlie, par exemple, considère Alice, son laboratoire et la mesure qu'elle effectue comme un système soumis à une évolution déterministe et réversible. En supposant qu'il contrôle totalement le système dans son ensemble, Charlie peut inverser le processus de manière à ce que la particule revienne à son état d'origine (comme un livre brûlé qui serait reconstitué à partir de ses cendres). Daniela fait de même avec Bob et son laboratoire. Charlie et Daniela effectuent maintenant chacun une mesure différente sur leurs particules respectives dans le sens gauche-droite.

En utilisant ce scénario, l'équipe a prouvé que les prédictions de toute théorie de la BIL pour les résultats des mesures des quatre observateurs contredisent le caractère absolu des événements observés. En d'autres termes, "toutes les théories de la BIL ont un problème de mesure", explique M. Ormrod.

CHOISISSEZ VOTRE POISON

Les physiciens se trouvent donc dans une impasse désagréable : soit ils acceptent le caractère non absolu des événements observés, soit ils renoncent à l'une des hypothèses de la théorie de la BIL.

Venkatesh pense qu'il y a quelque chose de convaincant dans le fait de renoncer à l'absoluité des événements observés. Après tout, dit-elle, la physique a réussi à passer d'un cadre newtonien rigide à une description einsteinienne de la réalité, plus nuancée et plus fluide. "Nous avons dû ajuster certaines notions de ce que nous pensions être absolu. Pour Newton, l'espace et le temps étaient absolus", explique M. Venkatesh. Mais dans la conception de l'univers d'Albert Einstein, l'espace et le temps ne font qu'un, et cet espace-temps unique n'est pas quelque chose d'absolu mais peut se déformer d'une manière qui ne correspond pas au mode de pensée newtonien.

D'autre part, une théorie perspectiviste qui dépend des observateurs crée ses propres problèmes. En particulier, comment peut-on faire de la science dans les limites d'une théorie où deux observateurs ne peuvent pas se mettre d'accord sur les résultats des mesures ? "Il n'est pas évident que la science puisse fonctionner comme elle est censée le faire si nous ne parvenons pas à des prédictions pour des événements observés que nous considérons comme absolus", explique M. Ormrod.

Donc, si l'on insiste sur le caractère absolu des événements observés, il faut faire un compromis. Ce ne sera pas la non-localité de Bell ou la préservation de l'information : la première repose sur des bases empiriques solides, et la seconde est considérée comme un aspect important de toute théorie de la réalité. L'accent est mis sur la dynamique locale, en particulier sur la séparabilité dynamique.

La séparabilité dynamique est "une sorte d'hypothèse du réductionnisme", explique M. Ormrod. "On peut expliquer les grandes choses en termes de petits morceaux.

Le fait de préserver le caractère absolu des événements observés pourrait signifier que ce réductionnisme ne tient pas : tout comme un état non local de Bell ne peut être réduit à certains états constitutifs, il se peut que la dynamique d'un système soit également holistique, ce qui ajoute un autre type de nonlocalité à l'univers. Il est important de noter que le fait d'y renoncer ne met pas une théorie en porte-à-faux avec les théories de la relativité d'Einstein, tout comme les physiciens ont soutenu que la non-localité de Bell ne nécessite pas d'influences causales superluminales ou non locales, mais simplement des états non séparables.

"Peut-être que la leçon de Bell est que les états des particules distantes sont inextricablement liés, et que la leçon des nouveaux théorèmes est que leur dynamique l'est aussi", ont écrit Ormrod, Venkatesh et Barrett dans leur article.

"J'aime beaucoup l'idée de rejeter la séparabilité dynamique, car si cela fonctionne, alors ... nous aurons le beurre et l'argent du beurre", déclare Ormrod. "Nous pouvons continuer à croire ce que nous considérons comme les choses les plus fondamentales du monde : le fait que la théorie de la relativité est vraie, que l'information est préservée, et ce genre de choses. Mais nous pouvons aussi croire à l'absoluité des événements observés".

Jeffrey Bub, philosophe de la physique et professeur émérite à l'université du Maryland, College Park, est prêt à avaler quelques pilules amères si cela signifie vivre dans un univers objectif. "Je voudrais m'accrocher à l'absoluité des événements observés", déclare-t-il. "Il me semble absurde d'y renoncer simplement à cause du problème de la mesure en mécanique quantique. À cette fin, Bub pense qu'un univers dans lequel les dynamiques ne sont pas séparables n'est pas une si mauvaise idée. "Je pense que je serais provisoirement d'accord avec les auteurs pour dire que la non-séparabilité [dynamique] est l'option la moins désagréable", déclare-t-il.

Le problème est que personne ne sait encore comment construire une théorie qui rejette la séparabilité dynamique - à supposer qu'elle soit possible à construire - tout en conservant les autres propriétés telles que la préservation de l'information et la non-localité de Bell.

UNE NON LOCALITÉ PLUS PROFONDE

Howard Wiseman, de l'université Griffith, qui est considéré comme une figure fondatrice de ces réflexions théoriques, apprécie l'effort d'Ormrod, Venkatesh et Barrett pour prouver un théorème qui s'applique à la mécanique quantique sans lui être spécifique. "C'est bien qu'ils poussent dans cette direction", déclare-t-il. "Nous pouvons dire des choses plus générales sans faire référence à la mécanique quantique.

 Il souligne que l'expérience de pensée utilisée dans l'analyse ne demande pas à Alice, Bob, Charlie et Daniela de faire des choix - ils font toujours les mêmes mesures. Par conséquent, les hypothèses utilisées pour prouver le théorème n'incluent pas explicitement une hypothèse sur la liberté de choix, car personne n'exerce un tel choix. Normalement, moins il y a d'hypothèses, plus la preuve est solide, mais ce n'est peut-être pas le cas ici, explique Wiseman. En effet, la première hypothèse, selon laquelle la théorie doit tenir compte de la non-localité de Bell, exige que les agents soient dotés d'un libre arbitre. Tout test empirique de la non-localité de Bell implique qu'Alice et Bob choisissent de leur plein gré les types de mesures qu'ils effectuent. Par conséquent, si une théorie est nonlocale au sens de Bell, elle reconnaît implicitement le libre arbitre des expérimentateurs. "Ce que je soupçonne, c'est qu'ils introduisent subrepticement une hypothèse de libre arbitre", déclare Wiseman.

Cela ne veut pas dire que la preuve est plus faible. Au contraire, elle aurait été plus forte si elle n'avait pas exigé une hypothèse de libre arbitre. En l'occurrence, le libre arbitre reste une exigence. Dans ces conditions, la portée la plus profonde de ce théorème pourrait être que l'univers est non local d'une manière entièrement nouvelle. Si tel est le cas, cette nonlocalité serait égale ou supérieure à la nonlocalité de Bell, dont la compréhension a ouvert la voie aux communications quantiques et à la cryptographie quantique. Personne ne sait ce qu'un nouveau type de nonlocalité - suggéré par la non-séparabilité dynamique - signifierait pour notre compréhension de l'univers.

En fin de compte, seules les expériences permettront de trouver la bonne théorie, et les physiciens quantiques ne peuvent que se préparer à toute éventualité. "Indépendamment de l'opinion personnelle de chacun sur la meilleure [théorie], toutes doivent être explorées", déclare M. Venkatesh. "En fin de compte, nous devrons examiner les expériences que nous pouvons réaliser. Cela pourrait être dans un sens ou dans l'autre, et il est bon de s'y préparer."

Auteur: Internet

Info: https://www.scientificamerican.com, Par Anil Ananthaswamy le 22 mai 2023

[ enchevêtrement quantique ] [ régions de l'espace-temps ] [ monde subatomique ]

 

Commentaires: 0

Ajouté à la BD par miguel

auto-programmation

Pieuvres et calmars modifient et corrigent (édit en anglais) leur ARN, tout en laissant l'ADN intact. Des changements qui pourraient expliquer l'intelligence et la flexibilité des céphalopodes dépourvus de coquille

De nombreux écrivains se plaignent lorsqu'un rédacteur  vient éditer et donc modifier leur article, mais les conséquences de la modification d'un seul mot ne sont généralement pas si graves.

Ce n'est pas le cas des instructions génétiques pour la fabrication des protéines. Même une petite modification peut empêcher une protéine de faire son travail correctement, ce qui peut avoir des conséquences mortelles. Ce n'est qu'occasionnellement qu'un changement est bénéfique. Il semble plus sage de conserver les instructions génétiques telles qu'elles sont écrites. À moins d'être une pieuvre.

Les pieuvres sont comme des extraterrestres qui vivent parmi nous : elles font beaucoup de choses différemment des animaux terrestres ou même des autres créatures marines. Leurs tentacules flexibles goûtent ce qu'ils touchent et ont leur esprit propre. Les yeux des pieuvres sont daltoniens, mais leur peau peut détecter la lumière par elle-même. Les pieuvres sont des maîtres du déguisement, changeant de couleur et de texture de peau pour se fondre dans leur environnement ou effrayer leurs rivaux. Et plus que la plupart des créatures, les pieuvres font gicler l'équivalent moléculaire de l'encre rouge sur leurs instructions génétiques avec un abandon stupéfiant, comme un rédacteur en chef déchaîné.

Ces modifications-éditions concernent l'ARN, molécule utilisée pour traduire les informations du plan génétique stocké dans l'ADN, tout en laissant l'ADN intact.

Les scientifiques ne savent pas encore avec certitude pourquoi les pieuvres et d'autres céphalopodes sans carapace, comme les calmars et les seiches, sont des modificateurs aussi prolifiques. Les chercheurs se demandent si cette forme d'édition génétique a donné aux céphalopodes une longueur d'avance sur le plan de l'évolution (ou un tentacule) ou si cette capacité n'est qu'un accident parfois utile. Les scientifiques étudient également les conséquences que les modifications de l'ARN peuvent avoir dans diverses conditions. Certaines données suggèrent que l'édition pourrait donner aux céphalopodes une partie de leur intelligence, mais au prix d'un ralentissement de l'évolution de leur ADN.

"Ces animaux sont tout simplement magiques", déclare Caroline Albertin, biologiste spécialiste du développement comparatif au Marine Biological Laboratory de Woods Hole (Massachusetts). "Ils ont toutes sortes de solutions différentes pour vivre dans le monde d'où ils viennent. L'édition de l'ARN pourrait contribuer à donner à ces créatures un grand nombre de solutions aux problèmes qu'elles peuvent rencontrer.

(vidéo - Contrairement à d'autres animaux à symétrie bilatérale, les pieuvres ne rampent pas dans une direction prédéterminée. Des vidéos de pieuvres en train de ramper montrent qu'elles peuvent se déplacer dans n'importe quelle direction par rapport à leur corps, et qu'elles changent de direction de rampe sans avoir à tourner leur corps. Dans le clip, la flèche verte indique l'orientation du corps de la pieuvre et la flèche bleue indique la direction dans laquelle elle rampe.)

Le dogme central de la biologie moléculaire veut que les instructions pour construire un organisme soient contenues dans l'ADN. Les cellules copient ces instructions dans des ARN messagers, ou ARNm. Ensuite, des machines cellulaires appelées ribosomes lisent les ARNm pour construire des protéines en enchaînant des acides aminés. La plupart du temps, la composition de la protéine est conforme au modèle d'ADN pour la séquence d'acides aminés de la protéine.

Mais l'édition de l'ARN peut entraîner des divergences par rapport aux instructions de l'ADN, créant ainsi des protéines dont les acides aminés sont différents de ceux spécifiés par l'ADN.

L'édition modifie chimiquement l'un des quatre éléments constitutifs de l'ARN, ou bases. Ces bases sont souvent désignées par les premières lettres de leur nom : A, C, G et U, pour adénine, cytosine, guanine et uracile (la version ARN de la base ADN thymine). Dans une molécule d'ARN, les bases sont liées à des sucres ; l'unité adénine-sucre, par exemple, est appelée adénosine.

Il existe de nombreuses façons d'éditer des lettres d'ARN. Les céphalopodes excellent dans un type d'édition connu sous le nom d'édition de l'adénosine à l'inosine, ou A-to-I. Cela se produit lorsqu'une enzyme appelée ADAR2 enlève un atome d'azote et deux atomes d'hydrogène de l'adénosine (le A). Ce pelage chimique transforme l'adénosine en inosine (I).

 Les ribosomes lisent l'inosine comme une guanine au lieu d'une adénine. Parfois, ce changement n'a aucun effet sur la chaîne d'acides aminés de la protéine résultante. Mais dans certains cas, la présence d'un G à la place d'un A entraîne l'insertion d'un acide aminé différent dans la protéine. Ce type d'édition de l'ARN modifiant la protéine est appelé recodage de l'ARN.

Les céphalopodes à corps mou ont adopté le recodage de l'ARN à bras-le-corps, alors que même les espèces étroitement apparentées sont plus hésitantes à accepter les réécritures, explique Albertin. "Les autres mollusques ne semblent pas le faire dans la même mesure.

L'édition de l'ARN ne se limite pas aux créatures des profondeurs. Presque tous les organismes multicellulaires possèdent une ou plusieurs enzymes d'édition de l'ARN appelées enzymes ADAR, abréviation de "adénosine désaminase agissant sur l'ARN", explique Joshua Rosenthal, neurobiologiste moléculaire au Marine Biological Laboratory.

Les céphalopodes possèdent deux enzymes ADAR. L'homme possède également des versions de ces enzymes. "Dans notre cerveau, nous modifions une tonne d'ARN. Nous le faisons beaucoup", explique Rosenthal. Au cours de la dernière décennie, les scientifiques ont découvert des millions d'endroits dans les ARN humains où se produit l'édition.

Mais ces modifications changent rarement les acides aminés d'une protéine. Par exemple, Eli Eisenberg, de l'université de Tel Aviv, et ses collègues ont identifié plus de 4,6 millions de sites d'édition dans les ARN humains. Parmi ceux-ci, seuls 1 517 recodent les protéines, ont rapporté les chercheurs l'année dernière dans Nature Communications. Parmi ces sites de recodage, jusqu'à 835 sont partagés avec d'autres mammifères, ce qui suggère que les forces de l'évolution ont préservé l'édition à ces endroits.

(Encadré :  Comment fonctionne l'édition de l'ARN ?

Dans une forme courante d'édition de l'ARN, une adénosine devient une inosine par une réaction qui supprime un groupe aminé et le remplace par un oxygène (flèches). L'illustration montre une enzyme ADAR se fixant à un ARN double brin au niveau du "domaine de liaison de l'ARNdb". La région de l'enzyme qui interagit pour provoquer la réaction, le "domaine de la désaminase", est positionnée près de l'adénosine qui deviendra une inosine.)

Les céphalopodes portent le recodage de l'ARN à un tout autre niveau, dit Albertin. L'encornet rouge (Doryteuthis pealeii) possède 57 108 sites de recodage, ont rapporté Rosenthal, Eisenberg et leurs collègues en 2015 dans eLife. Depuis, les chercheurs ont examiné plusieurs espèces de pieuvres, de calmars et de seiches, et ont à chaque fois trouvé des dizaines de milliers de sites de recodage.

Les céphalopodes à corps mou, ou coléoïdes, pourraient avoir plus de possibilités d'édition que les autres animaux en raison de l'emplacement d'au moins une des enzymes ADAR, ADAR2, dans la cellule. La plupart des animaux éditent les ARN dans le noyau - le compartiment où l'ADN est stocké et copié en ARN - avant d'envoyer les messages à la rencontre des ribosomes. Mais chez les céphalopodes, les enzymes se trouvent également dans le cytoplasme, l'organe gélatineux des cellules, ont découvert Rosenthal et ses collègues (SN : 4/25/20, p. 10).

Le fait d'avoir des enzymes d'édition dans deux endroits différents n'explique pas complètement pourquoi le recodage de l'ARN chez les céphalopodes dépasse de loin celui des humains et d'autres animaux. Cela n'explique pas non plus les schémas d'édition que les scientifiques ont découverts.

L'édition de l'ARN amènerait de la flexibilité aux céphalopodes

L'édition n'est pas une proposition "tout ou rien". Il est rare que toutes les copies d'un ARN dans une cellule soient modifiées. Il est beaucoup plus fréquent qu'un certain pourcentage d'ARN soit édité tandis que le reste conserve son information originale. Le pourcentage, ou fréquence, de l'édition peut varier considérablement d'un ARN à l'autre ou d'une cellule ou d'un tissu à l'autre, et peut dépendre de la température de l'eau ou d'autres conditions. Chez le calmar à nageoires longues, la plupart des sites d'édition de l'ARN étaient édités 2 % ou moins du temps, ont rapporté Albertin et ses collègues l'année dernière dans Nature Communications. Mais les chercheurs ont également trouvé plus de 205 000 sites qui étaient modifiés 25 % du temps ou plus.

Dans la majeure partie du corps d'un céphalopode, l'édition de l'ARN n'affecte pas souvent la composition des protéines. Mais dans le système nerveux, c'est une autre histoire. Dans le système nerveux du calmar à nageoires longues, 70 % des modifications apportées aux ARN producteurs de protéines recodent ces dernières. Dans le système nerveux de la pieuvre californienne à deux points (Octopus bimaculoides), les ARN sont recodés trois à six fois plus souvent que dans d'autres organes ou tissus.

(Photo -  L'encornet rouge recode l'ARN à plus de 50 000 endroits. Le recodage de l'ARN pourrait aider le calmar à réagir avec plus de souplesse à son environnement, mais on ne sait pas encore si le recodage a une valeur évolutive. Certains ARNm possèdent plusieurs sites d'édition qui modifient les acides aminés des protéines codées par les ARNm. Dans le système nerveux de l'encornet rouge, par exemple, 27 % des ARNm ont trois sites de recodage ou plus. Certains contiennent 10 sites ou plus. La combinaison de ces sites d'édition pourrait entraîner la fabrication de plusieurs versions d'une protéine dans une cellule.)

Le fait de disposer d'un large choix de protéines pourrait donner aux céphalopodes "plus de souplesse pour réagir à l'environnement", explique M. Albertin, "ou leur permettre de trouver diverses solutions au problème qui se pose à eux". Dans le système nerveux, l'édition de l'ARN pourrait contribuer à la flexibilité de la pensée, ce qui pourrait expliquer pourquoi les pieuvres peuvent déverrouiller des cages ou utiliser des outils, pensent certains chercheurs. L'édition pourrait être un moyen facile de créer une ou plusieurs versions d'une protéine dans le système nerveux et des versions différentes dans le reste du corps, explique Albertin.

Lorsque l'homme et d'autres vertébrés ont des versions différentes d'une protéine, c'est souvent parce qu'ils possèdent plusieurs copies d'un gène. Doubler, tripler ou quadrupler les copies d'un gène "permet de créer tout un terrain de jeu génétique pour permettre aux gènes de s'activer et d'accomplir différentes fonctions", explique M. Albertin. Mais les céphalopodes ont tendance à ne pas dupliquer les gènes. Leurs innovations proviennent plutôt de l'édition.

Et il y a beaucoup de place pour l'innovation. Chez le calmar, les ARNm servant à construire la protéine alpha-spectrine comportent 242 sites de recodage. Toutes les combinaisons de sites modifiés et non modifiés pourraient théoriquement créer jusqu'à 7 x 1072 formes de la protéine, rapportent Rosenthal et Eisenberg dans le numéro de cette année de l'Annual Review of Animal Biosciences (Revue annuelle des biosciences animales). "Pour mettre ce chiffre en perspective, écrivent les chercheurs, il suffit de dire qu'il éclipse le nombre de toutes les molécules d'alpha-spectrine (ou, d'ailleurs, de toutes les molécules de protéines) synthétisées dans toutes les cellules de tous les calmars qui ont vécu sur notre planète depuis l'aube des temps.

Selon Kavita Rangan, biologiste moléculaire à l'université de Californie à San Diego, ce niveau de complexité incroyable ne serait possible que si chaque site était indépendant. Rangan a étudié le recodage de l'ARN chez le calmar californien (Doryteuthis opalescens) et le calmar à nageoires longues. La température de l'eau incite les calmars à recoder les protéines motrices appelées kinésines qui déplacent les cargaisons à l'intérieur des cellules.

Chez l'encornet rouge, l'ARNm qui produit la kinésine-1 comporte 14 sites de recodage, a découvert Mme Rangan. Elle a examiné les ARNm du lobe optique - la partie du cerveau qui traite les informations visuelles - et du ganglion stellaire, un ensemble de nerfs impliqués dans la génération des contractions musculaires qui produisent des jets d'eau pour propulser le calmar.

Chaque tissu produit plusieurs versions de la protéine. Rangan et Samara Reck-Peterson, également de l'UC San Diego, ont rapporté en septembre dernier dans un article publié en ligne sur bioRxiv.org que certains sites avaient tendance à être édités ensemble. Leurs données suggèrent que l'édition de certains sites est coordonnée et "rejette très fortement l'idée que l'édition est indépendante", explique Rangan. "La fréquence des combinaisons que nous observons ne correspond pas à l'idée que chaque site a été édité indépendamment.

L'association de sites d'édition pourrait empêcher les calmars et autres céphalopodes d'atteindre les sommets de complexité dont ils sont théoriquement capables. Néanmoins, l'édition de l'ARN offre aux céphalopodes un moyen d'essayer de nombreuses versions d'une protéine sans s'enfermer dans une modification permanente de l'ADN, explique M. Rangan.

Ce manque d'engagement laisse perplexe Jianzhi Zhang, généticien évolutionniste à l'université du Michigan à Ann Arbor. "Pour moi, cela n'a pas de sens", déclare-t-il. "Si vous voulez un acide aminé particulier dans une protéine, vous devez modifier l'ADN. Pourquoi changer l'ARN ?

L'édition de l'ARN a-t-elle une valeur évolutive ?

L'édition de l'ARN offre peut-être un avantage évolutif. Pour tester cette idée, Zhang et Daohan Jiang, alors étudiant de troisième cycle, ont comparé les sites "synonymes", où les modifications ne changent pas les acides aminés, aux sites "non synonymes", où le recodage se produit. Étant donné que les modifications synonymes ne modifient pas les acides aminés, les chercheurs ont considéré que ces modifications étaient neutres du point de vue de l'évolution. Chez l'homme, le recodage, ou édition non synonyme, se produit sur moins de sites que l'édition synonyme, et le pourcentage de molécules d'ARN qui sont éditées est plus faible que sur les sites synonymes.

"Si nous supposons que l'édition synonyme est comme un bruit qui se produit dans la cellule, et que l'édition non-synonyme est moins fréquente et [à un] niveau plus bas, cela suggère que l'édition non-synonyme est en fait nuisible", explique Zhang. Même si le recodage chez les céphalopodes est beaucoup plus fréquent que chez les humains, dans la plupart des cas, le recodage n'est pas avantageux, ou adaptatif, pour les céphalopodes, ont affirmé les chercheurs en 2019 dans Nature Communications.

Il existe quelques sites communs où les pieuvres, les calmars et les seiches recodent tous leurs ARN, ont constaté les chercheurs, ce qui suggère que le recodage est utile dans ces cas. Mais il s'agit d'une petite fraction des sites d'édition. Zhang et Jiang ont constaté que quelques autres sites édités chez une espèce de céphalopode, mais pas chez les autres, étaient également adaptatifs.

Si ce n'est pas si utile que cela, pourquoi les céphalopodes ont-ils continué à recoder l'ARN pendant des centaines de millions d'années ? L'édition de l'ARN pourrait persister non pas parce qu'elle est adaptative, mais parce qu'elle crée une dépendance, selon Zhang.

Zhang et Jiang ont proposé un modèle permettant de nuire (c'est-à-dire une situation qui permet des modifications nocives de l'ADN). Imaginez, dit-il, une situation dans laquelle un G (guanine) dans l'ADN d'un organisme est muté en A (adénine). Si cette mutation entraîne un changement d'acide aminé nocif dans une protéine, la sélection naturelle devrait éliminer les individus porteurs de cette mutation. Mais si, par chance, l'organisme dispose d'un système d'édition de l'ARN, l'erreur dans l'ADN peut être corrigée par l'édition de l'ARN, ce qui revient à transformer le A en G. Si la protéine est essentielle à la vie, l'ARN doit être édité à des niveaux élevés de sorte que presque chaque copie soit corrigée.

 Lorsque cela se produit, "on est bloqué dans le système", explique M. Zhang. L'organisme est désormais dépendant de la machinerie d'édition de l'ARN. "On ne peut pas la perdre, car il faut que le A soit réédité en G pour survivre, et l'édition est donc maintenue à des niveaux élevés.... Au début, on n'en avait pas vraiment besoin, mais une fois qu'on l'a eue, on en est devenu dépendant".

Zhang soutient que ce type d'édition est neutre et non adaptatif. Mais d'autres recherches suggèrent que l'édition de l'ARN peut être adaptative.

L'édition de l'ARN peut fonctionner comme une phase de transition, permettant aux organismes de tester le passage de l'adénine à la guanine sans apporter de changement permanent à leur ADN. Au cours de l'évolution, les sites où les adénines sont recodées dans l'ARN d'une espèce de céphalopode sont plus susceptibles que les adénines non éditées d'être remplacées par des guanines dans l'ADN d'une ou de plusieurs espèces apparentées, ont rapporté les chercheurs en 2020 dans PeerJ. Et pour les sites fortement modifiés, l'évolution chez les céphalopodes semble favoriser une transition de A à G dans l'ADN (plutôt qu'à la cytosine ou à la thymine, les deux autres éléments constitutifs de l'ADN). Cela favorise l'idée que l'édition peut être adaptative.

D'autres travaux récents de Rosenthal et de ses collègues, qui ont examiné les remplacements de A en G chez différentes espèces, suggèrent que le fait d'avoir un A modifiable est un avantage évolutif par rapport à un A non modifiable ou à un G câblé.

(Tableau :  Quelle est la fréquence de l'enregistrement de l'ARN ?

Les céphalopodes à corps mou, notamment les pieuvres, les calmars et les seiches, recodent l'ARN dans leur système nerveux sur des dizaines de milliers de sites, contre un millier ou moins chez l'homme, la souris, la mouche des fruits et d'autres espèces animales. Bien que les scientifiques aient documenté le nombre de sites d'édition, ils auront besoin de nouveaux outils pour tester directement l'influence du recodage sur la biologie des céphalopodes.

Schéma avec comparaison des nombre de sites de recodage de l'ARN chez les animaux

J.J.C. ROSENTHAL ET E. EISENBERG/ANNUAL REVIEW OF ANIMAL BIOSCIENCES 2023 )

Beaucoup de questions en suspens

Les preuves pour ou contre la valeur évolutive du recodage de l'ARN proviennent principalement de l'examen de la composition génétique totale, ou génomes, de diverses espèces de céphalopodes. Mais les scientifiques aimeraient vérifier directement si les ARN recodés ont un effet sur la biologie des céphalopodes. Pour ce faire, il faudra utiliser de nouveaux outils et faire preuve de créativité.

Rangan a testé des versions synthétiques de protéines motrices de calmars et a constaté que deux versions modifiées que les calmars fabriquent dans le froid se déplaçaient plus lentement mais plus loin le long de pistes protéiques appelées microtubules que les protéines non modifiées. Mais il s'agit là de conditions artificielles de laboratoire, sur des lames de microscope. Pour comprendre ce qui se passe dans les cellules, Mme Rangan aimerait pouvoir cultiver des cellules de calmar dans des boîtes de laboratoire. Pour l'instant, elle doit prélever des tissus directement sur le calmar et ne peut obtenir que des instantanés de ce qui se passe. Les cellules cultivées en laboratoire pourraient lui permettre de suivre ce qui se passe au fil du temps.

M. Zhang explique qu'il teste son hypothèse de l'innocuité en amenant la levure à s'intéresser à l'édition de l'ARN. La levure de boulanger (Saccharomyces cerevisiae) ne possède pas d'enzymes ADAR. Mais Zhang a modifié une souche de cette levure pour qu'elle soit porteuse d'une version humaine de l'enzyme. Les enzymes ADAR rendent la levure malade et la font croître lentement, explique-t-il. Pour accélérer l'expérience, la souche qu'il utilise a un taux de mutation supérieur à la normale et peut accumuler des mutations G-A. Mais si l'édition de l'ARN peut corriger ces mutations, il est possible d'obtenir des résultats positifs. Mais si l'édition de l'ARN peut corriger ces mutations, la levure porteuse d'ADAR pourrait se développer mieux que celles qui n'ont pas l'enzyme. Et après de nombreuses générations, la levure pourrait devenir dépendante de l'édition, prédit Zhang.

Albertin, Rosenthal et leurs collègues ont mis au point des moyens de modifier les gènes des calmars à l'aide de l'éditeur de gènes CRISPR/Cas9. L'équipe a créé un calmar albinos en utilisant CRISPR/Cas9 pour supprimer, ou désactiver, un gène qui produit des pigments. Les chercheurs pourraient être en mesure de modifier les sites d'édition dans l'ADN ou dans l'ARN et de tester leur fonction, explique Albertin.

Cette science n'en est qu'à ses débuts et l'histoire peut mener à des résultats inattendus. Néanmoins, grâce à l'habileté des céphalopodes en matière d'édition, la lecture de cet article ne manquera pas d'être intéressante.

 

Auteur: Internet

Info: https://www.sciencenews.org/article/octopus-squid-rna-editing-dna-cephalopods, Tina Hesman Saey, 19 may 2023

[ poulpes ] [ calamars ] [ homme-animal ]

 

Commentaires: 0

Ajouté à la BD par miguel

évolution subatomique

Une nouvelle idée pour assembler la vie         (Avec l'aimable autorisation de Lee Cronin)

Si nous voulons comprendre des constructions complexes, telles que nous-mêmes, la théorie de l'assemblage affirme que nous devons tenir compte de toute l'histoire de la création de ces entités, du pourquoi et comment elles sont ce qu'elles sont.

La théorie de l'assemblage explique pourquoi, étant donné les possibilités combinatoires apparemment infinies, nous n'observons qu'un certain sous-ensemble d'objets dans notre univers.

La vie sur d'autres mondes - si elle existe - pourrait être si étrangère qu'elle en serait méconnaissable. Il n'est pas certain que la biologie extraterrestre utilise la même chimie que celle de la Terre, avec des éléments constitutifs familiers tels que l'ADN et les protéines. Avec cette approche les scientifiques pourraient même repérer les signatures de ces formes de vie sans savoir qu'elles sont le fruit de la biologie.

Ce problème est loin d'être hypothétique. En avril, la sonde Juice de l'Agence spatiale européenne a décollé de la Guyane française en direction de Jupiter et de ses lunes. L'une de ces lunes, Europe, abrite un océan profond et saumâtre sous sa croûte gelée et figure parmi les endroits les plus prometteurs du système solaire pour la recherche d'une vie extraterrestre. L'année prochaine, le vaisseau spatial Europa Clipper de la NASA sera lancé, lui aussi en direction d'Europe. Les deux engins spatiaux sont équipés d'instruments embarqués qui rechercheront les empreintes de molécules organiques complexes, signe possible de vie sous la glace. En 2027, la NASA prévoit de lancer un hélicoptère ressemblant à un drone, appelé Dragonfly, pour survoler la surface de Titan, une lune de Saturne, un monde brumeux, riche en carbone, avec des lacs d'hydrocarbures liquides qui pourraient être propices à la vie, mais pas telle que nous la connaissons.

Ces missions et d'autres encore se heurteront au même obstacle que celui auquel se heurtent les scientifiques depuis qu'ils ont tenté pour la première fois de rechercher des signes de biologie martienne avec les atterrisseurs Viking dans les années 1970 : Il n'y a pas de signature définitive de la vie.

C'est peut-être sur le point de changer. En 2021, une équipe dirigée par Lee Cronin, de l'université de Glasgow, en Écosse, et Sara Walker, de l'université d'État de l'Arizona, a proposé une méthode très générale pour identifier les molécules produites par les systèmes vivants, même ceux qui utilisent des chimies inconnues. Leur méthode suppose simplement que les formes de vie extraterrestres produisent des molécules dont la complexité chimique est similaire à celle de la vie sur Terre.

Appelée théorie de l'assemblage, l'idée qui sous-tend la stratégie des deux chercheurs a des objectifs encore plus ambitieux. Comme l'indique une récente série de publications, elle tente d'expliquer pourquoi des choses apparemment improbables, telles que vous et moi, existent. Et elle cherche cette explication non pas, à la manière habituelle de la physique, dans des lois physiques intemporelles, mais dans un processus qui imprègne les objets d'histoires et de souvenirs de ce qui les a précédés. Elle cherche même à répondre à une question qui laisse les scientifiques et les philosophes perplexes depuis des millénaires : qu'est-ce que la vie, de toute façon ?

Il n'est pas surprenant qu'un projet aussi ambitieux ait suscité le scepticisme. Ses partisans n'ont pas encore précisé comment il pourrait être testé en laboratoire. Et certains scientifiques se demandent si la théorie de l'assemblage peut même tenir ses promesses les plus modestes, à savoir distinguer la vie de la non-vie et envisager la complexité d'une nouvelle manière.

La théorie de l'assemblage a évolué, en partie, pour répondre au soupçon de Lee Cronin selon lequel "les molécules complexes ne peuvent pas simplement émerger, parce que l'espace combinatoire est trop vaste".

Mais d'autres estiment que la théorie de l'assemblage n'en est qu'à ses débuts et qu'il existe une réelle possibilité qu'elle apporte une nouvelle perspective à la question de la naissance et de l'évolution de la complexité. "Il est amusant de s'engager dans cette voie", a déclaré le théoricien de l'évolution David Krakauer, président de l'Institut Santa Fe. Selon lui, la théorie de l'assemblage permet de découvrir l'histoire contingente des objets, une question ignorée par la plupart des théories de la complexité, qui ont tendance à se concentrer sur la façon dont les choses sont, mais pas sur la façon dont elles sont devenues telles. Paul Davies, physicien à l'université de l'Arizona, est d'accord avec cette idée, qu'il qualifie de "nouvelle, susceptible de transformer notre façon de penser la complexité".

Sur l'ordre des choses

La théorie de l'assemblage est née lorsque M. Cronin s'est demandé pourquoi, compte tenu du nombre astronomique de façons de combiner différents atomes, la nature fabrique certaines molécules et pas d'autres. C'est une chose de dire qu'un objet est possible selon les lois de la physique, c'en est une autre de dire qu'il existe une voie réelle pour le fabriquer à partir de ses composants. "La théorie de l'assemblage a été élaborée pour traduire mon intuition selon laquelle les molécules complexes ne peuvent pas simplement émerger parce que l'espace combinatoire est trop vaste", a déclaré M. Cronin.

Walker, quant à lui, s'est penché sur la question de l'origine de la vie - une question étroitement liée à la fabrication de molécules complexes, car celles des organismes vivants sont bien trop complexes pour avoir été assemblées par hasard. Walker s'est dit que quelque chose avait dû guider ce processus avant même que la sélection darwinienne ne prenne le dessus.

Cronin et Walker ont uni leurs forces après avoir participé à un atelier d'astrobiologie de la NASA en 2012. "Sara et moi discutions de la théorie de l'information, de la vie et des voies minimales pour construire des machines autoreproductibles", se souvient M. Cronin. "Et il m'est apparu très clairement que nous convergions tous les deux sur le fait qu'il manquait une 'force motrice' avant la biologie."

Aujourd'hui, la théorie de l'assemblage fournit une explication cohérente et mathématiquement précise de l'apparente contingence historique de la fabrication des objets - pourquoi, par exemple, ne peut-on pas développer de fusées avant d'avoir d'abord la vie multicellulaire, puis l'homme, puis la civilisation et la science. Il existe un ordre particulier dans lequel les objets peuvent apparaître.

"Nous vivons dans un univers structuré de manière récursive*", a déclaré M. Walker. "La plupart des structures doivent être construites à partir de la mémoire du passé. L'information se construit au fil du temps.

Cela peut sembler intuitivement évident, mais il est plus difficile de répondre à certaines questions sur l'ordre des choses. Les dinosaures ont-ils dû précéder les oiseaux ? Mozart devait-il précéder John Coltrane ? Peut-on dire quelles molécules ont nécessairement précédé l'ADN et les protéines ?

Quantifier la complexité

La théorie de l'assemblage repose sur l'hypothèse apparemment incontestable que les objets complexes résultent de la combinaison de nombreux objets plus simples. Selon cette théorie, il est possible de mesurer objectivement la complexité d'un objet en examinant la manière dont il a été fabriqué. Pour ce faire, on calcule le nombre minimum d'étapes nécessaires pour fabriquer l'objet à partir de ses ingrédients, que l'on quantifie en tant qu'indice d'assemblage (IA).

En outre, pour qu'un objet complexe soit intéressant d'un point de vue scientifique, il faut qu'il y en ait beaucoup. Des objets très complexes peuvent résulter de processus d'assemblage aléatoires - par exemple, on peut fabriquer des molécules de type protéine en reliant n'importe quels acides aminés en chaînes. En général, cependant, ces molécules aléatoires ne feront rien d'intéressant, comme se comporter comme une enzyme. En outre, les chances d'obtenir deux molécules identiques de cette manière sont extrêmement faibles.

En revanche, les enzymes fonctionnelles sont fabriquées de manière fiable à maintes reprises en biologie, car elles sont assemblées non pas au hasard, mais à partir d'instructions génétiques transmises de génération en génération. Ainsi, si le fait de trouver une seule molécule très complexe ne vous dit rien sur la manière dont elle a été fabriquée, il est improbable de trouver plusieurs molécules complexes identiques, à moins qu'un processus orchestré - peut-être la vie - ne soit à l'œuvre.

Cronin et Walker ont calculé que si une molécule est suffisamment abondante pour être détectable, son indice d'assemblage peut indiquer si elle a été produite par un processus organisé et réaliste. L'intérêt de cette approche est qu'elle ne suppose rien sur la chimie détaillée de la molécule elle-même, ni sur celle de l'entité vivante qui l'a produite. Elle est chimiquement agnostique. C'est ce qui la rend particulièrement précieuse lorsque nous recherchons des formes de vie qui pourraient ne pas être conformes à la biochimie terrestre, a déclaré Jonathan Lunine, planétologue à l'université Cornell et chercheur principal d'une mission proposée pour rechercher la vie sur la lune glacée de Saturne, Encelade.

"Il est bien qu'au moins une technique relativement agnostique soit embarquée à bord des missions de détection de la vie", a déclaré Jonathan Lunine.

Il ajoute qu'il est possible d'effectuer les mesures requises par la théorie de l'assemblage avec des techniques déjà utilisées pour étudier la chimie des surfaces planétaires. "La mise en œuvre de mesures permettant l'utilisation de la théorie de l'assemblage pour l'interprétation des données est éminemment réalisable", a-t-il déclaré.

La mesure du travail d'une vie

Ce qu'il faut, c'est une méthode expérimentale rapide et facile pour déterminer l'IA (indice d'assemblage) de certaines molécules. À l'aide d'une base de données de structures chimiques, Cronin, Walker et leurs collègues ont conçu un moyen de calculer le nombre minimum d'étapes nécessaires à la fabrication de différentes structures moléculaires. Leurs résultats ont montré que, pour les molécules relativement petites, l'indice d'assemblage est à peu près proportionnel au poids moléculaire. Mais pour les molécules plus grandes (tout ce qui est plus grand que les petits peptides, par exemple), cette relation est rompue.

Dans ces cas, les chercheurs ont découvert qu'ils pouvaient estimer l'IA à l'aide de la spectrométrie de masse, une technique déjà utilisée par le rover Curiosity de la NASA pour identifier les composés chimiques à la surface de Mars, et par la sonde Cassini de la NASA pour étudier les molécules qui jaillissent d'Encelade.

La spectrométrie de masse décompose généralement les grosses molécules en fragments. Cronin, Walker et leurs collègues ont constaté qu'au cours de ce processus, les grosses molécules à IA élevé se fracturent en mélanges de fragments plus complexes que celles à IA faible (comme les polymères simples et répétitifs). Les chercheurs ont ainsi pu déterminer de manière fiable l'IA (indice d'assemblage) en fonction de la complexité du spectre de masse de la molécule.

Lorsque les chercheurs ont ensuite testé la technique, ils ont constaté que les mélanges complexes de molécules produites par des systèmes vivants - une culture de bactéries E. coli, des produits naturels comme le taxol (un métabolite de l'if du Pacifique aux propriétés anticancéreuses), de la bière et des cellules de levure - présentaient généralement des IA moyens nettement plus élevés que les minéraux ou les simples substances organiques.

L'analyse est susceptible de donner lieu à des faux négatifs : certains produits issus de systèmes vivants, tels que le scotch Ardbeg single malt, ont des IA qui suggèrent une origine non vivante. Mais ce qui est peut-être plus important encore, c'est que l'expérience n'a produit aucun faux positif : Les systèmes abiotiques ne peuvent pas obtenir des IA suffisamment élevés pour imiter la biologie. Les chercheurs ont donc conclu que si un échantillon doté d'un IA moléculaire élevé est mesuré sur un autre monde, il est probable qu'il ait été fabriqué par une entité que l'on pourrait qualifier de vivante.

(Photo-schéma : Une échelle de la vie)

Les chercheurs ont établi/estimé l'indice d'assemblage (IA) de substance variées par des mesures répétés de leurs structures moléculaires, Seules celles assemblées biologiquement ont un AI au-dessus d'un certain palier. 

Non biologique        (vert)

Indice               bas        moyen       haut

charbon             10...    12

quarz                    11... 12

granit                 10  ..   12..   15

Biologique               (jaune)

levure                10                         24

urine                9                          ...   27

eau de mer      9                                 ....28

e-Coli                                    15                        31

bière                 10                                 ..            34

(Merrill Sherman/Quanta Magazine ; source : https://doi.org/10.1038/s41467-021-23258-x)

La spectrométrie de masse ne fonctionnerait que dans le cadre de recherches astrobiologiques ayant accès à des échantillons physiques, c'est-à-dire des missions d'atterrissage ou des orbiteurs comme Europa Clipper, qui peuvent ramasser et analyser des molécules éjectées de la surface d'un monde. Mais Cronin et ses collègues viennent de montrer qu'ils peuvent mesurer l'IA moléculaire en utilisant deux autres techniques qui donnent des résultats cohérents. L'une d'entre elles, la spectroscopie infrarouge, pourrait être utilisée par des instruments tels que ceux du télescope spatial James Webb, qui étudient à distance la composition chimique de mondes lointains.

Cela ne veut pas dire que ces méthodes de détection moléculaire offrent un instrument de mesure précis permettant de passer de la pierre au reptile. Hector Zenil, informaticien et biotechnologue à l'université de Cambridge, a souligné que la substance présentant l'IA le plus élevé de tous les échantillons testés par le groupe de Glasgow - une substance qui, selon cette mesure, pourrait être considérée comme la plus "biologique" - n'était pas une bactérie.

C'était de la bière.

Se débarrasser des chaînes du déterminisme

La théorie de l'assemblage prédit que des objets comme nous ne peuvent pas naître isolément - que certains objets complexes ne peuvent émerger qu'en conjonction avec d'autres. C'est intuitivement logique : l'univers n'a jamais pu produire un seul être humain. Pour qu'il y ait des êtres humains, il faut qu'il y en ait beaucoup.

La physique traditionnelle n'a qu'une utilité limitée lorsqu'il s'agit de prendre en compte des entités spécifiques et réelles telles que les êtres humains en général (et vous et moi en particulier). Elle fournit les lois de la nature et suppose que des résultats spécifiques sont le fruit de conditions initiales spécifiques. Selon ce point de vue, nous devrions avoir été codés d'une manière ou d'une autre dans les premiers instants de l'univers. Mais il faut certainement des conditions initiales extrêmement bien réglées pour que l'Homo sapiens (et a fortiori vous) soit inévitable.

La théorie de l'assemblage, selon ses défenseurs, échappe à ce type d'image surdéterminée. Ici, les conditions initiales n'ont pas beaucoup d'importance. Les informations nécessaires à la fabrication d'objets spécifiques tels que nous n'étaient pas présentes au départ, mais se sont accumulées au cours du processus d'évolution cosmique, ce qui nous dispense de faire porter toute la responsabilité à un Big Bang incroyablement bien réglé. L'information "est dans le chemin", a déclaré M. Walker, "pas dans les conditions initiales".

Cronin et Walker ne sont pas les seuls scientifiques à tenter d'expliquer que les clés de la réalité observée pourraient bien ne pas résider dans des lois universelles, mais dans la manière dont certains objets sont assemblés et se transforment en d'autres. La physicienne théorique Chiara Marletto, de l'université d'Oxford, développe une idée similaire avec le physicien David Deutsch. Leur approche, qu'ils appellent la théorie des constructeurs et que Marletto considère comme "proche dans l'esprit" de la théorie de l'assemblage, examine quels types de transformations sont possibles et lesquels ne le sont pas.

"La théorie des constructeurs parle de l'univers des tâches capables d'effectuer certaines transformations", explique M. Cronin. "On peut considérer qu'elle limite ce qui peut se produire dans le cadre des lois de la physique. La théorie de l'assemblage, ajoute-t-il, ajoute le temps et l'histoire à cette équation.

Pour expliquer pourquoi certains objets sont fabriqués et d'autres non, la théorie de l'assemblage identifie une hiérarchie imbriquée de quatre "univers" distincts.

1 Dans l'univers de l'assemblage, toutes les permutations des éléments de base sont autorisées. 2 Dans l'univers de l'assemblage possible, les lois de la physique limitent ces combinaisons, de sorte que seuls certains objets sont réalisables. 3 L'univers de l'assemblage contingenté élague alors le vaste éventail d'objets physiquement autorisés en sélectionnant ceux qui peuvent effectivement être assemblés selon des chemins possibles. 4 Le quatrième univers est l'assemblage observé, qui comprend uniquement les processus d'assemblage qui ont généré les objets spécifiques que nous voyons actuellement.

(Photo - schéma montrant l'univers de l'assemblage dès son origine via un entonnoir inversé présentant ces 4 étapes, qui élargissent en descendant)

1 Univers assembleur

Espace non contraint contenant toutes les permutations possibles des blocs de base de l'univers

2 Assemblage possibles

Seuls les objets physiquement possibles existent, limités par les lois de la physique.

3 Assemblages contingents

Objets qui peuvent effectivement être assemblés en utilisant des chemins possibles

4 Assemblage dans le réel

Ce que nous pouvons observer

(Merrill Sherman/Quanta Magazine ; source : https://doi.org/10.48550/arXiv.2206.02279)

La théorie de l'assemblage explore la structure de tous ces univers, en utilisant des idées tirées de l'étude mathématique des graphes, ou réseaux de nœuds interconnectés. Il s'agit d'une "théorie de l'objet d'abord", a déclaré M. Walker, selon laquelle "les choses [dans la théorie] sont les objets qui sont effectivement fabriqués, et non leurs composants".

Pour comprendre comment les processus d'assemblage fonctionnent dans ces univers notionnels, prenons le problème de l'évolution darwinienne. Conventionnellement, l'évolution est quelque chose qui "s'est produit" une fois que des molécules répliquées sont apparues par hasard - un point de vue qui risque d'être une tautologie (affirmation/certitude), parce qu'il semble dire que l'évolution a commencé une fois que des molécules évolutives ont existé. Les partisans de la théorie de l'assemblage et de la théorie du constructeur recherchent au contraire "une compréhension quantitative de l'évolution ancrée dans la physique", a déclaré M. Marletto.

Selon la théorie de l'assemblage, pour que l'évolution darwinienne puisse avoir lieu, il faut que quelque chose sélectionne de multiples copies d'objets à forte intelligence artificielle dans l'assemblage possible. Selon M. Cronin, la chimie à elle seule pourrait en être capable, en réduisant des molécules relativement complexes à un petit sous-ensemble. Les réactions chimiques ordinaires "sélectionnent" déjà certains produits parmi toutes les permutations possibles parce que leur vitesse de réaction est plus rapide.

Les conditions spécifiques de l'environnement prébiotique, telles que la température ou les surfaces minérales catalytiques, pourraient donc avoir commencé à vidanger/filtrer le pool des précurseurs moléculaires de la vie parmi ceux de l'assemblage possible. Selon la théorie de l'assemblage, ces préférences prébiotiques seront "mémorisées" dans les molécules biologiques actuelles : Elles encodent leur propre histoire. Une fois que la sélection darwinienne a pris le dessus, elle a favorisé les objets les plus aptes à se répliquer. Ce faisant, ce codage de l'histoire s'est encore renforcé. C'est précisément la raison pour laquelle les scientifiques peuvent utiliser les structures moléculaires des protéines et de l'ADN pour faire des déductions sur les relations évolutives des organismes.

Ainsi, la théorie de l'assemblage "fournit un cadre permettant d'unifier les descriptions de la sélection en physique et en biologie", écrivent Cronin, Walker et leurs collègues. Plus un objet est "assemblé", plus il faut de sélections successives pour qu'il parvienne à l'existence.

"Nous essayons d'élaborer une théorie qui explique comment la vie naît de la chimie", a déclaré M. Cronin, "et de le faire d'une manière rigoureuse et vérifiable sur le plan empirique".

Une mesure pour tous les gouverner ?

Krakauer estime que la théorie de l'assemblage et la théorie du constructeur offrent toutes deux de nouvelles façons stimulantes de réfléchir à la manière dont les objets complexes prennent naissance. "Ces théories sont davantage des télescopes que des laboratoires de chimie", a-t-il déclaré. "Elles nous permettent de voir les choses, pas de les fabriquer. Ce n'est pas du tout une mauvaise chose et cela pourrait être très puissant".

Mais il prévient que "comme pour toute la science, la preuve sera dans le pudding".

Zenil, quant à lui, estime que, compte tenu de l'existence d'une liste déjà considérable de mesures de la complexité telles que la complexité de Kolmogorov, la théorie de l'assemblage ne fait que réinventer la roue. Marletto n'est pas d'accord. "Il existe plusieurs mesures de la complexité, chacune capturant une notion différente de cette dernière", a-t-elle déclaré. Mais la plupart de ces mesures ne sont pas liées à des processus réels. Par exemple, la complexité de Kolmogorov suppose une sorte d'appareil capable d'assembler tout ce que les lois de la physique permettent. Il s'agit d'une mesure appropriée à l'assemblage possible, a déclaré Mme Marletto, mais pas nécessairement à l'assemblage observé. En revanche, la théorie de l'assemblage est "une approche prometteuse parce qu'elle se concentre sur des propriétés physiques définies de manière opérationnelle", a-t-elle déclaré, "plutôt que sur des notions abstraites de complexité".

Selon M. Cronin, ce qui manque dans les mesures de complexité précédentes, c'est un sens de l'histoire de l'objet complexe - les mesures ne font pas la distinction entre une enzyme et un polypeptide aléatoire.

Cronin et Walker espèrent que la théorie de l'assemblage permettra à terme de répondre à des questions très vastes en physique, telles que la nature du temps et l'origine de la deuxième loi de la thermodynamique. Mais ces objectifs sont encore lointains. "Le programme de la théorie de l'assemblage n'en est qu'à ses débuts", a déclaré Mme Marletto. Elle espère voir la théorie mise à l'épreuve en laboratoire. Mais cela pourrait aussi se produire dans la nature, dans le cadre de la recherche de processus réalistes se déroulant sur des mondes extraterrestres.

 

Auteur: Internet

Info: https://www.quantamagazine.org/a-new-theory-for-the-assembly-of-life-in-the-universe-20230504?mc_cid=088ea6be73&mc_eid=78bedba296 - Philip Ball , contributing Writer,  4 mai 2023. *Qui peut être répété un nombre indéfini de fois par l'application de la même règle.

[ ergodicité mystère ] [ exobiologie ] [ astrobiologie ] [ exploration spatiale ] [ origine de la vie ] [ xénobiologie ] [ itération nécessaire ] [ ordre caché ] [ univers mécanique ] [ théorie-pratique ] [ macromolécules ] [ progression orthogonale ] [ décentrement anthropique ]

 

Commentaires: 0

Ajouté à la BD par miguel

intrications

Vers une science de la complexité
La physique quantique n’est pas une théorie de l’univers ; elle n’est qu’un formalisme génial qui permet d’abandonner les vieilles notions simplistes d’objet physique et de force physique, au centre de la physique de Galilée, Newton et Einstein, pour migrer vers les notions plus riches et plus souples de fonctions d’état (que l’on continue d’appeler, à tort, fonctions d’onde) et d’opérateurs. Il n’y a plus d’objet (ni d’onde, ni de particule, ni rien) : il y a un processus qui, à un moment donné, est décrit par une fonction d’état. Cette fonction évolue dans le temps. Faire une mesure (une observation quantifiée) consiste à appliquer à cette fonction d’état un opérateur qui spécifie la mesure que l’on fait, mais qui, en retour, modifie la fonction d’état. Ce formalisme ne dit rien de l’évolution réelle du Réel. Il permet seulement, dans certains cas, de prédire le résultat d’une mesure spécifique sur le Réel.

Le piège relativiste et le piège quantique.
Pour le dire en suivant Niels Bohr, la physique quantique n’est pas une ontologie : elle ne dit rien du Réel, mais explicite seulement certains de nos rapports avec le Réel. Ceci résume d’un mot la célèbre controverse entre ces deux Juifs géniaux que furent Einstein et Bohr. Einstein voulait fonder une ontologie post-newtonienne ("Connaître la pensée de Dieu"), alors que Bohr ne voulait que développer une phénoménologie opératoire et avait renoncé, dans une posture typiquement kantienne, à toute forme d’ontologie ("Ne dites pas à Dieu ce qu’Il doit faire").

Le problème, tel qu’il se présente aujourd’hui, se résume à ceci. L’ontologie relativiste, parce qu’elle n’a pas su quitter le mécanicisme déterministe et analytique des modernes, aboutit à des impasses monstrueuses qui, pour sauver le modèle, appellent des hypothèses de plus en plus invraisemblables et abracadabrantesques. Quant à la phénoménologie quantique, si elle se cantonne à demeurer une pure phénoménologie, elle se réduit à une technique mathématique plus ou moins efficiente dans les cas les plus simples et elle n’est guère satisfaisante pour l’esprit qui, toujours, a soif d’ontologie ; mais, si elle se laisse tenter à se prendre pour une ontologie (ce qui est de plus en plus souvent le cas, surtout en physique des hautes énergies et des "particules" élémentaires), elle aboutit à des absurdités logiques, et des "théories" fumeuses (comme la supersymétrie, les cordes, etc.) tentent en vain de masquer les inconsistances.

Nous sommes au seuil de ce que Thomas Kuhn appela une "mutation paradigmatique" majeure dans le monde de la science fondamentale. Spiritualité et physique sont en train de converger.

Notre époque appelle à refonder radicalement une nouvelle ontologie qui devra prendre garde à éviter, à la fois, le piège relativiste (l’ontologie mécaniciste) et le piège quantique (la phénoménologie subjectiviste). La physique complexe est la seule voie connue actuellement qui puisse tenter de relever ce défi. Mais les institutions physiciennes en place veillent à ne pas laisser saccager leur fonds de commerce. Nous sommes au seuil de ce que Thomas Kuhn appela une "mutation paradigmatique" majeure dans le monde de la science fondamentale. Spiritualité et physique sont en train de converger.

Les sciences modernes.
Toutes les sciences modernes se sont construites à partir du refus de la Renaissance de continuer le paradigme aristotélicien d’un univers organiciste, finaliste, géocentrique, limité, divisé en monde céleste et en monde sublunaire et dirigé par le principe de l’harmonie des sphères. Parmi les premiers, Galilée et Descartes éradiquèrent ce paradigme aristotélicien et le remplacèrent par un paradigme platonicien (donc pythagoricien et atomiste) qui allait devenir le moteur de la pensée entre 1500 et 2000. Ce paradigme moderne repose tout entier sur le mécanicisme. Plongé dans un espace et un temps infinis, l’univers serait un assemblage de briques élémentaires appelées "atomes", interagissant entre eux au moyen de forces élémentaires partout les mêmes (un univers isotrope) et parfaitement quantifiables (un univers mathématique) où tout effet a une cause et où cause et effet sont proportionnés selon des rapports mesurables et permanents, soumis à des lois mathématiques éternelles. Le hasard y joue le rôle central de moteur des évolutions.

Cette vision du monde fut fructueuse et permit de grandes avancées, dont les très nombreuses retombées techniques ont radicalement transformé le monde des hommes et leur ont permis, dans bien des cas, de les libérer des contraintes "naturelles" qui pesaient sur eux. Cependant, les sciences modernes, dès la fin du XIXe siècle, mais surtout depuis 1950, se sont heurtées, partout, au "mur de la complexité".

Le mur de la complexité.
Ce "mur de la complexité" a fait prendre conscience que certains systèmes où le nombre des ingrédients et les densités d’interaction entre eux étaient très grands ne pouvaient plus être compris selon le paradigme mécaniste : ils ne sont pas que des assemblages d’élémentaires, car leur tout est irréductible à la simple somme de leurs parties ; là s’observent des propriétés émergentes qui n’appartiennent à aucun des ingrédients impliqués et qui surgissent sans cause particulière, comme solution globale à un problème global. Aristote ressuscite, et les traditions indiennes et chinoises viennent à sa rescousse…

Ce fut la thermodynamique qui, la première, osa les questions de fond dont la toute première, résolument contradictoire avec les sciences mécanistes, fut celle de l’irréversibilité ; celle de la flèche du temps, celle du Devenir en lieu et place de l’Etre. L’univers réel n’est pas une machine mécanique réversible, soumise à des lois mécaniques prédictibles.

Pour le dire autrement, les sciences classiques font des merveilles pourvu que les systèmes auxquels elles s’intéressent soient d’un niveau de complexité très bas. Alors, l’approximation mécaniste peut être efficace et donne de bons résultats, parfois spectaculaires (il est plus facile d’envoyer une fusée sur Mars que de modéliser la préparation d’un bon cassoulet). Après la thermodynamique, les sciences de la vie et l’étude des sociétés vivantes ont bien dû constater que le "mur de la complexité" était, pour elles aussi, infranchissable si elles restaient à l’intérieur du paradigme mécaniste. Disons-le tout cru : la Vie n’est pas réductible à la Matière, ni la Pensée à la Vie… On commence maintenant à comprendre que même la Matière n’est réductible ni à elle-même, ni à de l’énergie pure. Au fond : rien n’est réductible à rien. Tout ce qui existe n’existe que par soi et pour soi ; c’est l’émergence locale d’un flux cosmique de devenir. Mais tout ce qui existe est aussi partie prenante d’un tout plus grand qui l’englobe… Et tout ce qui existe est, en même temps, le résultat des interactions infinies entre les ingrédients multiples qui le constituent en interagissant entre eux. Rien de ce qui existe n’est un assemblage construit "de l’extérieur", mais bien plutôt quelque chose qui "pousse de l’intérieur".

Cette dernière remarque permet d’alimenter une réflexion de fond. Nous avons pris l’habitude de parler et de penser en termes d’objets : cette table, ce chien, ce nuage, etc. Et il nous semble naturel de faire de ces mots les images de ce qui existe, en leur gardant une atemporalité abstraite et idéalisante qui ne correspond à rien de réel. Cette table, ce chien et ce nuage auront changé – un peu, beaucoup, énormément – dans trois minutes, dans trois jours, dans trois ans, etc. Rien n’est permanent dans le réel, même si nos habitudes de pensée, par l’usage de mots figés et abstraits, alimentent notre illusion que tout reste "fondamentalement" identique à soi. Ce qui est notoirement faux.

Tout cela relève d’un débat métaphysique qui n’a pas vraiment sa place ici. Disons seulement que la philosophie occidentale est obsédée par la notion d’un Etre immuable qui se cacherait "derrière" les accidents et évolutions de tout ce qui existe. Le pensée complexe prend l’exact contre-pied de cette croyance. Il n’y a pas d’Etre ; tout est processus. Ce chien appelé "Médor" est l’image, ici et maintenant, d’un processus canin particulier (un individu chien singulier) qui exprime un processus canin global (une lignée canine remontant à des ancêtres chacals, loups et renards) qui, à son tour, est un mode particulier d’expression du processus Vie sur notre petite Terre. Et cette terre elle-même constitue un processus planétaire, lié au processus solaire, lié au processus d’une galaxie parmi d’autres, appelée "voie lactée". Le processus chien appelé "Médor" est la résultante de milliards de processus cellulaires qui furent tous déclenchés par la rencontre d’un ovule fertile et d’un spermatozoïde.

Les mots s’arrêtent à la surface des choses.
Ce que nos mots appellent un "objet" n’est que la photographie extérieure et instantanée d’un processus qui a commencé, comme tout le reste, avec le big-bang. Il n’y a au fond qu’un seul processus unique : le cosmos pris comme un tout. Ce processus cosmique engendre des processus particuliers, de plus en plus complexes, de plus en plus intriqués les uns aux autres, qui sont autant de processus émergeants. Nous appelons "objet" la surface extérieure apparente d’un processus volumique intérieur qui engendre cette surface. Cette surface objectale n’est que l’emballage apparent de la réalité processuelle sous-jacente.

Les mots s’arrêtent à la surface des choses, à leur apparence, que notre mental débarrasse de tout ce qui change pour n’en garder que les caractéristiques atemporelles qui ne changent pas ou peu. Médor est ce chien qui est un berger noir et feu, couché là au soleil, avec quatre pattes, une queue touffue, une truffe noire, deux yeux pétillants, deux oreilles dressées, etc. "Médor" désigne l’ensemble de ces caractéristiques objectales censées être temporairement permanentes. Mais, en fait, "Médor" désigne l’entrelacs de milliers de milliards de processus cellulaires intriqués et corrélés, fédérés par l’intention commune de survivre le mieux possible, dans un environnement peu maîtrisé mais globalement favorable, appelé domesticité.

La méthode analytique, mise à l’honneur par René Descartes, part d’un principe parfaitement arbitraire – et qui se révèlera faux – que le tout est l’exacte somme de ses parties. Que pour comprendre un système, il "suffit" de le démonter en ses constituants, puis ceux-ci en les leurs, et ainsi de suite, pour atteindre les élémentaires constitutifs du tout et les comprendre, pour, ensuite, les remonter, étage par étage, afin d’obtenir "logiquement" la compréhension du tout par la compréhension de chacune de ses parties. On trouve là le fondement ultime du mécanicisme qui fait de tout, à l’instar de la machine, un assemblage de parties ayant et gardant une identité propre irréfragable. Le piston et la soupape sont piston et soupape qu’ils soient, ou non, montés ensemble ou démontés séparément.

Tout l’analycisme repose sur cette hypothèse largement fausse que les interactions entre éléments n’altèrent pas la nature de ces éléments. Ils restent intègres et identifiables qu’il y ait, ou non, des interactions avec d’autres "objets". Encore une fois, l’analycisme est une approche qui n’est jouable que pour les systèmes rudimentaires où l’hypothèse mécaniste est approximativement acceptable, c’est-à-dire à des niveaux de complexité ridiculement bas.

Un bon exemple de système complexe "simple" où le principe d’analycité est mis à mal est la mayonnaise. Rien de plus simple, en effet : trois ingrédients et un battage à bonne température. Une fois que la réaction d’émulsion s’est enclenchée et que la mayonnaise a pris, on ne pourra pas la faire "déprendre", même en battant le tout en sens inverse. Il y a là une irréversibilité liée aux relations émulsives qui unissent entre elles, selon des schémas complexes, des milliards de molécules organiques intriquées les unes aux autres par des ponts "hydrogène", des forces de van der Waals, des quasi-cristallisations, etc. Dans l’émulsion "mayonnaise", il n’y a plus de molécules d’huile, de molécules de jaune d’œuf, etc. Il y a un tout inextricablement corrélé et intriqué, un magma biochimique où plus aucune molécule ne garde sa propre identité. Le tout a absorbé les particularités constitutives des parties pour engendrer, par émergence, quelque chose de neuf appelé "mayonnaise" qui est tout sauf un assemblage de molécules distinctes.

Un autre exemple typique est fourni par les modèle "en goutte liquide" des noyaux atomiques. Le noyau d’hélium n’est pas un assemblage de deux protons et de deux neutrons (comme le neutron n’est pas un assemblage d’un proton avec un électron avec quelques bricoles de plus). Un noyau d’hélium est une entité unitaire, unique et unitive que l’on peut engendrer en faisant se télescoper violemment nos quatre nucléons. Ceux-ci, une fois entrés en interaction forte, constituent un objet à part entière où plus aucun neutron ou proton n’existe comme tel. Si l’on percute ce noyau d’hélium avec suffisamment de violence, il peut se faire qu’il vole en éclat et que ces fragments, après un très court temps d’instabilité, reconstituent protons et neutrons. Cela donne l’illusion que ces protons et neutrons seraient restés entiers au sein du noyau. Il n’en est rien.

Un système devient d’autant plus complexe que la puissance des interactions en son sein transforme radicalement la nature et l’identité des ingrédients qui y interviennent. De là, deux conséquences majeures. Primo : un système vraiment complexe est un tout sans parties distinctes discernables, qui se comporte et évolue comme un tout unique, sans composant. Les méthodes analytiques y sont donc inopérantes. Secundo : lorsqu’on tente de "démonter" un système vraiment complexe, comme le préconise Descartes, on le tue purement et simplement, pour la bonne raison qu’en le "démontant", on détruit les interactions qui en constituent l’essentiel.

Le processus d’émergence.
Tout ce qui existe pousse "du dedans" et rien n’est assemblé "du dehors". Tout ce qui existe est le développement, par prolifération interne, d’un germe initial (que ce soit un nuage, un flocon de neige, un cristal, un brin d’herbe, un arbre, une méduse, un chien ou un être humain). Rien dans la Nature n’est assemblé comme le seraient les diverses pièces usinées d’un moteur d’automobile. Seuls les artéfacts humains sont des produits d’assemblage qui appellent deux éléments n’existant pas dans le Nature : des pièces usinées préfabriquées et un ouvrier ou robot monteur. Dans la nature, il n’existe pas de pièces préfabriquées exactement selon le plan de montage. Il n’y a d’ailleurs aucun plan de montage. La Nature procède par émergence, et non pas par assemblage.

Le processus d’émergence se nourrit des matériaux qu’il trouve à son contact. Il n’y a pas de plan préconçu et, souvent, la solution trouvée naturellement est approximative et imprécise ; l’à-peu-près est acceptable dans la Nature. Par exemple, il est bien rare qu’un cristal naturel soit exempt d’anomalies, de disruptions, d’anisotropies, d’inhomogénéité, etc.

Si l’on veut bien récapituler, au contraire des procédés d’assemblage des artefacts humains, les processus d’émergence qui forgent tout ce qui existe dans la Nature ne connaissent ni plan de montage, ni pièces préfabriquées, ni ouvrier monteur, ni outillage externe, ni banc d’essai. Tout s’y fait de proche en proche, par essais et erreurs, avec les matériaux qui sont là. C’est d’ailleurs la présence dense des matériaux utiles qui, le plus souvent, sera le déclencheur d’un processus d’émergence. C’est parce qu’une solution est sursaturée qu’un processus de cristallisation pourra se mettre en marche autour d’un germe – souvent hétérogène, d’ailleurs – ; c’est un petit grain de poussière, présent dans un nuage sursaturé et glacial, qui permettra au flocon de neige de se développer et de produire ses fascinantes et fragiles géométries.

Le cerveau humain est autre chose qu’un ordinateur.
Il en va de même dans le milieu humain, où les relations se tissent au gré des rencontres, selon des affinités parfois mystérieuses ; un groupe organisé peut émerger de ces rencontres assez fortuites. Des organisations pourront se mettre en place. Les relations entre les humains pourront rester lâches et distantes, mais des processus quasi fusionnels pourront aussi s’enclencher autour d’une passion commune, par exemple autour d’un projet motivant ou autour d’une nécessité locale de survie collective, etc. La vie quotidienne regorge de telles émergences humaines. Notamment, l’émergence d’une rumeur, d’un buzz comme on dit aujourd’hui, comme celle d’Orléans qu’a étudiée Edgar en 1969 : il s’agit d’un bel exemple, typique d’un processus d’émergence informationnelle qu’aucune technique analytique ou mécanique ne permet de démanteler.

L’assemblage et l’émergence ne participent pas du tout de la même logique. Essayer de comprendre une logique d’émergence au moyen d’une analogie assembliste, est voué à l’échec. Ainsi, toutes les fausses analogies entre le fonctionnement assembliste ou programmatique d’un ordinateur et le fonctionnement émergentiste de la pensée dans un cerveau humain sont définitivement stériles. De façon symétrique, il est absurde de rêver d’un arbre, produit d’on ne sait quelles vastes mutations génétiques, dont les fruits seraient des automobiles toutes faites, pendant au bout de ses branches.

Parce que l’assemblisme est une démarche additive et programmatique, les mathématiques peuvent y réussir des merveilles de modélisation. En revanche, l’émergentisme n’est pas mathématisable puisqu’il n’est en rien ni additif, ni programmatique ; c’est probablement la raison profonde pour laquelle les sciences classiques ne s’y intéressent pas. Pourtant, tout ce qui existe dans l’univers est le fruit d’une émergence !

L’illusion du principe de causalité.
Toute la physique classique et, derrière elle, une bonne part de la pensée occidentale acceptent l’idée de la détermination mécanique de l’évolution de toute chose selon des lois causales universelles et imprescriptibles. Des quatre causes mises en évidence par Aristote, la science moderne n’a retenu que la cause initiale ou efficiente. Tout ce qui se produit serait le résultat d’une cause qui lui serait antérieure. Ceci semble du bon sens, mais l’est bien moins qu’il n’y paraît.

De plus, la vulgate scientifique moderne insiste : tout ce qui se produit serait le résultat d’une cause identifiable, ce qui permet de représenter l’évolution des choses comme des chaînes linéaires de causes et d’effets. Chaque effet est effet de sa cause et cause de ses effets. Cette concaténation des causes et des effets est une représentation commode, par son mécanisme même, mais fausse.

Tout ce qui arrive ici et maintenant est un résultat possible de tout ce qui est arrivé partout, depuis toujours.

Chaque événement local est le résultat d’une infinité de causes. Par exemple, Paul, par dépit amoureux, lance une pierre dans le carreau de la chambre de Virginie. L’effet est le bris de la vitre ; la cause est la pierre. Problème résolu ? Il suffit de poser toute la séries des "pourquoi" pour se rendre compte qu’il faut encore savoir pourquoi la maison de Virginie est là, pourquoi sa chambre donne sur la rue, pourquoi un caillou traînait sur le trottoir, pourquoi Paul a rencontré Virginie et pourquoi il en est tombé amoureux, et pourquoi il a été débouté par Virginie (dont le cœur bat pour Pierre : pourquoi donc ?), pourquoi Paul le prend mal, pourquoi il est violent, pourquoi il veut se venger, pourquoi il lance le caillou efficacement et pourquoi celui-ci atteint sa cible, etc., à l’infini. Si l’on veut bien prendre la peine de continuer ces "pourquoi", on en arrive très vite à l’idée que la vitre de la fenêtre de Virginie a volé en éclat parce que tout l’univers, depuis le big-bang, a comploté pour qu’il en soit ainsi. Pour le dire autrement : tout ce qui arrive ici et maintenant est un résultat possible de tout ce qui est arrivé partout, depuis toujours. Cette conclusion est l’essence même du processualisme, qui s’oppose dans toutes ses dimensions au déterminisme mécaniste.

Processualisme contre déterminisme.
Tout effet possède une vraie infinité de causes… et donc n’en possède aucune ! Toutes ces "causes" potentielles qui convergent en un lieu donné, à un moment donné, induisent un événement contingent et non pas nécessaire. Une myriade de bonnes raisons auraient pu faire que la vitre de Virginie ne soit pas brisée, ne serait-ce que parce que la fenêtre eût été ouverte ou le volet baissé. De plus, lorsqu’une infinité de causes se présentent, on comprend qu’il y ait rarement un seul et unique scénario qui puisse y répondre (ce cas rare est précisément celui du déterminisme mécaniste, qui n’opère que dans des univers pauvres et rudimentaires, sans mémoire locale). En fait, dans un monde complexe, un tel faisceau causal ouvre un faisceau de possibles parmi lesquels un choix devra se faire.

Chacun n’est que cela : le point de jonction entre le cône convergent de tous ses héritages venant du passé et le cône divergent de tous ses legs allant vers le futur.

Dans un petit ouvrage magnifique intitulé Le sablier, Maurice Maeterlinck proposait une vision pouvant se résumer ainsi. Chacun de nous est le goulot étroit d’un sablier avec, au-dessous, tout le sable accumulé venu de tout l’univers, depuis l’aube des temps, qui converge vers soi, et, au-dessus, l’éventail de toutes les influences qui engendreront, au fil du temps, des êtres, des choses, des idées, des conséquences. Chacun n’est que cela : le point de jonction entre le cône convergent de tous ses héritages venant du passé et le cône divergent de tous ses legs allant vers le futur.

Le paragraphe précédent a posé un problème qui a été esquivé et sur lequel il faut revenir : le cône convergent des causes infinies induit, ici et maintenant, un cône divergent de possibles entre lesquels le processus devra choisir. Cette notion de choix intrinsèque est évidemment incompatible avec quelque vision mécaniste et déterministe que ce soit. Mais, qui plus est, elle pose la question des critères de choix. Quels sont-ils ? Pourquoi ceux-là et non d’autres ? S’il y a des choix à faire et que ces choix visent une optimisation (le meilleur choix), cela signifie qu’il y a une "économie" globale qui préside à la logique d’évolution du processus. Chaque processus possède une telle logique intrinsèque, une telle approche économique globale de soi. A un instant donné, le processus est dans un certain état global qui est son présent et qui inclut tout son passé (donc toute sa mémoire). Cet état intrinsèque est confronté à un milieu qui offre des matériaux, des opportunités, des champs causaux, plus ou moins riches. De cette dialectique entre le présent du processus et son milieu, lui aussi au présent, naîtra un champ de possibles (plus ou moins riche selon la complexité locale). Il existe donc une tension intérieure entre ce que le processus est devenu au présent, et ce qu’il pourrait devenir dans son futur immédiat. Cette tension intérieure doit être dissipée (au sens qu’Ilya Prigogine donna à sa notion de "structure dissipative"). Et cette dissipation doit être optimale (c’est là que surgit l’idée d’économie logique, intrinsèque du processus).

L’intention immanente du monde.
Il faut donc retenir que cette tension intérieure est une in-tension, c’est-à-dire une intention. La pensée complexe implique nécessairement un intentionnalisme qui s’oppose farouchement aussi bien au déterminisme qu’au hasardisme propres à la science moderne. "Ni hasard, ni nécessité" fut d’ailleurs le titre d’un de mes ouvrages, publié par Oxus en 2013 et préfacé par… mon ami Edgar Morin – il n’y a pas de hasard !

Cette idée d’intention est violemment rejetée par les sciences modernes qui, malicieusement, mais erronément, y voient une forme d’intervention divine au sein de la machinerie cosmique. Bien entendu, rien de tel n’est supposé dans la notion d’intention qu’il faut comprendre comme résolument intrinsèque et immanente, sans aucun Deus ex machina. Mais quelle est donc cette "intention" cosmique qui guide tous les choix, à tous les niveaux, du plus global (l’univers pris comme un tout) au plus local (chaque processus particulier, aussi infime et éphémère soit-il) ? La plus simple du monde : accomplir tout ce qui est accomplissable, ici et maintenant. Rien de plus. Rien de moins.

Mon lecteur l’aura compris, la pensée complexe repose sur cinq notions-clés (processualisme, holisme, émergentisme, indéterminisme et intentionnalisme) qui, chacune, se placent à l’exact opposé des fondements de la science moderne : atomisme, analycisme, assemblisme, mécanicisme et hasardisme. Cette opposition incontournable marque une profonde révolution épistémologique et une immense mutation paradigmatique.

Auteur: Halévy Marc

Info: 30 mars 2019

[ tour d'horizon ] [ pentacle ] [ monothéïsme ] [ bricolage ] [ sens unique temporel ]

 

Commentaires: 0

Ajouté à la BD par miguel

philosophie occidentale

Le symbolique, l'imaginaire et le réel : Lacan, Lévi-Strauss et Freud

" Tout comportement est communication." Gregory Bateson

Contrairement à l'expérience de la psychanalyse aux Etats-Unis, Freud arriva très tard en France où il fut plus ou moins réfuté par Sartre dans Son "Etre et Néant" avant même son arrivée. Curieusement, c'est à l'apogée de l'existentialisme et de la psychanalyse existentielle, dans les années cinquante et au début des années soixante, qu'un analyste français inconnu de la génération Sartre entama une relecture radicale des textes freudiens.
Son travail devait avoir une telle influence dans les années soixante-dix qu'il sauva entièrement Freud de l'orientation médicale positiviste apportée par la société psychanalytique parisienne, et réintégra son travail dans ce que les Français appellent encore les sciences humaines.
Il s'agit de Jacques Lacan, pilier de l'Ecole freudienne de Paris - styliste hermétique et obscur, conférencier envoûtant, penseur intransigeant et inflexible, profondément préoccupé par ses propres écrits et prérogatives - qui fut interdit par la Fédération internationale lorsque lui et ses collègues, principalement du à des rivalités internes, quittèrent la société parisienne en 1953.
Il y a sans doute plus d'anecdotes dénigrantes, et probablement calomnieuses, qui circulent sur Lacan au sein de l'incestueux climat intellectuel parisien que sur tout autre penseur influent. Mais si le travail de Lacan signifie quelque chose, nous devons séparer les idiosyncrasies personnelles bien connues de Lacan de la contribution unique qu'il apporta à notre compréhension de Freud.

Bien que Lacan ait commencé son oeuvre originale à la fin des années trente, sous l'influence de la phénoménologie et de l'existentialisme husserliens, ce n'est que dans les années soixante qu'il commença à être réellement écouté en France, et ses écrits ne commencèrent à arriver en Angleterre et aux Etats-Unis que récemment. S'attaquant à l'"intellectualisme" français et au culte de l'"expert", à l'"empirisme", tout comme à la "biologisation" britanniques et à l'"adaptation" et au "behaviorisme" américains dans une série de polémiques cinglantes, son seul travail a rendu impossible, à tout penseur français qui se respecte, de continuer à ignorer les textes de Freud. L'intégration de ce texte dans la culture du cogito cartésien a déjà eu des résultats surprenants et féconds. Reste à savoir ce que Lacan va faire passer aux Etats-Unis - où l'enthousiasme même de l'acceptation initiale de Freud par les Américains eut tendance à réduire ses idées à des banalités et ses théories quasi au statut de jeu social.

Nous découvrons maintenant, par exemple, un nouveau retour à la théorie de Breuer-Freud sur la catharsis thérapeutique - autrefois popularisée en tant que "psychodrame" - sous une nouvelle forme de "désublimation répressive" : thérapie du "cri primal". Mais les héros des talk-shows de fin de soirée vont et viennent avec une régularité monotone et, en fin de compte, il nous reste toujours les grandes œuvres du génie pour y méditer : Hegel, Marx, Freud, Dostoïevski, Rousseau, Balzac, pour ne citer que quelques-uns de nos prédécesseurs les plus récents. Et ce que nous découvrons, c'est que nous devons apprendre à lire avant de parler, que nous devons apprendre à les lire d'un point de vue social critique, aussi libre de préjugés ethnocentriques, socioéconomiques et culturels que possible.
En un mot, nous devons apprendre à lire dans une perspective non académique, dans la perspective d'une expérience de vie où ces auteurs et leurs quêtes personnelles font partie de notre quête individuelle et collective. Je préférerais lire l'Interprétation des rêves comme un roman, par exemple, ou le célèbre cas du docteur " psychotique " Schreber comme de la philosophie, ou les Frères Karamazov comme une étude métapsychologique, que l'inverse. Lacan a contribué à rendre ce genre de lecture possible.
Une grande partie de ce que Lacan cherchait à accomplir avec ses étudiants dans les années cinquante n'a plus grand intérêt aujourd'hui, car il s'agissait d'attaques contre la technique thérapeutique d'un groupe de psychanalystes français très peu doués, objectivées et liés à la culture. Mais son attaque contre la "psychologie de l'ego" de praticiens comme Hartmann, Kris et Lbwenstein, ou le "behaviorisme " de Massermann, est toujours valable (Lacan, 1956a ; Wilden, 196Sa : 1-87). Et ceux qui s'y sont opposés avec tant de véhémence en France constatent aujourd'hui qu'ils ne peuvent rejeter ses analyses critiques des textes freudiens et s'appeler encore Freudiens. Mais si Lacann inspira une école française d'analyse qui se veut anti-institutionnelle, anti-psychiatrique et profondément critique à la fois à l'égard de "l'ajustement" de l'individu et de ceux que Marcuse nommait "révisionnistes néofreudiens", il n'a probablement pas fait plus pour les pratiques analytiques que ce qui a été réalisé par des thérapeutes comme Laing, Esterson et Cooper, au Royaume-Uni, et par des gens comme Ruesch, Bateson, Haley, Weakland ou Jackson, aux Etats-Unis.
De plus, la psychanalyse est un privilège socio-économique réservé aux personnes qui ont argent et loisirs pour se faire plaisir. La question de "la guérison" est en tout cas tout à fait débattable, et nous savons bien que la psychologie, la psychiatrie et la psychothérapie en général ont toujours été les véhicules des valeurs du statu quo (à l'exception extraordinaire de Wilhelm Reich, dont les théories ne correspondent malheureusement jamais au niveau élevé de son engagement social).
Et comme la plupart d'entre nous apprenons à vivre avec nos blocages, il est alors très peu probable que nous devions apprendre un jour apprendre à vivre avec les effets aliénants de notre société unidimensionnelle et technologique en ayant à nous préoccuper de psychanalyse ? En tout état de cause, personne, en quête d'une perspective véritablement critique, ne tentera de construire une théorie de l'homme et de la femme essentiellement basée sur la psychologie humaine, car le "discours scientifique" de la psychologie vise à nier ou à omettre le contenu socio-économique collectif à l'intérieur duquel les facteurs psychologiques jouent leur rôle.
J'essaierai de montrer plus loin que l'axiomatique fermeture de la plupart des psychanalystes dans la plénitude de ce contexte - et, je crois, dans sa primauté - génère des problèmes purement logiques dans la théorie, problèmes dont elle n'est pas, logiquement, équipée pour les surmonter. Ainsi, ce qui apparaît dans la théorie logico-mathématique de Bateson de la " double liaison " (chapitre V) comme une oscillation, apparaît nécessairement en psychanalyse, sous une forme ou une autre, comme une théorie de la répétition. Lacan, par exemple, fit appel à Kierkegaard (Repetition, 1843) pour étayer son interprétation de Freud, et pourtant si l'on regarde de près les écrits de Kierkegaard, en particulier les siens propres ou ceux également publiés en 1843, on découvre que la théorie entière dépend de l'incapacité de Kierkegaard à dépasser, de manière logique ou existentielle, les injonctions (doubles liens) paradoxales qu'il reçoit de son environnement familial et social. Par conséquent, le voilà condamné à osciller sans cesse entre un "soit" et un "ou". Ce qui apparaît dans la théorie de Bateson comme une réponse nécessaire aux injonctions émanant des rapports de pouvoir et de domination dans l'ordre social, et qui apparaît généralement dans la psychanalyse, et plus particulièrement chez Lacan, comme de la "compulsion itérative". Ainsi, soit la responsabilité est renvoyée à l'individu (par les "instincts" ou quelque autre métaphore de ces constructions biomécaniques), soit, comme chez Lacan, elle se transforme subtilement en une forme "d'ordre naturel des choses", via les paradoxes que le langage crée dans la condition humaine.
Contrairement à la théorie du double lien, les deux points de vue supposent une homogénéité dans la société qui n'existe tout simplement pas et servent à rationaliser les dominations en refusant de traiter la relation entre pouvoir, connaissance et oppression, ils ne voient pas la différence, dans la société, entre ce que Marcuse appela "répression" et "sur-répression". Malgré l'incompréhension de Marcuse à l'égard du Freud "clinique" - et malgré sa dépendance à la théorie bioénergétique des instincts - la distinction est importante. Peu de théoriciens américains, par exemple, envisageraient sérieusement le calvaire des minorités américaines dans leur lutte pour les droits socio-économiques élémentaires, simplement en termes de "compulsion itératives" telle une révolte contre le père (ou la mère).
Il m'est impossible de parler de Freud ou de Lacan sans utiliser les contributions que Bateson et Marcuse - de manières différentes et même mutuellement opposées - ont apportées à notre compréhension des relations humaines. Il faut d'une part traiter la perception de la psychanalyse et de la psychologie comme des rationalisations des valeurs de notre culture (l'oppression des femmes, en particulier), et d'autre part, montrer comment elles peuvent contribuer à une dévalorisation de ces valeurs. L'analyse de Bateson des relations de pouvoir par la double contrainte est, je crois, essentielle à la théorie sociale et psychologique, et je ne sais comment expliquer la théorie de l'imaginaire de Lacan sans elle. En tout cas, Freud décrit la relation entre l'ego et l'idéal de l'ego en des termes similaires à ceux d'une double liaison (double bind, dans The Ego and the I, Standard Edition, XIX, 34) : "Tu devrais être ainsi (comme ton père), mais tu ne dois pas être ainsi (comme ton père)."
Dans le monde contemporain de la contestation, il n'y a aucune réponse à la façon dont la psychanalyse est régulièrement - et nécessairement - remise en question, si le Freud dont nous parlons est le déterminant hydraulique, instinctif, électromagnétique et entropique que nous pensions tous connaître.
Il y a une réponse, cependant, si nous découvrons la perspective communicationnelle et linguistique derrière l'acceptation explicite ou implicite par Freud des principes mécanistes de la science physique et économique du XIXe siècle. Après tout, la psychanalyse est bien la "cure parlante", comme Lacan n'a jamais manqué d'insister dessus, et les pages des écrits de Freud s'intéressent avant tout au langage. Bien plus intéressante que la théorie de l'ego, de la personnalité et du surmoi, par exemple, est la conception que Freud a de l'inconscient et du rêve comme des scènes (Darstellungen) de distorsions (Entstellungen) et de (re)présentations (Vorstellungen). Mieux que coller à la préoccupation contemporaine pour les systèmes et les structures que la "psychologie de l'ego" de Freud, dans son premier modèle de processus primaires et secondaires. Plus significative que son déterminisme il y a sa théorie de la "surdétermination" du symptôme ou du rêve, qui est un concept proche de la redondance en théorie de l'information et de l'équifinalité en gestaltisme et biologie.
Si nous devons rejeter les principes mécanistes du principe du plaisir, nous pouvons encore découvrir le modèle sémiotique des niveaux de communication dans les premiers travaux de Freud. Plus utile que la "deuxième" théorie du symbolisme (dérivée de Stekel), qui assimile les icônes ou les images (analogues) aux symboles sexuels (Jones, Ferenczi, et al.), est la "première" ou théorie "dialectique", qui dépend de la condensation et du déplacement des signes (Zeichen). Le rêve doit être traduit de l'image en texte avant de pouvoir être interprété (par le rêveur), et la refoulement est, comme le disait Freud en 1896, "un échec de la traduction". De plus, aucune théorie actuelle de la mémoire n'est essentiellement différente de la métaphore originale de Freud sur le "traçage" de voies via les traces de mémoire dans le cerveau.Je reviendrai dans un instant sur une description plus précise de l'orientation sémiotique et linguistique de Freud. Le fait est que, sans le travail de Lacan, je doute que nous aurions découvert ce Freud - bien que l'analyse de Karl Pribram du Projet neuropsychologique pour une psychologie scientifique (1895) aille dans le sens d'une relecture de Freud au moins au niveau de la théorie de l'information et du feedback (Pribram, 1962).
Le problème avec Lacan, c'est qu'à première vue, ses écrits sont presque impossibles à comprendre. Ses Ecrits (1966) - et seul un Lacan pouvait avoir l'orgueil d'intituler son oeuvre simplement "Écrits" - titre peut-être plus à lire comme "discours de schizophrène" - ou comme de la poésie ou autres absurdités, selon vos préjugés et votre tendance au transfert positif ou négatif - que tout autre.
L'hermétisme de Lacan ne peut être excusé - pas plus que son attitude envers le lecteur, qui pourrait s'exprimer ainsi : "aime-le" ou "c'est à prendre ou à laisser". Mais bien que la destruction personnelle de la syntaxe française par Lacan le rende assez ardu même pour le lecteur français, il y a au moins une tradition intellectuelle suffisamment homogène à Paris qui fait que Lacan y est bien moins étranger qu'en Grande-Bretagne ou aux Etats Unis. La tradition phénoménologique, existentialiste et hégélienne-marxiste en France rend moins nécessaire d'expliquer ce que vous entendez par Hegel, ou Husserl, ou Heidegger, ou Kojéve, ou Sartre. Et la plupart des gens reconnaîtront de toute façon une idée, même si vous ne mentionnez pas la source, ou si vous citez ou paraphrasez sans référence, car ce genre de "plagiat" est généralement acceptable en France.
Fait assez significatif cependant, Lacan n'aurait pas pu réaliser son analyse de Freud sans l'influence de l'école de linguistique suisso-américano-russe représentée par Roman Jakobson, qui a longtemps témoigné de l'influence du formalisme russe et du linguistique structurel de Saussure aux Etats-Unis. Mais même cette influence est parvenue indirectement à Lacan. L'influence la plus importante sur Lacan fut celle de l'anthropologue structurel français Claude-Lévi-Strauss, qui rencontra et travailla avec Jakobson à la New School for Social Research de New York, en 1942-1945.

Lévi-Strauss tend à ne pas être très apprécié par les anthropologues américains et britanniques qui sont redevables à la tradition analytique et dite empiriste, ce qui en dit long sur lui. Il est à l'origine d'une nouvelle méthodologie et d'une épistémologie d'accompagnement en sciences humaines en France, généralement appelée "structuralisme". (Aujourd'hui, cependant, le terme désigne simplement une mode, un peu comme l'existentialisme.) Le structuralisme, dans le sens d'une méthodologie non empiriste, non atomiste, non positiviste des lois de la relation, est d'autre part complété par les avancées en théorie des systèmes généraux, en cybernétique non mécanique, en théorie de la communication et en études écologiques. Tant la nouvelle approche structurelle que la nouvelle approche systémique-cybernétique semblent parler en fait d'une véritable révolution épistémologique dans les sciences de la vie et les sciences sociales, dont nous entendrons beaucoup plus parler au cours de la prochaine décennie (si nous y survivons, bien sûr).
Lévi-Strauss chercha à utiliser les travaux des phonologues structuraux sur "l'opposition binaire" des phonèmes en tant que modèle pour l'analyse des mythes et des relations et échanges au sein des sociétés dites "primitives" - dont il a ensuite remis en question le supposé "primitivisme". Constatant qu'un nombre relativement faible d'"oppositions" entre "traits distinctifs" (graves/aigus, voix/silence, etc.) sont suffisants pour former l'infrastructure acoustique de toute langue connue, Lévi-Strauss tenta de découvrir des ensembles analogues d'oppositions dans les systèmes de parenté et dans les mythes. Ses travaux les plus récents se sont concentrés sur le mythe en tant que musique.
Avec tous ces machins douteux dans son approche, Lévi-Strauss a néanmoins introduit un type de signification dans l'étude du mythe - auparavant presque exclusivement axé sur le contenu plutôt que sur la forme - là où ça n'existait pas avant. Comme pour l'œuvre de Lacan - ou celle de Freud - le principal problème du structuralisme lévi-straussien ne réside pas dans la méthodologie, mais dans son application, c'est-à-dire dans les revendications universelles formulées en son nom.
Je reviendrai sur la critique plus détaillée du "structuralisme" dans les chapitres suivants. Pour l'instant, il suffira de donner un exemple bref et purement illustratif de l'utilisation par Lévi-Strauss du concept d'"opposition binaire" dans l'étude du mythe (Lévi-Strauss, 1958 : chap. 11).
Pour lui, le mythe est une représentation diachronique (succession dans le temps) d'un ensemble d'oppositions synchroniques (intemporelles). Il croit que la découverte de ces oppositions synchroniques est une déclaration sur la "structure fondamentale de l'esprit humain". Dans les chapitres suivants, j'analyserai et critiquerai le terme "opposition" - qui cache les catégories de "différence", "distinction", "opposition", "contradiction" et "paradoxe" . Je critiquerai également le concept de relations "binaires" " - qui dissimule toute une série de malentendus sur la communication analogique et numérique en général, et plus particulièrement sur "non", "négation", "exclusion", "zéro" et "moins un", ainsi que sur la relation entre "A" et "non-A". J'essaierai également de démontrer l'idée fausse que Lévi-Strauss se fait de la confusion entre "esprit", "cerveau" et "individu". Ceci est étroitement lié à la conception de Piaget de l'organisme comme "structure paradigmatique", et à l'incapacité, dans la plupart des travaux actuels en sciences de la vie et sciences sociales, de comprendre le problème logico-mathématique et existentiel des frontières et des niveaux dans les systèmes ouverts de communication et d'échange (systèmes impliquant ou simulant la vie ou "esprit", systèmes vivants et sociaux).

La méthode de lecture des mythes de Lévi-Strauss est entièrement nouvelle, simple à comprendre, globale et satisfaisante sur le plan esthétique. Il suggère de regarder le mythe comme on regarderait une partition d'orchestre dans laquelle les notes et les mesures à jouer en harmonie simultanée par différents instruments se sont mêlées à la cacophonie d'une succession linéaire. Ainsi, si nous représentons cette succession par les nombres 1, 2, 4, 7, 8, 2, 3, 4, 6, 8, 1, 4, 5, 7, nous pouvons rétablir la partition originale en mettant tous les nombres semblables ensemble en colonnes verticales :

112234444567788

Cette matrice est exactement ce que l'on peut construire dans l'analyse phonologique d'une phrase, où l'on peut montrer qu'une séquence linéaire de mots se construit sur une succession d'oppositions binaires entre des éléments acoustiques distinctifs.
Malheureusement pour ce que Lévi-Strauss considère comme la clé de voûte de sa méthode, l'analogie qu'il fait entre phonologie structurelle et mythe est fausse, alors que sa méthodologie est extrêmement fertile. Ce problème met en évidence la difficulté centrale de l'utilisation de l'œuvre de Lévi-Strauss et de Lacan. Il faut montrer que les sources supposées de leurs nouvelles contributions aux sciences sociales ne sont pas ce qu'elles pensent être ; il faut démontrer où et comment leurs points de vue servent une fonction idéologique répressive ; et il faut montrer l'inadéquation à la fois de nombreux axiomes de la méthode et de nombreuses applications supposées.

Sans développer une critique détaillée à ce stade, on peut dire d'emblée que c'est une erreur de traiter un système d'oppositions sans contexte entre caractéristiques acoustiques des "bits" des informations (traits caractéristiques) comme étant isomorphe avec un mythe, qui est un système avec un contexte. Le mythe est nécessairement contextuel parce qu'il manipule l'information afin d'organiser et de contrôler certains aspects d'un système social, et il ne peut donc être considéré comme isolé de cette totalité. Contrairement aux "mythemes" de Lévi-Strauss ("éléments constitutifs bruts" du mythe, par analogie avec le "phonème"), les phonèmes sont des bits d'information insignifiants et non significatifs. Les phonèmes et les oppositions phonémiques sont les outils d'analyse et d'articulation (dont la caractéristique fondamentale est la différence) dans un système dans lequel signification et sens sont en dehors de la structure phonémique. Mythemes' et oppositions' entre mythemes, au contraire, impliquent à la fois signification et sens : ils ont 'du contenu'. Lévi-Strauss traite le mythe comme s'il s'agissait d'une langue représentative sous la forme d'une grammaire sans contexte, ou traite les mythemes comme des "informations" au sens technique des systèmes quantitatifs fermés de la transmission des informations comme étudiés par Shannon et Weaver. La science de l'information concerne l'étude statistique des processus stochastiques et des chaînes de Markov (chapitre IX) - et Chomsky a démontré qu'aucun langage connu ne peut être correctement généré à partir d'une grammaire modelée sur ces processus. Il a également été démontré que le langage est un système d'un type logique supérieur à celui qui peut être généré par des algorithmes sans contexte (grammaires).

Bien que Lévi-Strauss parle du mytheme comme d'un caractère "supérieur" à tout élément similaire du langage, le modèle de l'opposition phonémique binaire reste ce qu'il considère comme le fondement scientifique de sa méthode. Ainsi le mytheme devient l'équivalent d'un outil d'articulation (un trait distinctif) employé par un système de signification d'un autre type logique (langage). Lorsque nous cherchons à découvrir ce qu'est cet autre système chez Lévi-Strauss, nous trouvons cette catégorie de "pensée mythique". Mais la pensée mythique est déjà définie sur la base des mythemes eux-mêmes. C'est un système d'articulation des oppositions par "une machine à supprimer le temps" (le mythe). Ce qui manque dans ce cercle, c'est le contexte réel et matériel dans lequel le mythe surgit et auquel il fait référence.
Cependant, Lévi-Strauss insistera sur le fait que sa méthodologie, contrairement au formalisme pur, est bien "contextuelle" (Lévi-Strauss, 1960a). Il se réfère constamment aux catégories de parenté, au contexte zoologique et botanique du mythe et aux caractéristiques des entités matérielles ("crues", "cuites", "pourries" et ainsi de suite). En réalité, cependant, toutes les "entités matérielles" et les "relations matérielles" qu'il emploie parviennent à cette analyse déjà définie, de façon tautologique, comme des catégories de pensée mythique. Par conséquent, le "contexte" qu'évoque Lévi-Strauss est invariablement le contexte des "idées" ou de "l'esprit", qu'il conçoit, comme Kant, comme étant un antécédent de l'organisation sociale, tant épistémologiquement qu'ontologiquement. Au sein de ce cadre idéaliste, il fait ensuite un saut rapide vers les catégories matérielles de la physique et de la chimie, qu'il évoque régulièrement comme le fondement ultime de ses catégories idéales.

Mais entre le contexte des idées et le contexte des atomes et des molécules (ou même celui du code génétique) il manque un niveau d'organisation unique mais énorme : le contexte socio-économique de la réalité humaine. Et ce niveau d'organisation contient un paramètre que l'on ne retrouve pas en physique, en biologie, en sciences de l'information, dans les langages, les idées, ou les mythes considérés comme systèmes d'opposition synchrones : la ponctuation du système par le pouvoir de certaines de ses parties à en exploiter les autres (en incluant la "nature" même). Toutes les idées, tous les électrons et "bits" d'information sont en effet égaux, aucun d'entre eux n'est différent des autres, et aucun groupe n'exploite les autres. Et alors que dans les systèmes qui n'impliquent pas l'exploitation sociale, les mythes peuvent à juste titre être considérés comme remplissant une fonction d'organisation "pure" ou "neutre", dans tous les autres systèmes, les mythes deviennent la propriété d'une classe, caste ou sexe. Un mythe qui est la propriété d'une classe est en fait une définition de l'idéologie. Le mythe cesse alors de servir la fonction neutre d'organisation pure et simple ; il sert de rationalisation d'une forme donnée d'organisation sociale.
L'étude structurelle du mythe est, comme Lévi-Strauss l'a souvent dit, une autre variante des mythes qu'il analyse. Comme eux, c'est un système d'oppositions binaires. Mais ce n'est pas une mécanique pour la suppression du temps, mais pour la suppression de l'histoire. Et puisque le "structuralisme" est effectivement la propriété d'une classe, nous pouvons donc l'identifier comme un système de rationalisation idéologique - ce qui n'est pas la même chose, de dire qu'il n'a aucune valeur.

L'analogie erronée de Lévi-Strauss entre un système sans contexte et un système contextuel - et donc tout l'édifice que les structuralistes ont érigé - provient d'une confusion entre langage et communication. D'une part, une telle confusion n'est possible que dans des théories ponctuées de façon à exclure la catégorie sociale objective de l'exploitation. D'autre part, elle dépend d'une unique isomorphie réelle, qui est ensuite utilisée pour réduire les différents niveaux d'organisation les uns par rapport aux autres : le fait que le langage, les systèmes de parenté, l'étude structurelle des mythes et la science de la phonologie soient des communications numériques (discontinues) au sujet de rapports analogues (continus). Une caractéristique unique de la communication numérique, à savoir qu'il s'agit d'un système de communication comportant limites et lacunes, est réifiée par l'argument structuraliste de sorte qu'il peut être appliqué sans distinction, comme catégorie ontologique implicite, à chaque niveau de complexité où apparaissent des "limites et des lacunes ". De telles formes numériques apparaissent nécessairement, comme instrument de communication, à tous les niveaux de complexité biologique et sociale. Par conséquent, l'argument réductionniste des structuralistes est grandement facilité. De plus, le fait que l'opposition binaire soit aussi une catégorie importante en physique classique (électromagnétisme par exemple) autorise les structuralistes à faire l'erreur épistémologique supplémentaire de confondre matière-énergie et information.

Auteur: Wilden Anthony

Info: Extrait de System and Structure (1972) sur http://www.haussite.net. Trad. Mg

[ anti structuralisme ] [ vingtième siècle ]

 
Mis dans la chaine

Commentaires: 0

Ajouté à la BD par miguel

trickster

Les mondes multiples d'Hugh Everett

Il y a cinquante ans, Hugh Everett a conçu l'interprétation de la mécanique quantique en l'expliquant par des mondes multiples, théorie dans laquelle les effets quantiques engendrent d'innombrables branches de l'univers avec des événements différents dans chacune. La théorie semble être une hypothèse bizarre, mais Everett l'a déduite des mathématiques fondamentales de la mécanique quantique. Néanmoins, la plupart des physiciens de l'époque la rejetèrent, et il dût abréger sa thèse de doctorat sur le sujet pour éviter la controverse. Découragé, Everett quitta la physique et travailla sur les mathématiques et l'informatique militaires et industrielles. C'était un être émotionnellement renfermé et un grand buveur. Il est mort alors qu'il n'avait que 51 ans, et ne put donc pas voir le récent respect accordé à ses idées par les physiciens.

Hugh Everett III était un mathématicien brillant, théoricien quantique iconoclaste, puis ensuite entrepreneur prospère dans la défense militaire ayant accès aux secrets militaires les plus sensibles du pays. Il a introduit une nouvelle conception de la réalité dans la physique et a influencé le cours de l'histoire du monde à une époque où l'Armageddon nucléaire semblait imminent. Pour les amateurs de science-fiction, il reste un héros populaire : l'homme qui a inventé une théorie quantique des univers multiples. Pour ses enfants, il était quelqu'un d'autre : un père indisponible, "morceau de mobilier assis à la table de la salle à manger", cigarette à la main. Alcoolique aussi, et fumeur à la chaîne, qui mourut prématurément.

L'analyse révolutionnaire d'Everett a brisé une impasse théorique dans l'interprétation du "comment" de la mécanique quantique. Bien que l'idée des mondes multiples ne soit pas encore universellement acceptée aujourd'hui, ses méthodes de conception de la théorie présagèrent le concept de décohérence quantique - explication moderne du pourquoi et comment la bizarrerie probabiliste de la mécanique quantique peut se résoudre dans le monde concret de notre expérience. Le travail d'Everett est bien connu dans les milieux de la physique et de la philosophie, mais l'histoire de sa découverte et du reste de sa vie l'est relativement moins. Les recherches archivistiques de l'historien russe Eugène Shikhovtsev, de moi-même et d'autres, ainsi que les entretiens que j'ai menés avec les collègues et amis du scientifique décédé, ainsi qu'avec son fils musicien de rock, révèlent l'histoire d'une intelligence radieuse éteinte trop tôt par des démons personnels.

Le voyage scientifique d'Everett commença une nuit de 1954, raconte-t-il deux décennies plus tard, "après une gorgée ou deux de sherry". Lui et son camarade de classe de Princeton Charles Misner et un visiteur nommé Aage Petersen (alors assistant de Niels Bohr) pensaient "des choses ridicules sur les implications de la mécanique quantique". Au cours de cette session Everett eut l'idée de base fondant la théorie des mondes multiples, et dans les semaines qui suivirent, il commença à la développer dans un mémoire. L'idée centrale était d'interpréter ce que les équations de la mécanique quantique représentent dans le monde réel en faisant en sorte que les mathématiques de la théorie elle-même montrent le chemin plutôt qu'en ajoutant des hypothèses d'interprétation aux mathématiques existantes sur le sujet. De cette façon, le jeune homme a mis au défi l'establishment physique de l'époque en reconsidérant sa notion fondamentale de ce qui constitue la réalité physique. En poursuivant cette entreprise, Everett s'attaqua avec audace au problème notoire de la mesure en mécanique quantique, qui accablait les physiciens depuis les années 1920.

En résumé, le problème vient d'une contradiction entre la façon dont les particules élémentaires (comme les électrons et les photons) interagissent au niveau microscopique quantique de la réalité et ce qui se passe lorsque les particules sont mesurées à partir du niveau macroscopique classique. Dans le monde quantique, une particule élémentaire, ou une collection de telles particules, peut exister dans une superposition de deux ou plusieurs états possibles. Un électron, par exemple, peut se trouver dans une superposition d'emplacements, de vitesses et d'orientations différentes de sa rotation. Pourtant, chaque fois que les scientifiques mesurent l'une de ces propriétés avec précision, ils obtiennent un résultat précis - juste un des éléments de la superposition, et non une combinaison des deux. Nous ne voyons jamais non plus d'objets macroscopiques en superposition. Le problème de la mesure se résume à cette question : Comment et pourquoi le monde unique de notre expérience émerge-t-il des multiples alternatives disponibles dans le monde quantique superposé ? Les physiciens utilisent des entités mathématiques appelées fonctions d'onde pour représenter les états quantiques. Une fonction d'onde peut être considérée comme une liste de toutes les configurations possibles d'un système quantique superposé, avec des nombres qui donnent la probabilité que chaque configuration soit celle, apparemment choisie au hasard, que nous allons détecter si nous mesurons le système. La fonction d'onde traite chaque élément de la superposition comme étant également réel, sinon nécessairement également probable de notre point de vue. L'équation de Schrödinger décrit comment la fonction ondulatoire d'un système quantique changera au fil du temps, une évolution qu'elle prédit comme lisse et déterministe (c'est-à-dire sans caractère aléatoire).

Mais cette élégante mathématique semble contredire ce qui se passe lorsque les humains observent un système quantique, tel qu'un électron, avec un instrument scientifique (qui lui-même peut être considéré comme un système quantique). Car au moment de la mesure, la fonction d'onde décrivant la superposition d'alternatives semble s'effondrer en un unique membre de la superposition, interrompant ainsi l'évolution en douceur de la fonction d'onde et introduisant la discontinuité. Un seul résultat de mesure émerge, bannissant toutes les autres possibilités de la réalité décrite de manière classique. Le choix de l'alternative produite au moment de la mesure semble arbitraire ; sa sélection n'évolue pas logiquement à partir de la fonction d'onde chargée d'informations de l'électron avant la mesure. Les mathématiques de l'effondrement n'émergent pas non plus du flux continu de l'équation de Schrödinger. En fait, l'effondrement (discontinuité) doit être ajouté comme un postulat, comme un processus supplémentaire qui semble violer l'équation.

De nombreux fondateurs de la mécanique quantique, notamment Bohr, Werner Heisenberg et John von Neumann, se sont mis d'accord sur une interprétation de la mécanique quantique - connue sous le nom d'interprétation de Copenhague - pour traiter le problème des mesures. Ce modèle de réalité postule que la mécanique du monde quantique se réduit à des phénomènes observables de façon classique et ne trouve son sens qu'en termes de phénomènes observables, et non l'inverse. Cette approche privilégie l'observateur externe, le plaçant dans un domaine classique distinct du domaine quantique de l'objet observé. Bien qu'incapables d'expliquer la nature de la frontière entre le domaine quantique et le domaine classique, les Copenhagueistes ont néanmoins utilisé la mécanique quantique avec un grand succès technique. Des générations entières de physiciens ont appris que les équations de la mécanique quantique ne fonctionnent que dans une partie de la réalité, la microscopique, et cessent d'être pertinentes dans une autre, la macroscopique. C'est tout ce dont la plupart des physiciens ont besoin.

Fonction d'onde universelle. Par fort effet contraire, Everett s'attaqua au problème de la mesure en fusionnant les mondes microscopique et macroscopique. Il fit de l'observateur une partie intégrante du système observé, introduisant une fonction d'onde universelle qui relie les observateurs et les objets dans un système quantique unique. Il décrivit le monde macroscopique en mécanique quantique imaginant que les grands objets existent également en superpositions quantiques. Rompant avec Bohr et Heisenberg, il n'avait pas besoin de la discontinuité d'un effondrement de la fonction ondulatoire. L'idée radicalement nouvelle d'Everett était de se demander : Et si l'évolution continue d'une fonction d'onde n'était pas interrompue par des actes de mesure ? Et si l'équation de Schrödinger s'appliquait toujours et s'appliquait aussi bien à tous les objets qu'aux observateurs ? Et si aucun élément de superposition n'est jamais banni de la réalité ? A quoi ressemblerait un tel monde pour nous ? Everett constata, selon ces hypothèses, que la fonction d'onde d'un observateur devrait, en fait, bifurquer à chaque interaction de l'observateur avec un objet superposé. La fonction d'onde universelle contiendrait des branches pour chaque alternative constituant la superposition de l'objet. Chaque branche ayant sa propre copie de l'observateur, copie qui percevait une de ces alternatives comme le résultat. Selon une propriété mathématique fondamentale de l'équation de Schrödinger, une fois formées, les branches ne s'influencent pas mutuellement. Ainsi, chaque branche se lance dans un avenir différent, indépendamment des autres. Prenons l'exemple d'une personne qui mesure une particule qui se trouve dans une superposition de deux états, comme un électron dans une superposition de l'emplacement A et de l'emplacement B. Dans une branche, la personne perçoit que l'électron est à A. Dans une branche presque identique, une copie de la personne perçoit que le même électron est à B. Chaque copie de la personne se perçoit comme unique et considère que la chance lui a donné une réalité dans un menu des possibilités physiques, même si, en pleine réalité, chaque alternative sur le menu se réalise.

Expliquer comment nous percevons un tel univers exige de mettre un observateur dans l'image. Mais le processus de ramification se produit indépendamment de la présence ou non d'un être humain. En général, à chaque interaction entre systèmes physiques, la fonction d'onde totale des systèmes combinés aurait tendance à bifurquer de cette façon. Aujourd'hui, la compréhension de la façon dont les branches deviennent indépendantes et ressemblent à la réalité classique à laquelle nous sommes habitués est connue sous le nom de théorie de la décohérence. C'est une partie acceptée de la théorie quantique moderne standard, bien que tout le monde ne soit pas d'accord avec l'interprétation d'Everett comme quoi toutes les branches représentent des réalités qui existent. Everett n'a pas été le premier physicien à critiquer le postulat de l'effondrement de Copenhague comme inadéquat. Mais il a innové en élaborant une théorie mathématiquement cohérente d'une fonction d'onde universelle à partir des équations de la mécanique quantique elle-même. L'existence d'univers multiples a émergé comme une conséquence de sa théorie, pas par un prédicat. Dans une note de bas de page de sa thèse, Everett écrit : "Du point de vue de la théorie, tous les éléments d'une superposition (toutes les "branches") sont "réels", aucun n'est plus "réel" que les autres. Le projet contenant toutes ces idées provoqua de remarquables conflits dans les coulisses, mis au jour il y a environ cinq ans par Olival Freire Jr, historien des sciences à l'Université fédérale de Bahia au Brésil, dans le cadre de recherches archivistiques.

Au printemps de 1956 le conseiller académique à Princeton d'Everett, John Archibald Wheeler, prit avec lui le projet de thèse à Copenhague pour convaincre l'Académie royale danoise des sciences et lettres de le publier. Il écrivit à Everett qu'il avait eu "trois longues et fortes discussions à ce sujet" avec Bohr et Petersen. Wheeler partagea également le travail de son élève avec plusieurs autres physiciens de l'Institut de physique théorique de Bohr, dont Alexander W. Stern. Scindages La lettre de Wheeler à Everett disait en autre : "Votre beau formalisme de la fonction ondulatoire reste bien sûr inébranlable ; mais nous sentons tous que la vraie question est celle des mots qui doivent être attachés aux quantités de ce formalisme". D'une part, Wheeler était troublé par l'utilisation par Everett d'humains et de boulets de canon "scindés" comme métaphores scientifiques. Sa lettre révélait l'inconfort des Copenhagueistes quant à la signification de l'œuvre d'Everett. Stern rejeta la théorie d'Everett comme "théologique", et Wheeler lui-même était réticent à contester Bohr. Dans une longue lettre politique adressée à Stern, il explique et défend la théorie d'Everett comme une extension, non comme une réfutation, de l'interprétation dominante de la mécanique quantique : "Je pense que je peux dire que ce jeune homme très fin, capable et indépendant d'esprit en est venu progressivement à accepter l'approche actuelle du problème de la mesure comme correcte et cohérente avec elle-même, malgré quelques traces qui subsistent dans le présent projet de thèse d'une attitude douteuse envers le passé. Donc, pour éviter tout malentendu possible, permettez-moi de dire que la thèse d'Everett ne vise pas à remettre en question l'approche actuelle du problème de la mesure, mais à l'accepter et à la généraliser."

Everett aurait été en total désaccord avec la description que Wheeler a faite de son opinion sur l'interprétation de Copenhague. Par exemple, un an plus tard, en réponse aux critiques de Bryce S. DeWitt, rédacteur en chef de la revue Reviews of Modern Physics, il écrivit : "L'Interprétation de Copenhague est désespérément incomplète en raison de son recours a priori à la physique classique... ainsi que d'une monstruosité philosophique avec un concept de "réalité" pour le monde macroscopique qui ne marche pas avec le microcosme." Pendant que Wheeler était en Europe pour plaider sa cause, Everett risquait alors de perdre son permis de séjour étudiant qui avait été suspendu. Pour éviter d'aller vers des mesures disciplinaires, il décida d'accepter un poste de chercheur au Pentagone. Il déménagea dans la région de Washington, D.C., et ne revint jamais à la physique théorique. Au cours de l'année suivante, cependant, il communiqua à distance avec Wheeler alors qu'il avait réduit à contrecœur sa thèse au quart de sa longueur d'origine. En avril 1957, le comité de thèse d'Everett accepta la version abrégée - sans les "scindages". Trois mois plus tard, Reviews of Modern Physics publiait la version abrégée, intitulée "Relative State' Formulation of Quantum Mechanics".("Formulation d'état relatif de la mécanique quantique.") Dans le même numéro, un document d'accompagnement de Wheeler loue la découverte de son élève. Quand le papier parut sous forme imprimée, il passa instantanément dans l'obscurité.

Wheeler s'éloigna progressivement de son association avec la théorie d'Everett, mais il resta en contact avec le théoricien, l'encourageant, en vain, à faire plus de travail en mécanique quantique. Dans une entrevue accordée l'an dernier, Wheeler, alors âgé de 95 ans, a déclaré qu' "Everett était déçu, peut-être amer, devant les non réactions à sa théorie. Combien j'aurais aimé continuer les séances avec lui. Les questions qu'il a soulevées étaient importantes." Stratégies militaires nucléaires Princeton décerna son doctorat à Everett près d'un an après qu'il ait commencé son premier projet pour le Pentagone : le calcul des taux de mortalité potentiels des retombées radioactives d'une guerre nucléaire. Rapidement il dirigea la division des mathématiques du Groupe d'évaluation des systèmes d'armes (WSEG) du Pentagone, un groupe presque invisible mais extrêmement influent. Everett conseillait de hauts responsables des administrations Eisenhower et Kennedy sur les meilleures méthodes de sélection des cibles de bombes à hydrogène et de structuration de la triade nucléaire de bombardiers, de sous-marins et de missiles pour un impact optimal dans une frappe nucléaire. En 1960, participa à la rédaction du WSEG n° 50, un rapport qui reste classé à ce jour. Selon l'ami d'Everett et collègue du WSEG, George E. Pugh, ainsi que des historiens, le WSEG no 50 a rationalisé et promu des stratégies militaires qui ont fonctionné pendant des décennies, notamment le concept de destruction mutuelle assurée. Le WSEG a fourni aux responsables politiques de la guerre nucléaire suffisamment d'informations effrayantes sur les effets mondiaux des retombées radioactives pour que beaucoup soient convaincus du bien-fondé d'une impasse perpétuelle, au lieu de lancer, comme le préconisaient certains puissants, des premières attaques préventives contre l'Union soviétique, la Chine et d'autres pays communistes.

Un dernier chapitre de la lutte pour la théorie d'Everett se joua également dans cette période. Au printemps 1959, Bohr accorda à Everett une interview à Copenhague. Ils se réunirent plusieurs fois au cours d'une période de six semaines, mais avec peu d'effet : Bohr ne changea pas sa position, et Everett n'est pas revenu à la recherche en physique quantique. L'excursion n'avait pas été un échec complet, cependant. Un après-midi, alors qu'il buvait une bière à l'hôtel Østerport, Everett écrivit sur un papier à l'en-tête de l'hôtel un raffinement important de cet autre tour de force mathématique qui a fait sa renommée, la méthode généralisée du multiplicateur de Lagrange, aussi connue sous le nom d'algorithme Everett. Cette méthode simplifie la recherche de solutions optimales à des problèmes logistiques complexes, allant du déploiement d'armes nucléaires aux horaires de production industrielle juste à temps en passant par l'acheminement des autobus pour maximiser la déségrégation des districts scolaires. En 1964, Everett, Pugh et plusieurs autres collègues du WSEG ont fondé une société de défense privée, Lambda Corporation. Entre autres activités, il a conçu des modèles mathématiques de systèmes de missiles anti-missiles balistiques et de jeux de guerre nucléaire informatisés qui, selon Pugh, ont été utilisés par l'armée pendant des années. Everett s'est épris de l'invention d'applications pour le théorème de Bayes, une méthode mathématique de corrélation des probabilités des événements futurs avec l'expérience passée. En 1971, Everett a construit un prototype de machine bayésienne, un programme informatique qui apprend de l'expérience et simplifie la prise de décision en déduisant les résultats probables, un peu comme la faculté humaine du bon sens. Sous contrat avec le Pentagone, le Lambda a utilisé la méthode bayésienne pour inventer des techniques de suivi des trajectoires des missiles balistiques entrants. En 1973, Everett quitte Lambda et fonde une société de traitement de données, DBS, avec son collègue Lambda Donald Reisler. Le DBS a fait des recherches sur les applications des armes, mais s'est spécialisée dans l'analyse des effets socio-économiques des programmes d'action sociale du gouvernement. Lorsqu'ils se sont rencontrés pour la première fois, se souvient M. Reisler, Everett lui a demandé timidement s'il avait déjà lu son journal de 1957. J'ai réfléchi un instant et j'ai répondu : "Oh, mon Dieu, tu es cet Everett, le fou qui a écrit ce papier dingue", dit Reisler. "Je l'avais lu à l'université et avais gloussé, le rejetant d'emblée." Les deux sont devenus des amis proches mais convinrent de ne plus parler d'univers multiples.

Malgré tous ces succès, la vie d'Everett fut gâchée de bien des façons. Il avait une réputation de buveur, et ses amis disent que le problème semblait s'aggraver avec le temps. Selon Reisler, son partenaire aimait habituellement déjeuner avec trois martinis, dormant dans son bureau, même s'il réussissait quand même à être productif. Pourtant, son hédonisme ne reflétait pas une attitude détendue et enjouée envers la vie. "Ce n'était pas quelqu'un de sympathique", dit Reisler. "Il apportait une logique froide et brutale à l'étude des choses... Les droits civils n'avaient aucun sens pour lui." John Y. Barry, ancien collègue d'Everett au WSEG, a également remis en question son éthique. Au milieu des années 1970, Barry avait convaincu ses employeurs chez J. P. Morgan d'embaucher Everett pour mettre au point une méthode bayésienne de prévision de l'évolution du marché boursier. Selon plusieurs témoignages, Everett avait réussi, puis il refusa de remettre le produit à J. P. Morgan. "Il s'est servi de nous", se souvient Barry. "C'était un individu brillant, innovateur, insaisissable, indigne de confiance, probablement alcoolique." Everett était égocentrique. "Hugh aimait épouser une forme de solipsisme extrême", dit Elaine Tsiang, ancienne employée de DBS. "Bien qu'il eut peine à éloigner sa théorie [des monde multiples] de toute théorie de l'esprit ou de la conscience, il est évident que nous devions tous notre existence par rapport au monde qu'il avait fait naître." Et il connaissait à peine ses enfants, Elizabeth et Mark. Alors qu'Everett poursuivait sa carrière d'entrepreneur, le monde de la physique commençait à jeter un regard critique sur sa théorie autrefois ignorée. DeWitt pivota d'environ 180 degrés et devint son défenseur le plus dévoué. En 1967, il écrivit un article présentant l'équation de Wheeler-DeWitt : une fonction d'onde universelle qu'une théorie de la gravité quantique devrait satisfaire. Il attribue à Everett le mérite d'avoir démontré la nécessité d'une telle approche. DeWitt et son étudiant diplômé Neill Graham ont ensuite publié un livre de physique, The Many-Worlds Interpretation of Quantum Mechanics, qui contenait la version non informatisée de la thèse d'Everett. L'épigramme "mondes multiples" se répandit rapidement, popularisée dans le magazine de science-fiction Analog en 1976. Toutefois, tout le monde n'est pas d'accord sur le fait que l'interprétation de Copenhague doive céder le pas. N. David Mermin, physicien de l'Université Cornell, soutient que l'interprétation d'Everett traite la fonction des ondes comme faisant partie du monde objectivement réel, alors qu'il la considère simplement comme un outil mathématique. "Une fonction d'onde est une construction humaine", dit Mermin. "Son but est de nous permettre de donner un sens à nos observations macroscopiques. Mon point de vue est exactement le contraire de l'interprétation des mondes multiples. La mécanique quantique est un dispositif qui nous permet de rendre nos observations cohérentes et de dire que nous sommes à l'intérieur de la mécanique quantique et que la mécanique quantique doive s'appliquer à nos perceptions est incohérent." Mais de nombreux physiciens avancent que la théorie d'Everett devrait être prise au sérieux. "Quand j'ai entendu parler de l'interprétation d'Everett à la fin des années 1970, dit Stephen Shenker, physicien théoricien à l'Université Stanford, j'ai trouvé cela un peu fou. Maintenant, la plupart des gens que je connais qui pensent à la théorie des cordes et à la cosmologie quantique pensent à quelque chose qui ressemble à une interprétation à la Everett. Et à cause des récents développements en informatique quantique, ces questions ne sont plus académiques."

Un des pionniers de la décohérence, Wojciech H. Zurek, chercheur au Los Alamos National Laboratory, a commente que "l'accomplissement d'Everett fut d'insister pour que la théorie quantique soit universelle, qu'il n'y ait pas de division de l'univers entre ce qui est a priori classique et ce qui est a priori du quantum. Il nous a tous donné un ticket pour utiliser la théorie quantique comme nous l'utilisons maintenant pour décrire la mesure dans son ensemble." Le théoricien des cordes Juan Maldacena de l'Institute for Advanced Study de Princeton, N.J., reflète une attitude commune parmi ses collègues : "Quand je pense à la théorie d'Everett en mécanique quantique, c'est la chose la plus raisonnable à croire. Dans la vie de tous les jours, je n'y crois pas."

En 1977, DeWitt et Wheeler invitèrent Everett, qui détestait parler en public, à faire une présentation sur son interprétation à l'Université du Texas à Austin. Il portait un costume noir froissé et fuma à la chaîne pendant tout le séminaire. David Deutsch, maintenant à l'Université d'Oxford et l'un des fondateurs du domaine de l'informatique quantique (lui-même inspiré par la théorie d'Everett), était là. "Everett était en avance sur son temps", dit Deutsch en résumant la contribution d'Everett. "Il représente le refus de renoncer à une explication objective. L'abdication de la finalité originelle de ces domaines, à savoir expliquer le monde, a fait beaucoup de tort au progrès de la physique et de la philosophie. Nous nous sommes irrémédiablement enlisés dans les formalismes, et les choses ont été considérées comme des progrès qui ne sont pas explicatifs, et le vide a été comblé par le mysticisme, la religion et toutes sortes de détritus. Everett est important parce qu'il s'y est opposé." Après la visite au Texas, Wheeler essaya de mettre Everett en contact avec l'Institute for Theoretical Physics à Santa Barbara, Californie. Everett aurait été intéressé, mais le plan n'a rien donné. Totalité de l'expérience Everett est mort dans son lit le 19 juillet 1982. Il n'avait que 51 ans.

Son fils, Mark, alors adolescent, se souvient avoir trouvé le corps sans vie de son père ce matin-là. Sentant le corps froid, Mark s'est rendu compte qu'il n'avait aucun souvenir d'avoir jamais touché son père auparavant. "Je ne savais pas quoi penser du fait que mon père venait de mourir, m'a-t-il dit. "Je n'avais pas vraiment de relation avec lui." Peu de temps après, Mark a déménagé à Los Angeles. Il est devenu un auteur-compositeur à succès et chanteur principal d'un groupe de rock populaire, Eels. Beaucoup de ses chansons expriment la tristesse qu'il a vécue en tant que fils d'un homme déprimé, alcoolique et détaché émotionnellement. Ce n'est que des années après la mort de son père que Mark a appris l'existence de la carrière et des réalisations de son père. La sœur de Mark, Elizabeth, fit la première d'une série de tentatives de suicide en juin 1982, un mois seulement avant la mort d'Everett. Mark la trouva inconsciente sur le sol de la salle de bain et l'amena à l'hôpital juste à temps. Quand il rentra chez lui plus tard dans la soirée, se souvient-il, son père "leva les yeux de son journal et dit : Je ne savais pas qu'elle était si triste."" En 1996, Elizabeth se suicida avec une overdose de somnifères, laissant une note dans son sac à main disant qu'elle allait rejoindre son père dans un autre univers. Dans une chanson de 2005, "Things the Grandchildren Should Know", Mark a écrit : "Je n'ai jamais vraiment compris ce que cela devait être pour lui de vivre dans sa tête". Son père solipsistiquement incliné aurait compris ce dilemme. "Une fois que nous avons admis que toute théorie physique n'est essentiellement qu'un modèle pour le monde de l'expérience, conclut Everett dans la version inédite de sa thèse, nous devons renoncer à tout espoir de trouver quelque chose comme la théorie correcte... simplement parce que la totalité de l'expérience ne nous est jamais accessible."

Auteur: Byrne Peter

Info: 21 octobre 2008, https://www.scientificamerican.com/article/hugh-everett-biography/. Publié à l'origine dans le numéro de décembre 2007 de Scientific American

[ légende de la physique théorique ] [ multivers ]

 

Commentaires: 0

Ajouté à la BD par miguel

parapsychologie

Le pays des aveugles de Koestler (II) (première partie ici)

La section précédente a peut-être donné au lecteur un sentiment de déjà-vu, parce que tout à l'heure j'ai mentionné un autre type de "théorie du filtre" liée à l'évolution. Je me réfère à la théorie néo-darwinienne selon laquelle la substance héréditaire dans les cellules germinales est protégée par une barrière quasi inviolable contre les influences en provenance de l'extérieur. Le "presque" se réfère à l'exception des rayons cosmiques, de la chaleur et des produits chimiques nocifs, qui pourraient pénétrer la barrière et causer des mutations dans les gènes. La plupart d'entre elles sont nuisibles, mais de temps en temps il y a des coups de chance, et cela, grâce à la sélection naturelle, permet à la roue de l'évolution de continuer sa marche. Hors cela, toute possibilité qu'une caractéristique acquise devienne héréditaire est empêchée par cette barrière. Le lamarckisme qui postulait que des améliorations bénéfiques pour les corps ou les compétences acquises par les parents pourraient être transmises à la descendance, doit être écarté comme superstition scientifique. Telle est la doctrine néo-darwinienne. Et pourtant, certains phénomènes évolutifs, cités à maintes reprises dans la littérature, semblent indiquer obstinément un facteur d'évolution lamarckienne.

Un exemple simple en est la peau sur la plante de nos pieds, qui est beaucoup plus épaisse que partout ailleurs. Si l'épaississement s'était produit pendant que le bébé a appris à marcher, il n'y aurait pas de problème. Mais l'épaississement est hérité, le bébé est né avec. Également curieuses sont les callosités innées sur le genou du chameau, et les épaississements bulbeux sur le cul de l'autruche, un à l'avant et un à l'arrière. Ils sont aussi, comme la peau de nos semelles, déjà présents dans l'embryon et sont incontestablement des caractéristiques héritées. Pourtant, en conformité avec le dogme dominant, on nous demande de croire que l'avènement de ces callosités à l'endroit exact où l'animal en a besoin est dû au hasard pur - comme le scarabée apparaissant à la fenêtre de Jung. On pourrait presque remplacer l'ESP par l'IAC (hérédité des caractères acquis) et voir émerger le même schéma d'arguments, et les mêmes passions quasi théologiques qui les accompagnent. Les lamarckiens se sont retrouvés dans une situation similaire à celle des parapsychologues : ils ont été incapables de produire une expérience reproductible. Les cas de IAC apparents dans le règne animal étaient rares, les phénomènes étaient capricieux, chaque cas apparemment net permettait des interprétations différentes et en dernier recours, à des accusations de fraude. En outre, bien que les lamarckiens étaient convaincus que IAC avait lieu, ils furent incapables d'en fournir une explication physiologique - comme les parapsychologues sont incapables de fournir une explication physique de l'ESP.

Ce curieux parallèle semble avoir échappé à l'attention des lamarckiens et des parapsychologues - Je n'ai pas vu mentionné dans la littérature. Peut-être qu'une hérésie c'est assez pour un seul homme. Paul Kammerer partageait les deux à la fois, et pourtant, lui aussi, semble n'avoir pas été au courant de la connexion entre eux. Portons l'analogie un peu plus loin. Dans "The Ghost in the Machine" et "The Case of the Midwife Toad", j'ai examiné les raisons d'un mécontentement croissant avec la théorie néo-darwinienne chez les biologistes contemporains, qui croient que la théorie reflète une partie de l'image, mais pas l'ensemble du tableau, et qui maintiennent que l'évolution des espèces est le résultat combiné d'un éventail de facteurs étiologiques connus, la plupart d'entre eux restant inconnus.

L'héritage de Darwin, et une forme modifiée de l'héritage de Lamarck, peuvent-être deux de ces facteurs à des extrémités opposées du spectre, avec un champ limité d'application à la fois. La IAC Lamarckienne serait un évènement relativement rare - pour la même raison que les phénomènes ESP sont rares: le fonctionnement des filtres de protection. Ceux-ci ne constitueraient pas la barrière absolue prévue par la théorie orthodoxe, mais un des mécanismes sélectifs, pour protéger le matériel héréditaire contre la "floraison et la confusion bourdonnante" des incursions biochimiques qui, autrement, feraient des ravages mettant en cause la continuité et la stabilité de l'espèce. Car si toutes les expériences des ancêtres laissaient des traces héréditaires à leur descendance, le résultat serait inévitablement un chaos de formes et un bordel des instincts. Mais cela ne signifie pas que nous devions exclure la possibilité que certaines modifications bien définies, adaptations intentionnelles - comme les callosités de l'autruche - qui ont été acquises génération après génération, finissent par passer à travers le filtre pour conduire à des changements dans la chimie des gènes en les rendant héréditaires. Il semble très peu probable que le filogenia ne doive posséder aucun souvenir.

La biochimie n'exclut pas la possibilité ci-dessus, et l'insistance presque fanatique de son rejet n'est qu'un exemple de plus de l'intolérance dogmatique de l'orthodoxie scientifique. (Mais : un membre éminent de l'établissement, le professeur Waddington, a effectivement proposé il y a quelques années un modèle provisoire pour l'IAC, ce qui indique que, au stade actuel de la biochimie un tel processus est envisageable.) Il nous faut faire ici une dernière excursion en physique - mais cette fois d'un genre très élémentaire.

Sur l'ombre du bureau en face de moi il y a l'ombre d'un cendrier. De manière ordinaire, il est tout à fait un objet sensible, solide, un tout en soi, sans "non-sens quantique" à son sujet. Mais quand je le soulève, je sens son poids, ce qui signifie qu'il est soumis à une influence assez mystérieuse que nous appelons le champ gravitationnel de la Terre. Et quand je le pousse, il résiste. Ceci est en partie dû au frottement contre le bureau, mais en partie aussi à l'inertie du cendrier massif. Maintenant, l'inertie est définie, selon la première loi du mouvement de Newton, comme la tendance d'un corps à préserver son état de repos ou de mouvement uniforme dans une direction donnée. Mais, si je devais suspendre ce cendrier par un fil au plafond, et en faire une réplique du pendule de Foucault aux Invalides à Paris, le plan de ses oscillations ne resterait pas figé dans la direction donnée, selon le principe que l'inertie nécessite, mais il tournerait lentement, complétant un tour en vingt-quatre heures.

Nous expliquons que c'est causé par la rotation de la terre, et que le pendule cendrier ne fait que préserver sa direction par rapport aux étoiles fixes, donc tout va bien. Toutefois, étant donné que tout mouvement est relatif, nous sommes en droit de considérer la terre comme au repos, avec des étoiles fixes tournant autour d'elle - comme l'imaginaient les anciens, et si c'est le cas, pourquoi les mouvements de mon cendrier doivent-ils être régis par les étoiles, et pas par la terre au-dessous ?

Le même argument s'applique à l'aplatissement des pôles de la terre, ainsi qu'à la force de Coriolis qui soi-disant dévie les missiles, les avions à réaction et les alizés de leur droite inertielle. Tous ces exemples semblent démontrer que la rotation de la terre est absolue et non relative. Ce paradoxe fut souligné par Bishop Berkeley, puis par le physicien allemand Ernst Mach (qui donna nom aux unités de vitesse supersonique). La réponse de Mach c'est que nous sommes en effet en droit de considérer la terre comme au repos, et d'expliquer les phénomènes que nous attribuons à sa rotation, comme causés en quelque sorte par les étoiles fixes et les galaxies - donc, par la masse de l'univers qui nous entoure.

Selon cette théorie, connue comme principe de Mach, c'est l'univers qui nous entoure qui détermine la direction du pendule de Foucault, et régit ainsi les forces d'inertie de la planète responsables de l'aplatissement des pôles. Einstein a repris le principe de Mach et a postulé que l'inertie des corps terrestres n'est qu'une autre manifestation de la gravité, non causé par les étoiles en tant que telles, mais plutôt de leur rotations. C'est la théorie qui prévaut aujourd'hui.

Donc comment la rotation des étoiles donne de l'inertie à mon cendrier reste une pure conjecture. L'inertie est le plus tangible, terre-à-terre, des phénomènes de notre vie quotidienne: vous l'éprouvez chaque fois que vous poussez un meuble. Et pourtant, il a maintenant été démontré que sa résistance aux déplacements est due au fait que nous sommes entouré par la masse en rotation de l'univers.

En 1927, Bertrand Russell, qui souscrivait néanmoins à la relativité einsteinienne, s'est senti poussé à protester ainsi : - On fait valoir que "rotation absolue" peut être remplacée par une "rotation par rapport aux étoiles fixes". Ce qui est formellement correct, mais dire que cette influence vient des étoiles de l'astronomie est scientifiquement incroyable. Whitehead écrit dans la même veine: Il est difficile de prendre au sérieux l'idée que ces phénomènes internes sur terre soient dus à l'influence d'étoiles dans le ciel. Je ne puis me résoudre à croire qu'une petite étoile scintillant dans sa tournée dirige le pendule de Foucault lors de l'exposition de Paris de 1851.

Ainsi, même mon cendrier est un holon, après tout. Ce n'est pas seulement un cendrier ombre sur un bureau ombre Eddington, mais d'une certaine façon, à laquelle ni Einstein ni Mach ne se hasardèrent à donner une explication causale, ses propriétés d'inertie sont reliées à la masse entière de l'univers qui l'entoure. On pourrait aussi bien l'appeler cendrier Mirandole, en se rappelant le passage cité plus tôt: premièrement, il y a l'unité dans les choses où chaque objet est en harmonie avec lui-même, se compose de lui-même, et est cohérent avec lui-même. Deuxièmement, il y a l'unité selon lequel une créature est unie avec les autres, et toutes les parties du monde constituent un tout. C'est le principe même du holon.

Nous avons entendu un choeur entier de lauréats du Nobel de physique nous informer que la matière était morte, de même pour la causalité et le déterminisme. Si c'est le cas, laissez-nous leur donner une sépulture décente, avec un requiem de musique électronique. Il est temps pour nous de tirer les leçons d'un XXe siècle de sciences post-mécanistes et de sortir du carcan que le XIXe siècle matérialiste a imposé à notre perspective philosophique. Paradoxalement, si cette perspective était restée aux côtés de la science moderne elle-même, au lieu de trainer avec un siècle de retard, nous aurions été libérés de cette camisole de force il y a bien longtemps. Il a été dit que la science sait de plus en plus sur de moins en moins. Mais cela s'applique uniquement au processus de spécialisation. On serait tout aussi fondés à dire que nous savons de moins en moins sur de plus en plus.

Cela vaut tout autant pour la procédure de l'unification de la matière et de l'énergie que pour les particules et les ondes, tout ceci dans le delta conceptuel d'une rivière qui se déplace majestueusement dans un océan d'abstractions. Plus la science acquiert des connaissances précises, plus les symboles qu'elle utilise deviennent insaisissables. La chasse au quark commence à ressembler à une quête mystique dans un nuage d'inconnaissance. La science se révèle être la réalisation la plus glorieuse de l'esprit humain - et sa défaite la plus alléchante. Nous sommes devenus bien plus malins depuis Pic de la Mirandole, mais pas beaucoup plus sages quand il s'agit de savoir ce que tout cela signifie. Une fois ceci reconnu, nous pourrions devenir plus réceptifs aux phénomènes qui nous entourent et que de manière unilatérale la science physique nous fait ignorer, pour sentir le courant qui souffle au travers des fentes de l'édifice de la causalité; et accorder plus d'attention aux évènements confluentiels, comprendre les phénomènes paranormaux dans notre concept de normalité, et se rendre compte que nous vivons dans le "royaume des aveugles".

Les conséquences d'un tel changement de conscience ne sont pas prévisibles, et on ne peut s'empêcher de sympathiser avec la déclaration du professeur H. H. Price comme quoi la "recherche psychique est l'une des branches les plus importantes d'enquête que l'esprit humain ait entrepris"; il semble important "de mettre en lumière toute nouvelle sur la nature de la personnalité humaine et sa position dans l'univers", et en même le temps "cela transformera les perspectives et fondations intellectuelles dont dépend toute notre civilisation actuelle".

Ce sont des mots forts d'un professeur d'Oxford en philosophie, mais je ne pense pas qu'il exagère. Ce qu'ils impliquent c'est un plaidoyer pour faire de la parapsychologie, et plus généralement de l'étude de ce que j'ai appelé les "évènements confluentiels" avec un substrat académique respectable et attrayant pour les étudiants, tant professionnels qu'en matières facultatives. Une fois qu'il y aura autant de chercheurs brillants engagés dans ce domaine comme cela existe maintenant pour l'étude de comportements de rats, une percée pourra être en vue. Dans la science-fiction, il est tenu pour acquis que la communication télépathique et la manipulation de la matière psychokinétique seront monnaie courante dans un avenir pas trop lointain, et la science-fiction s'est avéré être une prophétesse étonnamment fiable. Une autre de ses hypothèses courantes est que des êtres intelligents d'autres planètes de l'univers ont une maîtrise avancée de ces méthodes. Il est également possible, cependant, que dans ce domaine particulier, nous soyons une espèce sous-privilégiée - avec nos handicaps propres.

Le grand dessein de l'évolution vers des formes supérieures de l'unité dans la diversité n'exclut pas monstres et autres ratés biologiques, ni leurs évolutions pathologiques. Je ne pense pas que l'univers soit une institution charitable, mais nous devons vivre en lui et en tirer le meilleur parti. Les limites de notre matériel biologique nous condamnent peut-être au simple rôle de spectateurs devant la serrure de l'éternité. Mais au moins, retirons ce qui, devant ou dans la serrure, limite encore notre point de vue. [Note : Dans la vaste littérature sur la parapsychologie contemporaine, j'ai été particulièrement impressionné par les écrits de deux femmes - Rosalind Heywood, à qui ce livre est dédié, et Renee Haynes, auteur de The Hidden Springs et le roi philosophe, et rédactrice en cheffe du Journal de la Society for Psychical Research.

En écrivant cet essai sur un champ où même les anges craignent de marcher, j'ai avancé avec grande prudence, essayant surtout m'en tenir aux résultats expérimentaux de recherche en laboratoire, omettant toutes les soi-disant "preuves anecdotiques" - c'est-à-dire les manifestations spontanées de phénomènes parapsychologiques de la vie courante qui ne constituent pas des preuves au sens strict. En relisant ces pages avant impression, je sentais que ces limites self-imposées donnent lieu à une certaine partialité, et j'ai demandé à Renee Haynes de rétablir l'équilibre sous la forme d'un post-scriptum. Je lui suis donc reconnaissant d'avoir ajouté ainsi une saveur Yin Yang à mon austère travail.

(Post-scriptum par Renee Haynes)

M. Koestler nous a donné un exposé lucide de données modernes comme l'espace, le temps, la matière, la causalité, la neurophysiologie et la recherche psychique. Une remarquable synthèse en émerge. Son concept de "Janus-faced holons" pourrait bien se révéler comme un vrai stimulant pour notre génération comme le fut l'Elan Vital de Bergson pour les penseurs de la première partie du 20ème siècle. Il est à la fois gratifiant et grandiose être mandé pour écrire l'épilogue d'un tel travail, surtout afin qu'il suscite une discussion ultérieure. Si cet épilogue touche parfois à l'argumentaire, j'espère qu'on me le pardonnera.

J'ai été impressionné par la description de M. Koestler de la physique contemporaine. Avec ses termes infiniment abstraits, ses interactions mathématiques vérifiables, son univers visible, la danse de l'énergie, les choses prévisible et les folies imprévisibles, tantôt ici, tantôt là, maintenant nulle part et ensuite de retour, explosant tout le réseau propre à la pensée de Newton. C'est par ailleurs un exemple fascinant de synchronicité que deux physiciens et parapsychologues en viennent à utiliser le terme psi pour indiquer ce qui est encore inconnu; un curieux flash verbal qui pourrait servir à indiquer un terrain d'entente entre les deux disciplines. Pour moi, cependant, comme pour beaucoup d'autres, l'imagerie mathématique qui vient naturellement au calculateur est beaucoup plus difficile à comprendre, à rapporter à l'expérience de vie, que celle donnée par l'impact immédiat des sens.

Il est plus facile pour des gens comme nous de penser dans l'idiome d'une perception "ordinaire", ce processus monnaie courante, que dans le langage de formules algébriques, quelle que soit leur vérité et leur élégance. C'est par l'imagerie de la vue, l'ouïe, le toucher, l'odorat, la température, que la connaissance paranormale, comme la mémoire, apparait souvent dans l'esprit conscient (souvent, mais pas toujours. Ce peut être une impression soudaine que quelque chose s'est passé, ou pas plus qu'une impulsion inexplicable pour agir, courir hors d'une maison qui sera bientôt bombardé, ou entreprendre une tâche fastidieuse de voyage en cross-country pour voir un enfant à l'école, qui se révèle être tout à coup, dangereusement malade. (Cf. Cf. Arm Bridge, Moments of Knowing. London, 1970)

Pour cette raison, je tiens à souligner la valeur des phénomènes spontanés à la recherche psychique. Aussi déroutants, irremplaçables, uniques et personnels que de tels évènements puissent être, fait est qu'ils ne se produisent, que des hallucinations, certaines impressions de veille ou des rêves d'apparence réelle peuvent être mis en corrélation avec des évènements objectifs inconnus à la personne concernée, très éloignée ou il y a longtemps ou pas encore adoptée, a été maintes fois dit clairement, à la fois avant et après l'enquête systématique qui a débuté dans les années 1880. Même maintenant, bien sûr, de tels évènements sont souvent rejetés au mieux comme "anecdotiques", ou comme racontars de vieilles femmes, voire comme absurdités superstitieuses. De même, ce rapport tout à fait exact que les habitants de St. Kilda attrapèrent un rhume que quand un navire vint, fait rapporté par le Dr Johnson comme étant contraire à tout bon sens, ne fut accepté comme un état de fait que quand la théorie des germes de la maladie furent mis en place. Beaucoup de cas spontanés du paranormal - prise de conscience télépathique, "apparitions" perçues alors que la personne "vue" se trouvait en danger ou en train de mourir, apparition soudaine d'une douleur inexplicable au moment où est vécue de façon inattendue par une personne aimée au loin - ont été vérifié et selon des normes de preuve acceptables par une cour de justice. Tout cela donne du poids à un nombre toujours plus grand d'autres cas qui, bien que le narrateur ne le sache pas, tombent dans le même schéma, comme le Dr Louisa Rhine et d'autres l'ont fait remarquer. (Cf. Louisa Rhine, Hidden Channels of the Mind. London, 1962, and G. W. Lambert's Foreword to Andrew MacKenzie, Ghosts and Apparitions. London, 1971.)

La perception extra-sensorielle Spontanée se produit très certainement non seulement chez les humains, qui ont des mots pour décrire leurs expériences, mais chez les animaux, dont les sentiments ne peuvent être évalués que par leur apparence et leur comportement. Ce n'est pas toujours facile à interpréter parce que beaucoup d'entre eux ont des pouvoirs sensoriels qui nous manquent. Des rats adultes, par exemple, peuvent "sentir" les rayons X. Des bébés rongeurs d'une autre race ont été montré comme pouvant communiquer par ultrasons avec leurs mères, comme les dauphins de tous âges le font parfois les uns avec les autres. Ainsi comme il aurait été facile et faux - de produire une explication paranormale à cet épisode observé dans "la maison de l'attaché militaire américain d'une capitale étrangère non identifié". Le chien de la famille, hurlant et gémissant et "de toute évidence en souffrance, semblait être dans un vrai combat contre un ennemi dans le coin de la pièce". Les planchers furent enlevés et on trouva "un dispositif de transmission radio pour toutes les conversations dans la chambre". Lorsqu'il était allumé, il produisait un son trop aigu pour que l'oreille humaine l'entende, mais qui tourmentait le chien.

Mais il y a tout de même, bien authentifiés, des cas de comportement animaux qui semblent seulement donner sens qu'en termes de paranormal. Comme le chien ou le chat domestique qui, pris dans un panier fermé en voiture ou en train sur de longues distances, revient par le plus direct des cross-countries à la maison. Il y a ce récent rapport de la presse française d'un chien appartenant à un ouvrier qui l'avait quitté avec sa famille alors qu'il avait été envoyé dans une autre partie du pays pour une affectation temporaire. Le chien disparut de la maison et plus tard, mince et épuisé, il retrouvait son maître dans un endroit où il n'avait jamais été auparavant. Il y a aussi ces épisodes fréquents dans lesquels chiens ou les chats semblent être au courant de ce qui se passe à distance et deviennent surexcités dans leurs chenils au moment précis où leurs propriétaires commencent leur voyage de retour de vacances. Quelle que soit la distance. Il y a encore cet autre parallèle à faire entre les humains et les autres êtres vivants.

Comme JD Carthy l'a dit: "les animaux ne réagissent pas automatiquement à un signal, mais seulement si leur motivation est grande. Un animal repu ne réagit pas à un appel alimentaire. "M. Koestler a noté un angle différent (p.128 et suivantes) Que cela s'applique à l'homme ainsi que les animaux, dans la vie ordinaire que dans des conditions expérimentales. Ainsi, dans une rue animée d'un petit garçon d'un tour mécanique remarquerez marques de voitures, spécialiste de l'urbanisme de la circulation, une femme anxieuse de se croiser avec un enfant fatigué le mépris collectif impersonnel des pilotes pour ceux pied sur. En est de même de la perception extrasensorielle. En cela aussi, les gens deviennent très conscients de ce qui concerne eux-mêmes et leurs sentiments personnels. Pour évoquer une réponse instantanée forte de toute créature vivante un signal, sensorielle ou extra-sensorielle, doit être pertinente, pertinents aux besoins biologiques, à un stress émotionnel, à ce que Gerard Manley Hopkins appelé paysage intérieur.

C'est bien sûr pourquoi les expériences reproductibles dans la recherche psychique sont si difficiles à atteindre. L'intérêt qui pousse les gens à y participer est érodé par la répétition mécanique ennuyeuse, et l'effet de déclin qui se manifeste, tôt ou tard, en conformité avec les tempéraments, les humeurs et les relations personnelles des personnes concernées. Mis à part l'ennui cumulatif qu'elles engendrent par ailleurs, les expériences avec les cartes, les dés, des lumières et ainsi de suite ne tiennent pas compte de l'ambiance au sein de laquelle fonctionne l'esprit humain. Comme on l'a fait remarquer, "la cognition Paranormale est symbolique d'une manière associative; ainsi, M. Jones pourrait être impliqué dans un rêve ou la cognition paranormale parle d'un lion parce qu'il vit près du zoo, a un tempérament de lion ou une relation appelée Leo.

Pour des cartes à deviner avec un pack ordinaire le percipient pour marquer un coup direct dois dire littéralement "le dix de pique". La remarque "Dix hommes honnêtes" [qui appellent un chat un chat] serait considérée comme totalement hors de propos. Le premier groupe d'expériences au Laboratoire de rêve du Centre Maimonides Medical, * 1 résumée aux pages 37-8, allait dans le sens en vue de corriger cette difficulté, mais leurs résultats, bien que suggestifs, étaient difficiles à évaluer. C'est en partie parce que le pouvoir de visualiser varie donc considérablement d'une personne à une autre. Certaines personnes ont une mémoire photographique, un certain sélective, certains peuvent se rappeler le nom, mais pas les apparences des choses. En plus de tout ça tout le monde perçoit et exprime ses sentiments à travers un réseau d'associations, d'images et de symboles uniques à sa propre personne, d'autres découlent de son modèle de culture, la plupart des événements de sa vie individuelle. Une série d'expériences plus tard * en utilisant des cibles moins spécifiques - et pas seulement des images mais des sujets généraux tels que les religions d'Extrême-Orient, les productions artistiques des schizophrènes, la naissance d'un bébé, toutes illustrées pour l'agent par des vues et des bruits - semble avoir contourné certains des problèmes précédents. Il semble que cette méthode ait vraiment été couronnée de succès dans la communication télépathique sur l'humeur et la qualité d'une expérience. 

Cette question de la qualité par opposition à la mesure dans la recherche psychique comme dans de nombreux autres sujets me semble émerger avec de plus en plus d'urgence. On ne peut pas l'ignorer simplement parce qu'il est mal à l'aise et que c'est difficile à traiter. C'est pertinent pour la science, la philosophie, et tout le concept de synchronicité. Mais (parce que c'est tellement plus facile d'accumuler et de quantifier des données que de réfléchir sur leur signification) les notions de qualité et de sens qui comptent le plus pour les hommes ont tendance à être balayés. C'est une des raisons pourquoi ce livre est si précieux. Il se bat avec sens, intègre des faits.

Pourtant, je tiens à souligner le thème encore plus. La mesurable et le calculable peuvent servir la qualité, mais en diffèrent en nature. "Le son du cor le soir au fond des bois", "L'écume des mers périlleuses dans les terres désolées féeriques", "une profonde et troublante noirceur" - ces phrases peuvent être comprises et expérimentées instantanément en ce sens, mais elles ne sont pas susceptibles d'une analyse scientifique ou de quantification.

De même, vous ne pouvez pas avoir une tonne d'amour (en dépit de la façon dont les filles l'utilisent pour signer leurs lettres), soit un mètre de haine ou un gallon de pétrole de crainte, mais l'amour, la haine et la crainte sont tout aussi réels qu'une tonne de farine, une aune de toile ou d'un gallon d'essence, plus réel en effet, parce qu'ils ont une signification immédiate, ce ne sont pas de simples actions comme faire du pain cas ou remplir un oreiller. C'est une qualité, signifiant, qui clignote comme une étoile filante via la synchronicité, de même que, curieusement, à l'autre bout du spectre psychophysique, ça s'enflamme à travers des phénomènes de poltergeist "maisons hantées" *** maintenant considérés comme un effet de chaos profond ou la misère humaine s'exprime via un mode psychokinétique pas encore compris. Ainsi, grotesque, effrayant maintenant, les bruits, les pluies de pierres, les bouteilles brisées, les ampoules qui explosent, la modification violente inexplicable d'un équipement électrique symbolisent et exprimer plus directement que les mots ou la musique ou la peinture le conflit intérieur et l'agitation de la personne autour de laquelle tout ceci se produit.

Jung interprète ces phénoménal - comme les détonations chez Freud - comme des cas extrêmes de liens "transpsychiques" de causalité. Dans la vie quotidienne, ils se manifestent bien sûr de façon moins spectaculaire. Je décide d'écrire une phrase et le fonctionnement électrique de mon cerveau, le fonctionnement moteur de mes muscles exécutent cette décision via une chaîne traçable de causes physiques, mais c'était ma décision qui a établi le processus en cours. Il est en outre possible que de telles décisions puissent avoir des effets directs sur des processus biologiques qui ne sont pas en contact physique avec le corps du décideur, comme suggéré dans un article récent de John L. Randall sur "les phénomènes psi et théorie biologique" ****, qui fait référence à des travaux expérimentaux testant les effets psychokinétiques sur l'activité enzymatique, sur les paramécies, sur la croissance des plantes, et sur la cicatrisation des lésions chez la souris. Il fournit par ailleurs la jolie définition suivante générale: "Un phénomène psi est dite avoir eu lieu lorsque des informations sont transmises vers un système physique sans utilisation d'aucune forme connue d'énergie physique."

n peut ainsi distinguer entre différents niveaux: conscience de décision; phénomènes de type poltergeist engendré dans les couches subconscientes de la psyché, et enfin la synchronicité et les coïncidences significatives produites par l'esprit opérant à un autre niveau, inconcevable. Dans ce contexte, je pense qu'il me faut exprimer mon désaccord avec M. Koestler sur ce "sentiment océanique" et son " concept dominant" que "tout est un et un est tout" qui "fait écho à travers des écrits des mystiques chrétiens" (p.108).

Je suis sûre que cela arrive, et que, comme il l'écrit, il s'agit d'un passage vers le haut de la spirale de la conscience symbiotique de l'enfant, l'époque dorée du "temps du rêve" du primitif. Mais je ne pense pas que tous les mystiques, chrétiens ou non, partagent cette conception dominante, et le sentiment d'unité avec l'anima mundi que cela sous tende. Ils sont enflammés par une joie presque intolérable, mais ne sont pas engloutis en elle. Il ne peut y avoir de perception sans percepteur, et le contemplatif se perçoit lui-même suffisamment bien pour savoir s'il se réjouit. C'est comme si le coucher du soleil, ou la chaine de montagnes ou la nuit des étoiles qui les avaient mis en admiration se manifestaient comme étant en vie et les regardaient en retour. Il y a cette mémoire d'une remarque sobre de Francis Bacon, avocat, homme politique, essayiste et chercheur, qui évoqua pour la première fois des méthodes expérimentales pour tester en Angleterre la cognition paranormale. "J'aimerai plutôt croire toutes les fables du Talmud et du Coran que penser toute cette trame universelle sans esprit", un esprit qui est plus qu'un ordinateur mathématique et plus qu'un vaste système nerveux automatique, qui animerait tout ce qui est, aussi efficace et aussi inconscient de lui-même qu'une saine digestion.

Auteur: Koestler Arthur

Info: Internet et Roots of coïncidence. *M. Ullman et S. Krippner, études de rêves et de télépathie. Parapsychology Foundation, New York, 1970. **Stanley Krippner et autres, "bombardement sensoriel à longue distance, une étude de l'ESP dans les rêves." JASPR, vol. 65, n ° 4, Octobre 1971. *** Cf. ARG Owen, peut-on expliquer le Poltergeist? New York, 1964. ** "L'affaire Poltergeist Rosenheim", une communication lue par le Dr Hans Bender, le 11e Congrès annuel de l'Association de parapsychologie de Freiburg, Septembre 1968. Voir aussi JSPR., Vol. 46, n ° 750, Décembre 1970. **** SPR, vol. 46, n ° 749, Septembre 1971.

[ Holon ] [ chair-esprit ] [ intégratif ] [ épigénétique ] [ pré-mémétique ] [ homme-animal ] [ curiosité moteur ] [ dépaysement nécessaire ] [ spiritualité ]

 
Commentaires: 1

homme-végétal

Il arrive parfois qu’une personne puisse nommer le moment exact où sa vie a changé de manière irrévocable. Pour Cleve Backster, ce fut tôt le matin du 2 février 1966, treize minutes et cinquante-cinq secondes après le début d'un test polygraphique qu'il administrait. Backster, un expert en polygraphie de premier plan dont le test de comparaison de zones Backster est la norme mondiale en matière de détection de mensonge, avait à ce moment-là menacé le bien-être de son sujet de test. Le sujet répondit électrochimiquement à sa menace. Le sujet était une plante.

Depuis lors, Backster a mené des centaines d’expériences démontrant non seulement que les plantes réagissent à nos émotions et à nos intentions, mais aussi les feuilles coupées, les œufs (fécondés ou non), les yaourts et les échantillons de cellules humaines. Il a découvert, par exemple, que les globules blancs prélevés dans la bouche d'une personne et placés dans un tube à essai réagissent toujours électrochimiquement aux états émotionnels du donneur, même lorsque celui-ci est hors de la pièce, du bâtiment ou de l'État.

J'ai entendu parler du travail de Backster pour la première fois quand j'étais enfant. Ses observations ont confirmé une compréhension que j’avais alors, une compréhension que même un diplôme en physique ne pourrait éradiquer plus tard : que le monde est vivant et sensible.

J'ai parlé avec Backster à San Diego, trente et un ans et vingt-deux jours après sa première observation, et à un continent entier du bureau de Times Square à New York où il avait autrefois travaillé et vécu. Avant de commencer, il a placé du yaourt dans un tube à essai stérilisé, a inséré deux électrodes en or et a allumé la mire d'enregistrement. J'étais excité, mais dubitatif. Nous avons commencé à parler et le stylo s'est tortillé de haut en bas. Puis, juste au moment où je reprenais mon souffle avant d'être en désaccord avec quelque chose qu'il avait dit, le stylo sembla vaciller. Mais est-ce que ça avait vraiment bougé, ou est-ce que je voyais seulement ce que je voulais voir ?

À un moment donné, alors que Backster était hors de la pièce, j'ai essayé d'exprimer ma colère en pensant aux forêts coupées à blanc et aux politiciens qui les sanctionnent, aux enfants maltraités et à leurs agresseurs. Mais la ligne représentant la réponse électrochimique du yaourt est restée parfaitement plate. Peut-être que le yaourt ne m'intéressait pas. Perdant moi-même tout intérêt, j'ai commencé à errer dans le laboratoire. Mes yeux sont tombés sur un calendrier qui, après une inspection plus approfondie, s'est avéré être une publicité pour une compagnie maritime. J’ai ressenti une soudaine montée de colère face à l’omniprésence de la publicité. Puis j'ai réalisé : une émotion spontanée ! Je me suis précipité vers le graphique et j'y ai vu un pic soudain correspondant apparemment au moment où j'avais vu l'annonce.

Au retour de Backster, j’ai continué l’entretien, toujours excité et peut-être un peu moins sceptique.

Jensen : Pouvez-vous nous raconter en détail comment vous avez remarqué pour la première fois une réaction électrochimique dans une plante ?

Backster : C'était une plante de canne à sucre dracaena que j'avais dans mon laboratoire à Manhattan. Les plantes ne m'intéressaient pas particulièrement, mais il y avait une vente suite à une cessation d'activité chez un fleuriste au rez-de-chaussée de l'immeuble, et la secrétaire avait acheté quelques plantes pour le bureau : une plante à caoutchouc et cette dracaena. J'avais arrosé ces plantes jusqu'à saturation – en les mettant sous le robinet jusqu'à ce que l'eau coule du fond des pots – et j'étais curieux de voir combien de temps il faudrait à l'humidité pour atteindre le sommet. J'étais particulièrement intéressé par le dracaena, car l'eau devait remonter le long d'un long tronc, puis ressortir jusqu'au bout des longues feuilles. Je pensais que si je plaçais le détecteur de réponse galvanique cutanée du polygraphe au bout de la feuille, une baisse de résistance serait enregistrée sur le papier à mesure que l'humidité arriverait entre les électrodes.

C’est du moins ma façon de voir les choses. Je ne sais pas s’il y avait une autre raison, plus profonde, à mon action. Il se pourrait que mon subconscient m'ait poussé à faire ça – je ne sais pas.

En tout cas, j’ai remarqué quelque chose sur le graphique qui ressemblait à une réponse humaine sur un polygraphe : ce n’est pas du tout ce à quoi j’aurais pu m’attendre si de l’eau pénétrait dans une feuille. Les détecteurs de mensonge fonctionnent sur le principe selon lequel lorsque les gens perçoivent une menace pour leur bien-être, ils réagissent physiologiquement de manière prévisible. Par exemple, si vous effectuez un test polygraphique dans le cadre d’une enquête pour meurtre, vous pourriez demander à un suspect : " Est-ce vous qui avez tiré le coup mortel ? " Si la vraie réponse était oui , le suspect craindrait de mentir et les électrodes placées sur sa peau détecteraient la réponse physiologique à cette peur. J’ai donc commencé à réfléchir à des moyens de menacer le bien-être de la plante. J’ai d’abord essayé de tremper une de ses feuilles dans une tasse de café chaud. La plante, au contraire, montrait de l’ennui – la ligne sur le graphique continuait de baisser.

Puis, à treize minutes et cinquante-cinq secondes de temps graphique, l'idée m'est venue à l'esprit de brûler la feuille. Je n'ai pas verbalisé l'idée ; Je n'ai pas touché à la plante ; Je n'ai pas touché au matériel. Pourtant, la plante s'est comme affolée. Le stylo a sauté du haut du graphique. La seule chose à laquelle il avait pu réagir était mon image mentale.

Ensuite, j'ai récupéré quelques allumettes sur le bureau de mon secrétaire et, en allumant une, j'ai fait quelques passages sur la feuille. Cependant, j'ai réalisé que je constatais déjà une réaction si extrême qu'aucune augmentation ne serait perceptible. J'ai donc essayé une approche différente : j'ai éloigné la menace en remettant les allumettes sur le bureau du secrétaire. La plante s'est immédiatement calmée.

J’ai tout de suite compris qu’il se passait quelque chose d’important. Je ne trouvais aucune explication scientifique conventionnelle. Il n'y avait personne d'autre dans le laboratoire et je ne faisais rien qui aurait pu déclencher un mécanisme de déclenchement. A partir de ce moment, ma conscience n'a plus été la même. Toute ma vie a été consacrée à étudier ce phénomène.

Après cette première observation, j’ai parlé à des scientifiques de différents domaines pour obtenir leurs explications sur ce qui se passait. Mais cela leur était totalement étranger. J’ai donc conçu une expérience pour explorer plus en profondeur ce que j’ai commencé à appeler la perception primaire.

Jensen : Pourquoi  " perception primaire " ?

Backster : Je ne puis nommer ce dont j'ai été témoin perception extrasensorielle, car les plantes ne possèdent pas la plupart des cinq sens. Cette perception de la part de la plante semblait se produire à un niveau beaucoup plus basique – ou primaire.

Quoi qu’il en soit, ce qui a émergé est une expérience dans laquelle j’ai fait tomber automatiquement les crevettes de saumure, à intervalles aléatoires, dans de l’eau frémissante, tandis que la réaction des plantes était enregistrée à l’autre bout du laboratoire.

Jensen : Comment pouviez-vous savoir si les plantes réagissaient à la mort de la crevette ou à vos émotions ?

Backster : Il est très difficile d'éliminer le lien entre l'expérimentateur et les plantes testées. Même une brève association avec les plantes – quelques heures seulement – ​​suffit pour qu’elles s’adaptent à vous. Ensuite, même si vous automatisez et randomisez l’expérience et quittez le laboratoire, ce qui garantit que vous ignorez totalement le moment où l’expérience commence, les plantes resteront à votre écoute, peu importe où vous irez. Au début, mon partenaire et moi allions dans un bar situé à un pâté de maisons, mais au bout d'un certain temps, nous avons commencé à soupçonner que les plantes réagissaient, non pas à la mort des crevettes saumâtres, mais à l'augmentation et à la diminution du niveau d'excitation dans nos conversations.

Finalement, quelqu'un d'autre a acheté les plantes et les a stockées dans une autre partie du bâtiment. Le jour de l’expérience, nous sommes allés chercher les plantes, les avons amenées, les avons branchées et sommes partis. Cela signifiait que les plantes étaient seules dans un environnement étrange, avec seulement la pression des électrodes et un petit filet d'électricité traversant leurs feuilles. Parce qu’il n’y avait pas d’humains avec lesquels s’harmoniser, elles ont commencé à " regarder autour " de leur environnement. Ce n’est qu’à ce moment-là que quelque chose d’aussi subtil que la mort des artémias a été capté par les plantes.

Jensen : Les plantes s'adaptent-elles uniquement aux humains, ou également aux autres créatures vivantes de leur environnement ?

Backster : Je vais répondre à cette question avec un exemple. Souvent, je branche une plante et je m'occupe de mes affaires, puis j'observe ce qui la fait réagir. Un jour, je faisais bouillir de l'eau dans une bouilloire pour faire du café. Puis j’ai réalisé que j’avais besoin de la bouilloire pour autre chose, alors j’ai versé l’eau bouillante dans l’évier. Le végétal en question, surveillé, a réagi énormément à cela. Maintenant, si vous ne mettez pas de produits chimiques ou d’eau chaude dans l’évier pendant une longue période, une jungle microscopique commence à s’y développer. Il s’est avéré que la plante réagissait à la mort des microbes présents dans les égouts.

À maintes reprises, j'ai été étonné de constater que la capacité de perception s'étend jusqu'au niveau bactérien. Un échantillon de yaourt, par exemple, réagira lorsqu'un autre est nourri, comme pour dire : " Celui-là reçoit de la nourriture. Où est la mienne? " Cela se produit avec un certain degré de répétabilité. Ou si vous déposez des antibiotiques dans l’autre échantillon, le premier échantillon de yaourt montre une énorme réponse à la mort de l’autre. Et il n’est même pas nécessaire qu’il s’agisse de bactéries du même type pour que cela se produise. Mon premier chat siamois ne mangeait que du poulet. J'en gardais un cuit dans le réfrigérateur du laboratoire et en retirais un morceau chaque jour pour nourrir le chat. Au moment où j'arriverais à la fin, la carcasse serait assez vieille et des bactéries auraient commencé à s'y développer. Un jour, j'ai fait brancher du yaourt, et alors que je sortais le poulet du réfrigérateur et commençais à retirer des lanières de viande, le yaourt a répondu. Ensuite, je mets le poulet sous une lampe chauffante pour le ramener à température ambiante.

Jensen : Vous avez visiblement chouchouté votre chat.

Backster : Je n'aurais pas voulu que le chat doive manger du poulet froid ! Quoi qu’il en soit, la chaleur frappant les bactéries a provoqué une énorme réaction dans le yaourt.

Jensen : Comment saviez-vous que vous n'aviez pas d'influence sur cela ?

Backster : Je n’étais pas au courant de la réaction à l’époque. Vous voyez, j'avais installé des commutateurs pip partout dans le laboratoire ; chaque fois que j'effectuais une action, j'appuyais sur un interrupteur, ce qui plaçait une marque sur un tableau distant. Ce n’est que plus tard que j’ai comparé la réaction du yaourt à ce qui s’était passé en laboratoire.

Jensen : Et quand le chat a commencé à ingérer le poulet ?

Backster : Chose intéressante, les bactéries semblent avoir un mécanisme de défense tel qu'un danger extrême les amène dans un état similaire à un choc : en fait, elles s'évanouissent. De nombreuses plantes font cela également ; si vous les harcelez suffisamment, elles se bloquent. C'est apparemment ce que les bactéries ont fait, car dès qu'elles ont touché le système digestif du chat, le signal s'est éteint. À partir de ce moment-là, la ligne est plate.

Jensen : Le Dr David Livingstone, l'explorateur africain, a été mutilé par un lion. Il a déclaré plus tard que lors de l'attaque, il n'avait pas ressenti de douleur, mais plutôt un sentiment de bonheur. Il a dit que cela n'aurait posé aucun problème de se livrer au lion.

Backster : Une fois, j'étais dans un avion et j'avais avec moi un petit compteur à réponse galvanique alimenté par batterie. Juste au moment où les agents de bord commençaient à servir le déjeuner, j'ai dit à l'homme assis à côté de moi : " Vous voulez voir quelque chose d'intéressant ? J'ai mis un morceau de laitue entre les électrodes, et quand les gens ont commencé à manger leurs salades, nous avons eu des réactions, mais elles se sont arrêtées car les feuilles étaient en état de choc. " Attendez qu'ils récupèrent les plateaux ", dis-je, "et voyez ce qui se passe." Lorsque les préposés ont retiré nos repas, la laitue a retrouvé sa réactivité. Le fait est que la laitue passait dans un état de latence pour ne pas souffrir. Quand le danger est parti, la réactivité est revenue. Cet arrêt de l’énergie électrique au niveau cellulaire est lié, je crois, à l’état de choc chez les humains.

Les cellules extérieures au corps réagissent toujours aux émotions que vous ressentez, même si vous êtes à des kilomètres de vous. La plus grande distance que nous avons testée est d’environ trois cents milles.

Jensen : Vous avez donc testé des plantes, des bactéries, des feuilles de laitue. . .

Backster : Et des œufs. J'ai eu un Doberman pinscher pendant un certain temps et je lui donnais un œuf par jour. Un jour, j'avais une plante reliée à un grand compteur à réponse galvanique, et alors que je cassais un œuf pour nourrir le chien, le compteur est devenu fou. Après cela, j’ai passé des centaines d’heures à surveiller les œufs, fécondés et non fécondés, c'est pareil ; c'est toujours une cellule vivante.

Après avoir travaillé avec des plantes, des bactéries et des œufs, j’ai commencé à me demander comment les animaux réagiraient. Mais je n’arrivais pas à faire en sorte qu’un chat ou un chien reste immobile assez longtemps pour effectuer une surveillance significative. J'ai donc pensé essayer les spermatozoïdes humains, qui sont capables de rester vivants en dehors du corps pendant de longues périodes et sont certainement assez faciles à obtenir. Dans cette expérience, l’échantillon du donneur était placé dans un tube à essai doté d’électrodes et le donneur était séparé du sperme par plusieurs pièces. Ensuite, le donneur a inhalé du nitrite d'amyle, qui dilate les vaisseaux sanguins et est classiquement utilisé pour arrêter un accident vasculaire cérébral. Le simple fait d’écraser le nitrite d’amyle a provoqué une réaction importante du sperme, et lorsque le donneur a inhalé, le sperme s’est déchaîné.

Cependant, je ne pouvais pas poursuivre ces recherches. Cela aurait été scientifiquement valable, mais politiquement stupide. Les sceptiques dévoués m'auraient sans doute ridiculisé en me demandant où se trouvait mon masturbatorium, etc.

Puis j’ai rencontré un chercheur dentaire qui avait mis au point une méthode de collecte de globules blancs dans la bouche. C’était politiquement faisable, facile à réaliser et ne nécessitait aucune surveillance médicale. J'ai commencé à faire des expériences enregistrées sur écran partagé, avec l'affichage du graphique superposé au bas d'un écran montrant les activités du donneur. Nous avons prélevé des échantillons de globules blancs, puis renvoyé les gens chez eux pour regarder un programme télévisé présélectionné susceptible de susciter une réaction émotionnelle – par exemple, montrer à un vétéran de Pearl Harbor un documentaire sur les attaques aériennes japonaises. Ce que nous avons découvert, c'est que les cellules situées à l'extérieur du corps réagissent toujours aux émotions que vous ressentez, même si elles sont à des kilomètres de vous.

La plus grande distance que nous avons testée est d’environ trois cents milles. Brian O'Leary, qui a écrit Exploring Inner and Outer Space , a laissé ses globules blancs ici à San Diego, puis s'est envolé pour Phoenix. En chemin, il a gardé une trace des événements qui l'avaient agacé, en notant soigneusement l'heure de chacun. La corrélation est restée, même sur cette distance.

Jensen : Les implications de tout cela...

Backster : – sont stupéfiantes, oui. J'ai des tiroirs remplis de données anecdotiques de haute qualité montrant à maintes reprises comment les bactéries, les plantes, etc. sont toutes incroyablement en harmonie les unes avec les autres. Les cellules humaines ont elles aussi cette capacité de perception primaire, mais d'une manière ou d'une autre, elle s'est perdue au niveau conscient. Ou peut-être n’avons-nous jamais eu un tel talent.

Je soupçonne que lorsqu’une personne est suffisamment avancée spirituellement pour gérer de telles perceptions, elle sera correctement à l’écoute. En attendant, il serait peut-être préférable de ne pas être à l’écoute, à cause des dommages que nous pourrions causer en manipulant mal les informations reçues.

Nous avons tendance à nous considérer comme la forme de vie la plus évoluée de la planète. C'est vrai, nous réussissons très bien dans nos efforts intellectuels. Mais ce n’est peut-être pas le critère ultime permettant de juger. Il se pourrait que d’autres formes de vie soient plus avancées spirituellement. Il se pourrait également que nous nous approchons de quelque chose qui nous permettra d'améliorer notre perception en toute sécurité. De plus en plus de personnes travaillent ouvertement dans ces domaines de recherche encore marginalisés. Par exemple, avez-vous entendu parler du travail de Rupert Sheldrake avec les chiens ? Il installe une caméra d'enregistrement du temps sur le chien à la maison et sur le compagnon humain au travail. Il a découvert que, même si les gens rentrent du travail à une heure différente chaque jour, au moment où la personne quitte le travail, le chien de la maison se dirige vers la porte.

Jensen : Comment la communauté scientifique a-t-elle accueilli votre travail ?

Backster : À l’exception de scientifiques marginalisés comme Sheldrake, la réponse a été d’abord la dérision, puis l’hostilité, et maintenant surtout le silence.

Au début, les scientifiques appelaient la perception primaire " l’effet Backster ", espérant peut-être pouvoir banaliser les observations en leur donnant le nom de cet homme sauvage qui prétendait voir des choses qui avaient échappé à la science dominante. Le nom est resté, mais comme la perception primaire ne peut pas être facilement écartée, ce n'est plus un terme de mépris.

Au moment même où les scientifiques ridiculisaient mon travail, la presse populaire lui prêtait une très grande attention, dans des dizaines d'articles et dans des livres, comme The Secret Life of Plants de Peter Tompkins . Je n’ai jamais demandé aucune attention et je n’en ai jamais profité. Les gens sont toujours venus me chercher des informations.

Pendant ce temps, la communauté botanique était de plus en plus mécontente. Ils voulaient " aller au fond de toutes ces absurdités " et prévoyaient de résoudre le problème lors de la réunion de 1975 de l’Association américaine pour l’avancement de la science à New York. Arthur Galston, un botaniste bien connu de l'Université de Yale, a réuni un groupe restreint de scientifiques pour, à mon avis, tenter de discréditer mon travail ; il s’agit d’une réponse typique de la communauté scientifique aux théories controversées. J'avais déjà appris qu'on ne se lance pas dans ces combats pour gagner ; vous y allez pour survivre. Et c’est exactement ce que j’ai pu faire.

Ils en sont maintenant arrivés au point où ils ne peuvent plus contrer mes recherches, leur stratégie consiste donc simplement à m'ignorer et à espérer que je m'en aille. Bien sûr, cela ne fonctionne pas non plus.

Jensen : Quelle est leur principale critique ?

Backster : Le gros problème – et c’est un gros problème en ce qui concerne la recherche sur la conscience en général – est la répétabilité. Les événements que j'ai observés ont tous été spontanés. Elles doivent être. Si vous les planifiez à l'avance, vous les avez déjà modifiés. Tout se résume à ceci : répétabilité et spontanéité ne font pas bon ménage, et aussi longtemps que les membres de la communauté scientifique insisteront trop sur la répétabilité dans la méthodologie scientifique, ils n’iront pas très loin dans la recherche sur la conscience.

Non seulement la spontanéité est importante, mais l’intention l’est aussi. Vous ne pouvez pas faire semblant. Si vous dites que vous allez brûler une feuille sur la plante, mais que vous ne le pensez pas, rien ne se passera. J'entends constamment des gens de tout le pays vouloir savoir comment provoquer des réactions chez les plantes. Je leur dis : " Ne faites rien. Allez à votre travail; prenez des notes sur ce que vous faites à des moments précis et comparez-les plus tard à votre enregistrement graphique. Mais ne planifiez rien, sinon l’expérience ne fonctionnera pas. " Les gens qui font cela obtiennent souvent les mêmes résultats que moi et remportent le premier prix aux expo-sciences. Mais lorsqu'ils arrivent au cours de biologie 101, on leur dit que ce qu'ils ont vécu n'est pas important.

Il y a eu quelques tentatives de la part des scientifiques pour reproduire mon expérience avec les crevettes Artemia, mais elles se sont toutes révélées inadéquates sur le plan méthodologique. Lorsqu’ils ont appris qu’ils devaient automatiser l’expérience, ils se sont simplement rendus de l’autre côté d’un mur et ont utilisé la télévision en circuit fermé pour regarder ce qui se passait. De toute évidence, ils ne retiraient pas leur conscience de l’expérience, il leur était donc très facile d’échouer. Et soyons honnêtes : certains scientifiques ont été soulagés lorsqu’ils ont échoué, car le succès aurait été contraire à l’ensemble des connaissances scientifiques.

Jensen : L'accent mis sur la répétabilité semble anti-vie, car la vie elle-même n'est pas reproductible. Comme Francis Bacon l’a clairement indiqué, la répétabilité est inextricablement liée au contrôle, et le contrôle est fondamentalement l’essence même de la science occidentale, de la culture occidentale. Pour que les scientifiques abandonnent la répétabilité, ils devraient abandonner le contrôle, ce qui signifie qu’ils devraient abandonner la culture occidentale, et cela n’arrivera pas tant que cette civilisation ne s’effondrera pas sous le poids de ses propres excès écologiques.

Backster : J’ai renoncé à lutter contre d’autres scientifiques sur ce point. Mais je sais que s’ils réalisent mon expérience, même si elle échoue, ils verront quand même des choses qui changeront leur conscience. Ils ne seront plus jamais tout à fait les mêmes.

Des gens qui n’auraient rien dit il y a vingt ans me disent souvent : " Je pense que je peux maintenant vous dire en toute sécurité à quel point vous avez vraiment changé ma vie avec ce que vous faisiez au début des années soixante-dix. " À l’époque, ces scientifiques ne pensaient pas avoir le luxe de faire bouger les choses ; leur crédibilité, et donc leurs demandes de subvention, en auraient été affectées.

Jensen : En regardant votre travail, nous sommes confrontés à plusieurs options : Nous pouvons croire que vous mentez, ainsi que tous ceux qui ont déjà fait des observations similaires. On peut croire que ce que vous dites est vrai, ce qui nécessiterait de retravailler toute la notion de répétabilité dans la méthode scientifique, ainsi que nos notions de conscience, de communication, de perception, etc. Ou bien on peut croire que vous avez commis une erreur. Est-il possible que vous ayez négligé une explication strictement mécaniste de vos observations ? Un scientifique a dit qu’il devait y avoir un fil lâche dans votre détecteur de mensonge.

Backster : En trente et un ans de recherche, c'est comme si j'avais " desserré tous les noeuds ". Non, je ne vois aucune solution mécaniste. Certains parapsychologues pensent que je maîtrise l'art de la psychokinésie, que je fait bouger les aiguilles et autres indicateurs avec mon esprit – ce qui serait en soi une très bonne astuce. Mais ils négligent le fait que j'ai automatisé et randomisé de nombreuses expériences, de sorte que je ne suis même conscient de ce qui se passe que plus tard, lorsque j'étudie les graphiques et les bandes vidéo qui en résultent. Les explications conventionnelles sont devenues assez minces. L’une de ces explications, proposée dans un article du Harper’s, était l’électricité statique : si vous vous déplacez à travers la pièce et touchez la plante, vous obtenez une réponse. Mais bien sûr, je touche rarement la plante pendant l'observation, et de toute façon cette réaction serait totalement différente.

Jensen : Alors, quel est le signal capté par la plante ?

Backster : Je ne sais pas. Quoi qu’il en soit, je ne crois pas que le signal se dissipe à distance, comme ce serait le cas si nous avions affaire à un phénomène électromagnétique. Le signal de Phoenix, par exemple, était aussi fort que si Brian O'Leary avait été dans la pièce voisine.

Nous avons également tenté d'obstruer le signal à l'aide de plomb et d'autres matériaux, mais nous ne pouvons pas l'arrêter. Cela me fait penser que le signal ne va pas réellement d'ici à là, mais se manifeste plutôt à différents endroits. Je soupçonne que le signal ne prend pas de temps pour se déplacer. Il n'y a aucun moyen, en utilisant les distances terrestres, de tester cela, car si le signal était électromagnétique, il se propagerait à la vitesse de la lumière, et les retards biologiques consommeraient plus que la fraction de seconde qu'il faudrait au signal pour se propager. La seule façon de tester cela serait dans l’espace.

Certains physiciens quantiques soutiennent cette conviction – selon laquelle le signal ne dépend ni du temps ni de la distance. Il existe une théorie quantique appelée théorème de Bell, qui stipule que deux atomes éloignés l'un de l'autre changent parfois simultanément la direction de leur rotation.

Bien entendu, tout cela nous amène fermement sur le territoire du métaphysique et du spirituel. Pensez à la prière, par exemple. Si vous deviez prier Dieu, et que Dieu se trouvait de l’autre côté de la galaxie, et que votre prière voyageait à la vitesse de la lumière, vos os seraient depuis longtemps poussière avant que Dieu puisse répondre. Mais si Dieu – quelle que soit la manière dont vous définissez Dieu – est partout, la prière n'a pas besoin de voyager.

Jensen : Soyons plus concrets. Vous avez une image mentale de la plante en train de brûler et la plante réagit. Que se passe-t-il précisément à cet instant ? Comment la plante sait-elle réagir ?

Backster : Je ne prétends pas savoir. En fait, j’ai attribué une grande partie de ma réussite à pouvoir rester actif dans ce domaine – et à ne pas avoir été discrédité – au fait que je ne prétends pas le savoir. Vous voyez, si je donne une explication erronée, peu importe la quantité de données dont je dispose ou le nombre d’observations de qualité que j’ai faites. La communauté scientifique dominante utilisera l’explication incorrecte comme excuse pour rejeter mes données et mes observations. J'ai donc toujours dit que je ne savais pas comment cela se produisait. Je suis un expérimentateur, pas un théoricien.

Jensen : La capacité des plantes à percevoir l'intention me suggère une redéfinition radicale de la conscience.

Backster : Vous voulez dire que cela supprimerait la notion de conscience comme quelque chose sur lequel les humains ont le monopole ?

Jensen : Les humains et autres animaux dits supérieurs. Selon la pensée occidentale, parce que les plantes n’ont pas de cerveau, elles ne peuvent pas avoir de conscience.

Backster : Je pense que la science occidentale exagère le rôle du cerveau dans la conscience. Des livres entiers ont été écrits sur la conscience de l’atome. La conscience pourrait exister à un tout autre niveau. De très bonnes recherches ont été réalisées sur la survie de la conscience après la mort corporelle. Tout cela pointe vers l’idée selon laquelle la conscience n’a pas besoin d’être spécifiquement liée à la matière grise. Cette notion est une autre camisole de force dont nous devons nous débarrasser. Le cerveau a peut-être quelque chose à voir avec la mémoire, mais on peut affirmer avec force qu’une grande partie de notre mémoire n’y est pas stockée.

Jensen : La notion de mémoire corporelle est familière à tout athlète : lorsque vous vous entraînez, vous essayez de créer des souvenirs dans vos muscles.

Backster : Le cerveau ne fait peut-être même pas partie de cette boucle.

Jensen : J'ai également lu des articles sur les séquelles physiologiques des traumatismes – maltraitance des enfants, viol, guerre. De nombreuses recherches montrent que le traumatisme s’imprime sur différentes parties du corps ; une victime de viol pourrait plus tard ressentir une brûlure dans son vagin, par exemple.

Backster : Si je me cogne, j'explique aux tissus de cette zone ce qui s'est passé. Je ne sais pas à quel point cette méthode de guérison est efficace, mais elle ne peut pas faire de mal.

Jensen : Avez-vous également travaillé avec ce que l'on appelle normalement des matériaux inanimés ?

Backster : J'ai déchiqueté certaines substances et je les ai mises en suspension dans de la gélose. Je reçois des signaux électriques, mais ils ne sont pas nécessairement liés à quoi que ce soit qui se passe dans l'environnement. Les schémas sont trop grossiers pour que je puisse les déchiffrer. Mais je soupçonne que la conscience est plus répandue.

En 1987, j'ai participé à un programme de l'Université du Missouri qui comprenait une conférence du Dr Sidney Fox, qui était alors lié à l'Institut pour l'évolution moléculaire et cellulaire de l'Université de Miami. Fox avait enregistré des signaux électriques provenant d’un matériau semblable à une protéine qui présentait des propriétés étonnamment similaires à celles des cellules vivantes. La simplicité du matériel qu'il a utilisé et la capacité d'auto-organisation dont il fait preuve me suggèrent que la biocommunication était présente dès les tout premiers stades de l'évolution de la vie sur cette planète.

Bien sûr, l’hypothèse de Gaia – selon laquelle la Terre est un grand, grand organisme fonctionnel – s’inscrit parfaitement dans ce contexte. La planète va avoir le dernier mot concernant les dégâts que les humains lui infligent. Il ne lui faudra qu'un certain nombre d'abus, et alors il pourrait bien roter et renifler un peu, et détruire une bonne partie de la population. Je ne pense pas qu'il serait exagéré de pousser l'hypothèse un peu plus loin et d'attribuer une telle stratégie de défense à une sorte d'intelligence planétaire.

Jensen : Comment votre travail a-t-il été reçu dans d'autres parties du monde ?

Backster : Les Russes ont toujours été très intéressés et n'ont pas eu peur de s'aventurer dans ces domaines de recherche. À bien des égards, ils semblent beaucoup plus sensibles aux concepts spirituels que la plupart des scientifiques occidentaux. Et chaque fois que je parle de ce que je fais avec des scientifiques indiens – bouddhistes ou hindous –, ils me demandent : " Qu’est-ce qui vous a pris autant de temps ? " Mon travail s'accorde très bien avec de nombreux concepts adoptés par l'hindouisme et le bouddhisme.

Jensen : De quoi avons-nous peur, nous, les Occidentaux ?

Backster : La crainte est que, si ce que j’observe est exact, bon nombre des théories sur lesquelles nous avons construit nos vies doivent être complètement remaniées. J'ai connu des biologistes dire : " Si Backster a raison, nous sommes dans la merde . " Cela signifierait une refonte radicale de notre place dans le monde. Je pense que nous le voyons déjà.

Notre communauté scientifique occidentale en général se trouve dans une situation difficile car, pour maintenir notre mode de pensée scientifique actuel, nous devons ignorer une énorme quantité d’informations. Et de plus en plus d’informations de ce type sont recueillies en permanence. Les chercheurs butent partout sur ce phénomène de biocommunication. Il semble impossible, compte tenu de la sophistication des instruments modernes, de passer à côté de cette harmonisation fondamentale entre les êtres vivants. Seulement pendant un certain temps, ils pourront prétendre qu’il s’agit que de " cables déconnectés ".

Auteur: Internet

Info: Les plantes réagissent - Une entrevue avec Cleve Backster, Derrick Jensen,  Juillet 1997 - https://www.thesunmagazine.org/

[ télépathie ] [ adéquation corps-esprit ] [ universel esprit ] [ ego prison ]

 
Commentaires: 1
Ajouté à la BD par Le sous-projectionniste

chronos

Il est difficile d'imaginer un univers atemporel, non pas parce que le temps est un concept techniquement complexe ou philosophiquement insaisissable mais pour une raison plus structurelle.

Imaginer la non temporalité implique que le temps s'écoule. Même lorsqu'on essayez d'imaginer son absence, on le sent passer à mesure que nos pensées changent, que notre cœur pompe le sang vers votre cerveau et que les images, sons et odeurs bougent autour de nous. Le temps semble ne jamais s'arrêter. On peut même avoir l'impression d'être tissé dans son tissu en un perpétuel mouvement, alors que l'Univers se contracte et se rétracte. Mais est-ce vraiment ainsi que le temps fonctionne ?

Selon Albert Einstein, notre expérience du passé, du présent et du futur n'est rien d'autre qu'une "illusion obstinément persistante". Selon Isaac Newton, le temps n'est rien d'autre qu'une toile de fond, en dehors de la vie. Et selon les lois de la thermodynamique, le temps n'est rien d'autre que de l'entropie et de la chaleur. Dans l'histoire de la physique moderne, il n'y a jamais eu de théorie largement acceptée dans laquelle un sens du temps mobile et directionnel soit fondamental. Nombre de nos descriptions les plus fondamentales de la nature - des lois du mouvement aux propriétés des molécules et de la matière - semblent exister dans un univers où le temps ne s'écoule pas vraiment. Cependant, des recherches récentes menées dans divers domaines suggèrent que le mouvement du temps pourrait être plus important que la plupart des physiciens ne l'avaient supposé.

Une nouvelle forme de physique appelée théorie de l'assemblage suggère que le sens d'un temps en mouvement et directionnel est réel et fondamental. Elle suggère que les objets complexes de notre univers qui ont été fabriqués par la vie, y compris les microbes, les ordinateurs et les villes, n'existent pas hors du temps : impossibles sans un mouvement temporel. De ce point de vue, le passage du temps n'est pas seulement intrinsèque à l'évolution de la vie ou à notre expérience de l'univers. Il est aussi le tissu matériel en perpétuel mouvement de l'Univers lui-même. Le temps est un objet. Il a une taille physique, comme l'espace. Il peut être mesuré au niveau moléculaire dans les laboratoires.

L'unification du temps et de l'espace a radicalement changé la trajectoire de la physique au 20e siècle. Elle a ouvert de nouvelles perspectives sur la façon dont nous concevons la réalité. Que pourrait faire l'unification du temps et de la matière à notre époque ? Que se passe-t-il lorsque le temps est un objet ?

Pour Newton, le temps était fixe. Dans ses lois du mouvement et de la gravité, qui décrivent comment les objets changent de position dans l'espace, le temps est une toile de fond absolue. Le temps newtonien passe, mais ne change jamais. Cette vision temporelle perdure dans la physique moderne - même dans les fonctions d'onde de la mécanique quantique, le temps reste une toile de fond et non une caractéristique fondamentale. Pour Einstein, cependant, le temps n'est pas absolu. Il était relatif à chaque observateur. Il a décrit notre expérience du temps qui passe comme "une illusion obstinément persistante". Le temps einsteinien est mesuré par le tic-tac des horloges ; l'espace est mesuré par le tic-tac des règles qui enregistrent les distances. En étudiant les mouvements relatifs des horloges et des règles, Einstein a pu combiner les concepts de mesure de l'espace et du temps en une structure unifiée que nous appelons aujourd'hui "espace-temps". Dans cette structure, l'espace est infini et tous les points existent en même temps. Mais le temps, tel que décrit par Einstein, possède également cette propriété, ce qui signifie que tous les temps - passé, présent et futur - sont pareillement vrais. Le résultat est parfois appelé "univers bloc", qui contient tout ce qui s'est passé et se passera dans l'espace et le temps. Aujourd'hui, la plupart des physiciens soutiennent  cette notion d'univers-bloc.

Mais l'univers-bloc avait été fissuré avant même d'exister. Au début du XIXe siècle, près d'un siècle avant qu'Einstein ne développe le concept d'espace-temps, Nicolas Léonard Sadi Carnot et d'autres physiciens s'interrogeaient déjà sur l'idée que le temps était soit une toile de fond, soit une illusion. Ces questions se poursuivront au XIXe siècle, lorsque des physiciens tels que Ludwig Boltzmann commenceront à s'intéresser aux problèmes posés par une technologie d'un genre nouveau : la machine (engine - ou moteur : nous par exemple)

Bien que les machines puissent être reproduites mécaniquement, les physiciens ne savent pas exactement comment elles fonctionnent. La mécanique newtonienne est réversible, ce qui n'est pas le cas des machines. Le système solaire de Newton fonctionnait aussi bien en avançant qu'en reculant dans le temps. En revanche, si vous conduisez une voiture et qu'elle tombe en panne d'essence, vous ne pouvez pas faire tourner le moteur en marche arrière, récupérer la chaleur générée et désenflammer le carburant. Les physiciens de l'époque pensaient que les moteurs devaient obéir à certaines lois, même si ces lois étaient inconnues. Ils ont découvert que les moteurs ne fonctionnaient pas si le temps ne s'écoulait pas et n'avait pas de direction. En exploitant les différences de température, les moteurs entraînent un mouvement de chaleur des parties chaudes vers les parties froides. Plus le temps passe, plus la différence de température diminue et moins le "travail" peut être effectué. Telle est l'essence de la deuxième loi de la thermodynamique (également connue sous le nom de loi de l'entropie) qui fut proposée par Carnot et expliquée plus tard de manière statistique par Boltzmann. Cette loi décrit la manière dont un moteur peut effectuer moins de "travail" utile au fil du temps. Vous devez de temps en temps faire le plein de votre voiture, et l'entropie doit toujours être en augmentation.

Vivons-nous vraiment dans un univers qui n'a pas besoin du temps comme caractéristique fondamentale ?

Tout ça a du sens dans le contexte des machines ou d'autres objets complexes, mais n'est pas utile lorsqu'il s'agit d'une simple particule. Parler de la température d'une seule particule n'a aucun sens, car la température est un moyen de quantifier l'énergie cinétique moyenne de nombreuses particules. Dans les lois de la thermodynamique, l'écoulement et la directionnalité du temps sont considérés comme une propriété émergente plutôt que comme une toile de fond ou une illusion - une propriété associée au comportement d'un grand nombre d'objets. Bien que la théorie thermodynamique ait introduit la notion de directionnalité du temps, cette propriété n'était pas fondamentale. En physique, les propriétés "fondamentales" sont réservées aux propriétés qui ne peuvent être décrites par d'autres termes. La flèche du temps en thermodynamique est donc considérée comme "émergente" parce qu'elle peut être expliquée en termes de concepts plus fondamentaux, tels que l'entropie et la chaleur.

Charles Darwin, qui vécut et travailla entre l'ère de la machine à vapeur de Carnot et l'émergence de l'univers en bloc d'Einstein, fut un des premiers à voir clairement comment la vie doit exister dans le temps. Dans la dernière phrase de L'origine des espèces (1859), il résume avec éloquence cette perspective : "Alors que cette planète a continué de tourner selon la loi fixe de la gravité, à partir d'un commencement aussi simple... des formes infinies, les plus belles et les plus merveilleuses, ont été et sont en train d'évoluer". L'arrivée des "formes infinies" de Darwin ne peut s'expliquer que dans un univers où le temps existe et possède une direction claire.

Au cours des derniers milliards d'années, la vie a évolué d'organismes unicellulaires vers des organismes multicellulaires complexes. Elle est passée de sociétés simples à des villes grouillantes et, aujourd'hui, à une planète potentiellement capable de reproduire sa vie sur d'autres mondes. Ces choses mettent du temps à apparaître parce qu'elles ne peuvent émerger qu'à travers les processus de sélection et d'évolution.

Nous pensons que l'intuition de Darwin n'est pas assez profonde. L'évolution décrit avec précision les changements observés dans les différentes formes de vie, mais elle fait bien plus que cela : c'est le seul processus physique de notre univers qui peut générer les objets que nous associons à la vie. Qu'il s'agisse de bactéries, de chats et d'arbres, mais aussi de choses telles que des fusées, des téléphones portables et des villes. Aucun de ces objets n'apparaît spontanément par fluctuation, contrairement à ce que prétendent les ouvrages de physique moderne. Ces objets ne sont pas le fruit du hasard. Au contraire, ils ont tous besoin d'une "mémoire" du passé pour être fabriqués dans le présent. Ils doivent être produits au fil du temps - un temps qui avance continuellement. Pourtant, selon Newton, Einstein, Carnot, Boltzmann et d'autres, le temps est soit inexistant, soit simplement émergent.

Les temps de la physique et de l'évolution sont incompatibles. Mais cela n'a pas toujours été évident parce que physique et évolution traitent de types d'objets différents.  La physique, en particulier la mécanique quantique, traite d'objets simples et élémentaires : quarks, leptons et  autres particules porteuses de force du modèle standard. Ces objets étant considérés comme simples, l'Univers n'a pas besoin de "mémoire" pour les fabriquer (à condition que l'énergie et les ressources disponibles soient suffisantes). La "mémoire" est un moyen de décrire l'enregistrement des actions ou des processus nécessaires à la fabrication d'un objet donné. Lorsque nous abordons les disciplines qui traitent de l'évolution, telles que la chimie et la biologie, nous trouvons des objets trop complexes pour être produits en abondance instantanément (même lorsque l'énergie et les matériaux sont disponibles). Ils nécessitent une mémoire, accumulée au fil du temps, pour être produits. Comme l'a compris Darwin, certains objets ne peuvent voir le jour que grâce à l'évolution et à la sélection de certains "enregistrements" de la mémoire pour les fabriquer.

Cette incompatibilité crée un ensemble de problèmes qui ne peuvent être résolus qu'en s'écartant radicalement de la manière dont la physique aborde actuellement le temps, en particulier si nous voulons expliquer la vie. Si les théories actuelles de la mécanique quantique peuvent expliquer certaines caractéristiques des molécules, comme leur stabilité, elles ne peuvent pas expliquer l'existence de l'ADN, des protéines, de l'ARN ou autres molécules grands et complexes. De même, la deuxième loi de la thermodynamique est censée donner lieu à la flèche du temps et à des explications sur la manière dont les organismes convertissent l'énergie, mais elle n'explique pas la directionnalité du temps, dans laquelle des formes infinies se construisent sur des échelles de temps évolutives sans que soit en vue l'équilibre final ou la mort thermique de la biosphère. La mécanique quantique et la thermodynamique sont nécessaires pour expliquer certaines caractéristiques de la vie, mais elles ne sont pas suffisantes.

Ces problèmes et d'autres encore nous ont amenés à développer une nouvelle façon de penser la physique du temps, que nous avons appelée la théorie de l'assemblage. Cette théorie décrit la quantité de mémoire nécessaire pour qu'une molécule ou une combinaison de molécules - les objets dont est faite la vie - vienne à l'existence. Dans la théorie de l'assemblage, cette mémoire est mesurée au cours du temps en tant que caractéristique d'une molécule, en mettant l'accent sur la mémoire minimale requise pour que cette (ou ces) molécule(s) puisse(nt) voir le jour. La théorie de l'assemblage quantifie la sélection en faisant du temps une propriété des objets qui n'ont pu émerger que par l'évolution.

Nous avons commencé à développer cette nouvelle physique en examinant comment la vie émerge par le biais de changements chimiques. La chimie de la vie fonctionne de manière combinatoire : les atomes se lient pour former des molécules, et les combinaisons possibles augmentent avec chaque liaison supplémentaire. Ces combinaisons sont réalisées à partir d'environ 92 éléments naturels, dont les chimistes estiment qu'ils peuvent être combinés pour construire jusqu'à 10 puissance 60 de molécules différentes  (1 suivi de 60 zéros). Pour devenir utile, chaque combinaison individuelle devrait être répliquée des milliards de fois - pensez au nombre de molécules nécessaires pour fabriquer ne serait-ce qu'une seule cellule, sans parler d'un insecte ou d'une personne. Faire des copies de tout objet complexe prend donc du temps car chaque étape nécessaire à son assemblage implique une recherche dans l'immensité de l'espace combinatoire pour sélectionner les molécules qui prendront une forme physique.

Les espaces à structure combinatoire semblent apparaître lorsque la vie existe.

Prenons les protéines macromoléculaires que les êtres vivants utilisent comme catalyseurs dans les cellules. Ces protéines sont fabriquées à partir d'éléments moléculaires plus petits appelés acides aminés, qui se combinent pour former de longues chaînes dont la longueur varie généralement entre 50 et 2 000 acides aminés. Si toutes les protéines possibles d'une longueur de 100 acides aminés étaient assemblées à partir des 20 acides aminés les plus courants qui forment les protéines, le résultat ne remplirait pas seulement notre univers, mais 10 (puissance 23 ) univers.

Il est difficile d'imaginer le champ de toutes les molécules possibles.  À titre d'analogie, considérons les combinaisons qu'on peut réaliser avec un jeu de briques donné genre Lego. Si le jeu ne contient que deux briques, le nombre de combinaisons sera faible. En revanche, si le jeu contient des milliers de pièces, comme  un modèle Lego de 5 923 pièces du Taj Mahal, le nombre de combinaisons possibles est astronomique. Si vous deviez spécifiquement construire le Taj Mahal en suivant les instructions, l'espace des possibilités devient limité, mais si vous pouviez construire n'importe quel objet Lego avec ces 5 923 pièces, il y aurait une explosion combinatoire des structures possibles qui pourraient être construites - les possibilités augmentant de manière exponentielle avec chaque bloc supplémentaire que vous ajouteriez. Si vous connectez chaque seconde deux structures Lego préalablement construites, vous ne pourriez pas explorer toutes les possibilités d'objets de la taille du jeu Lego Taj Mahal avant la fin de l'univers. En fait, tout espace construit de manière combinatoire, même à partir de quelques blocs de construction simples, aura cette propriété. Idée qui inclut tous les objets cellulaires possibles construits à partir de la chimie, tous les organismes possibles construits à partir de différents types de cellules, tous les langages possibles construits à partir de mots ou d'énoncés, et tous les programmes informatiques possibles construits à partir de tous les jeux d'instructions possibles.

Le schéma est le suivant : les espaces combinatoires semblent se manifester lorsque la vie existe. En d'autres termes, la vie ne devient évidente que lorsque le champ des possibles est si vaste que l'univers est obligé de ne sélectionner qu'une partie de cet espace pour exister. La théorie de l'assemblage vise à formaliser cette idée. Dans la théorie de l'assemblage, les objets sont construits de manière combinatoire à partir d'autres objets et, tout comme vous pouvez utiliser une règle pour mesurer la taille d'un objet donné dans l'espace, la théorie de l'assemblage fournit une mesure - appelée "indice d'assemblage" - pour mesurer la taille d'un objet dans le temps.

Partant de cette analogie, l'ensemble Lego Taj Mahal équivaut à une molécule complexe. La reproduction d'un objet spécifique, comme un jeu de Lego, d'une manière qui n'est pas aléatoire, nécessite une sélection dans l'espace de tous les objets possibles. En d'autres termes, à chaque étape de la construction, des objets ou des ensembles d'objets spécifiques doivent être sélectionnés parmi le grand nombre de combinaisons possibles qui pourraient être construites. Outre la sélection, la "mémoire" est également nécessaire : les objets existants doivent contenir des informations pour assembler le nouvel objet spécifique, qui est mis en œuvre sous la forme d'une séquence d'étapes pouvant être accomplies en un temps fini, comme les instructions requises pour construire le Taj Mahal en Lego. Les objets plus complexes nécessitent davantage de mémoire pour voir le jour.

Dans la théorie de l'assemblage, les objets gagnent en complexité au fil du temps grâce au processus de sélection. Au fur et à mesure que les objets deviennent plus complexes, leurs parties uniques augmentent, ce qui signifie que la mémoire locale doit également augmenter. "Mémoire locale" qui est la chaîne causale d'événements qui font que l'objet est d'abord "découvert" ou "émergé" via la sélection, puis créé en plusieurs exemplaires. Par exemple, dans le cadre de la recherche sur l'origine de la vie, les chimistes étudient comment les molécules s'assemblent pour devenir des organismes vivants. Pour qu'un système chimique émerge spontanément en tant que "vie", il doit s'auto-reproduire en formant, ou en catalysant, des réseaux de réactions chimiques auto-entretenus. Mais comment le système chimique "sait-il" quelles combinaisons faire ? Nous pouvons voir une "mémoire locale" à l'œuvre dans ces réseaux de molécules qui ont "appris" à se lier chimiquement de certaines manières. À mesure que les exigences en matière de mémoire augmentent, la probabilité qu'un objet ait été produit par hasard tombe à zéro, car le nombre de combinaisons alternatives qui n'ont pas été sélectionnées est tout simplement trop élevé. Un objet, qu'il s'agisse d'un Lego Taj Mahal ou d'un réseau de molécules, ne peut être produit et reproduit qu'avec une mémoire et un processus de construction. Mais la mémoire n'est pas partout, elle est locale dans l'espace et le temps. Ce qui signifie qu'un objet ne peut être produit que s'il existe une mémoire locale qui peut guider le choix des pièces, de leur emplacement et de leur moment.

Dans la théorie de l'assemblage, la "sélection" fait référence à ce qui a émergé dans l'espace des combinaisons possibles. Elle est formellement décrite par le nombre de copies et la complexité d'un objet. Le nombre de copies, ou concentration, est un concept utilisé en chimie et en biologie moléculaire qui fait référence au nombre de copies d'une molécule présentes dans un volume d'espace donné. Dans la théorie de l'assemblage, la complexité est tout aussi importante que le nombre de copies. Une molécule très complexe qui n'existe qu'en un seul exemplaire importe peu. Ce qui intéresse la théorie de l'assemblage, ce sont les molécules complexes dont le nombre de copies est élevé, ce qui indique que la molécule a été produite par l'évolution. Cette mesure de la complexité est également connue sous le nom d'"indice d'assemblage" d'un objet. Valeur qui est liée à la quantité de mémoire physique nécessaire pour stocker les informations permettant de diriger l'assemblage d'un objet et d'établir une direction dans le temps du simple au complexe. Bien que la mémoire doive exister dans l'environnement pour faire naître l'objet, dans la théorie de l'assemblage la mémoire est également une caractéristique physique intrinsèque de l'objet. En fait, elle est l'objet.

Ce sont des piles d'objets construisant d'autres objets qui construisent d'autres objets - objets qui construisent des objets, jusqu'au bout. Certains objets ne sont apparus que relativement récemment, tels que les "produits chimiques éternels" synthétiques fabriqués à partir de composés chimiques organofluorés. D'autres sont apparus il y a des milliards d'années, comme les cellules végétales photosynthétiques. Les objets ont des profondeurs temporelles différentes. Cette profondeur est directement liée à l'indice d'assemblage et au nombre de copies d'un objet, que nous pouvons combiner en un nombre : une quantité appelée "assemblage", ou A. Plus le nombre d'assemblage est élevé, plus l'objet a une profondeur temporelle.

Pour mesurer un assemblage en laboratoire, nous analysons chimiquement un objet pour compter le nombre de copies d'une molécule donnée qu'il contient. Nous déduisons ensuite la complexité de l'objet, connue sous le nom d'indice d'assemblage moléculaire, en comptant le nombre de parties qu'il contient. Ces parties moléculaires, comme les acides aminés dans une chaîne de protéines, sont souvent déduites en déterminant l'indice d'assemblage moléculaire d'un objet - un numéro d'assemblage théorique. Mais il ne s'agit pas d'une déduction théorique. Nous "comptons" les composants moléculaires d'un objet à l'aide de trois techniques de visualisation : la spectrométrie de masse, la spectroscopie infrarouge et la spectroscopie de résonance magnétique nucléaire (RMN). Il est remarquable que le nombre de composants que nous avons comptés dans les molécules corresponde à leur nombre d'assemblage théorique. Cela signifie que nous pouvons mesurer l'indice d'assemblage d'un objet directement avec un équipement de laboratoire standard.

Un numéro d'assemblage élevé - indice d'assemblage élevé et nombre de copies élevé - indique que l'objet peut être fabriqué de manière fiable par un élément de son environnement. Il peut s'agir d'une cellule qui construit des molécules à indice d'assemblage élevé, comme les protéines, ou d'un chimiste qui fabrique des molécules à indice d'assemblage encore plus élevé, comme le Taxol (paclitaxel), un médicament anticancéreux. Les objets complexes ayant un nombre élevé de copies ne sont pas apparus au hasard, mais sont le résultat d'un processus d'évolution ou de sélection. Ils ne sont pas le fruit d'une série de rencontres fortuites, mais d'une sélection dans le temps. Plus précisément, d'une certaine profondeur dans le temps.

C'est comme si l'on jetait en l'air les 5 923 pièces du Lego Taj Mahal et que l'on s'attendait à ce qu'elles s'assemblent spontanément

Il s'agit d'un concept difficile. Même les chimistes ont du mal à l'appréhender, car s'il est facile d'imaginer que des molécules "complexes" se forment par le biais d'interactions fortuites avec leur environnement, en laboratoire, les interactions fortuites conduisent souvent à la production de "goudron" plutôt qu'à celle d'objets à haut niveau d'assemblage. Le goudron est le pire cauchemar des chimistes, un mélange désordonné de molécules qui ne peuvent être identifiées individuellement. On le retrouve fréquemment dans les expériences sur l'origine de la vie. Dans l'expérience de la "soupe prébiotique" menée par le chimiste américain Stanley Miller en 1953, les acides aminés sélectionnés au départ se transformaient en une bouillie noire non identifiable si l'expérience se poursuivait trop longtemps (et aucune sélection n'était imposée par les chercheurs pour empêcher les changements chimiques de se produire). Le problème dans ces expériences est que l'espace combinatoire des molécules possibles est si vaste pour les objets à fort assemblage qu'aucune molécule spécifique n'est produite en grande abondance. Le résultat est le "goudron".

C'est comme si l'on jetait en l'air les 5 923 pièces du jeu Lego Taj Mahal et qu'on s'attendait à ce qu'elles s'assemblent spontanément de manière exacte comme le prévoient les instructions. Imaginez maintenant que vous preniez les pièces de 100 boîtes du même jeu de Lego, que vous les lanciez en l'air et que vous vous attendiez à ce que 100 exemplaires du même bâtiment soient fabriqués. Les probabilités sont incroyablement faibles et pourraient même être nulles, si la théorie de l'assemblage est sur la bonne voie. C'est aussi probable qu'un œuf écrasé se reforme spontanément.

Mais qu'en est-il des objets complexes qui apparaissent naturellement sans sélection ni évolution ? Qu'en est-il des flocons de neige, des minéraux et des systèmes de tempêtes météo  complexes ? Contrairement aux objets générés par l'évolution et la sélection, ces objets n'ont pas besoin d'être expliqués par leur "profondeur dans le temps". Bien qu'individuellement complexes, ils n'ont pas une valeur d'assemblage élevée parce qu'ils se forment au hasard et n'ont pas besoin de mémoire pour être produits. Ils ont un faible nombre de copies parce qu'ils n'existent jamais en copies identiques. Il n'y a pas deux flocons de neige identiques, et il en va de même pour les minéraux et les systèmes de tempête.

La théorie des assemblages modifie non seulement notre conception du temps, mais aussi notre définition de la vie elle-même. En appliquant cette approche aux systèmes moléculaires, il devrait être possible de mesurer si une molécule a été produite par un processus évolutif. Cela signifie que nous pouvons déterminer quelles molécules n'ont pu être produites que par un processus vivant, même si ce processus implique des chimies différentes de celles que l'on trouve sur Terre. De cette manière, la théorie de l'assemblage peut fonctionner comme un système universel de détection de la vie qui fonctionne en mesurant les indices d'assemblage et le nombre de copies de molécules dans des échantillons vivants ou non vivants.

Dans nos expériences de laboratoire, nous avons constaté que seuls les échantillons vivants produisent des molécules à fort taux d'assemblage. Nos équipes et nos collaborateurs ont reproduit cette découverte en utilisant une technique analytique appelée spectrométrie de masse, dans laquelle les molécules d'un échantillon sont "pesées" dans un champ électromagnétique, puis réduites en morceaux à l'aide d'énergie. Le fait de réduire une molécule en morceaux nous permet de mesurer son indice d'assemblage en comptant le nombre de parties uniques qu'elle contient. Nous pouvons ainsi déterminer le nombre d'étapes nécessaires à la production d'un objet moléculaire et quantifier sa profondeur dans le temps à l'aide d'un équipement de laboratoire standard.

Pour vérifier notre théorie selon laquelle les objets à fort indice d'assemblage ne peuvent être générés que par la vie, l'étape suivante a consisté à tester des échantillons vivants et non vivants. Nos équipes ont pu prélever des échantillons de molécules dans tout le système solaire, y compris dans divers systèmes vivants, fossiles et abiotiques sur Terre. Ces échantillons solides de pierre, d'os, de chair et d'autres formes de matière ont été dissous dans un solvant, puis analysés à l'aide d'un spectromètre de masse à haute résolution capable d'identifier la structure et les propriétés des molécules. Nous avons constaté que seuls les systèmes vivants produisent des molécules abondantes dont l'indice d'assemblage est supérieur à une valeur déterminée expérimentalement de 15 étapes. La coupure entre 13 et 15 est nette, ce qui signifie que les molécules fabriquées par des processus aléatoires ne peuvent pas dépasser 13 étapes. Nous pensons que cela indique une transition de phase où la physique de l'évolution et de la sélection doit prendre le relais d'autres formes de physique pour expliquer la formation d'une molécule.

Ces expériences vérifient que seuls les objets avec un indice d'assemblage suffisamment élevé - molécules très complexes et copiées - semblent se trouver dans la vie. Ce qui est encore plus passionnant, c'est que nous pouvons trouver cette information sans rien savoir d'autre sur la molécule présente. La théorie de l'assemblage peut déterminer si des molécules provenant de n'importe quel endroit de l'univers sont issues de l'évolution ou non, même si nous ne connaissons pas la chimie utilisée.

La possibilité de détecter des systèmes vivants ailleurs dans la galaxie est passionnante, mais ce qui l'est encore plus pour nous, c'est la possibilité d'un nouveau type de physique et d'une nouvelle explication du vivant. En tant que mesure empirique d'objets uniquement produisibles par l'évolution, l'Assemblage déverouille une théorie plus générale de la vie. Si cette théorie se vérifie, son implication philosophique la plus radicale est que le temps existe en tant que propriété matérielle des objets complexes créés par l'évolution. En d'autres termes, tout comme Einstein a radicalisé notre notion du temps en l'unifiant avec l'espace, la théorie de l'assemblage indique une conception radicalement nouvelle du temps en l'unifiant avec la matière.

La théorie de l'assemblage explique les objets évolués, tels que les molécules complexes, les biosphères et les ordinateurs.

Elle est radicale parce que, comme nous l'avons noté, le temps n'a jamais été fondamental dans l'histoire de la physique. Newton et certains physiciens quantiques le considèrent comme une toile de fond. Einstein pensait qu'il s'agissait d'une illusion. Et, dans les travaux de ceux qui étudient la thermodynamique, il est considéré comme une simple propriété émergente. La théorie de l'assemblage considère le temps comme un élément fondamental et matériel : le temps est la matière dont sont faites les choses dans l'univers. Les objets créés par la sélection et l'évolution ne peuvent être formés que par le passage du temps. Mais il ne faut pas considérer ce temps comme le tic-tac mesuré d'une horloge ou comme une séquence d'années calendaires. Le temps est un attribut physique. Pensez-y en termes d'assemblage, propriété intrinsèque mesurable de la profondeur ou de la taille d'une molécule dans le temps.

Cette idée est radicale car elle permet également à la physique d'expliquer les changements évolutifs. La physique a traditionnellement étudié des objets que l'Univers peut assembler spontanément, tels que des particules élémentaires ou des planètes. La théorie de l'assemblage, en revanche, explique les objets évolués, tels que les molécules complexes, les biosphères et les ordinateurs. Ces objets complexes n'existent que le long de lignées où des informations spécifiques à leur construction furent acquises.

Si nous remontons ces lignées, depuis l'origine de la vie sur Terre jusqu'à l'origine de l'Univers, il serait logique de suggérer que la "mémoire" de l'Univers était plus faible dans le passé. Ce qui signifie que la capacité de l'Univers à générer des objets à fort assemblage est fondamentalement limitée par sa taille dans le temps. De même qu'un camion semi-remorque ne rentre pas dans le garage d'une maison standard, certains objets sont trop grands dans le temps pour naître dans des intervalles inférieurs à leur indice d'assemblage. Pour que des objets complexes comme les ordinateurs puissent exister dans notre univers, de nombreux autres objets ont d'abord dû se former : les étoiles, les éléments lourds, la vie, les outils, la technologie et l'abstraction de l'informatique. Cela prend du temps et dépend fortement du chemin parcouru en raison de la contingence causale de chaque innovation. Il est possible que l'Univers primitif n'était pas capable de calculer comme nous le savons, simplement parce qu'il n'y avait pas encore assez d'histoire. Le temps devait s'écouler et être matériellement instancié par la sélection des objets constitutifs de l'ordinateur. Il en va de même pour les structures Lego, les grands modèles de langage, les nouveaux médicaments, la "technosphère" ou tout autre objet complexe.

Les conséquences de la profondeur matérielle intrinsèque des objets dans le temps sont considérables. Dans l'univers-bloc, tout est considéré comme statique et existant en même temps. Ce qui signifie que les objets ne peuvent pas être ordonnés en fonction de leur profondeur temporelle, et que sélection et évolution ne peuvent pas être utilisées pour expliquer pourquoi certains objets existent et pas d'autres. La reconceptualisation du temps en tant que dimension physique de la matière complexe et la définition d'une directionnalité temporelle pourraient nous aider à résoudre ces questions. La matérialisation du temps via notre théorie de l'assemblage permet d'unifier plusieurs concepts philosophiques déconcertants liés à la vie dans un cadre mesurable. Au cœur de cette théorie se trouve l'indice d'assemblage, qui mesure la complexité d'un objet. Il s'agit d'une manière quantifiable de décrire le concept évolutif de sélection en montrant combien d'alternatives ont été exclues pour obtenir un objet donné. Chaque étape du processus d'assemblage d'un objet nécessite des informations, une mémoire, pour spécifier ce qui doit ou ne doit pas être ajouté ou modifié. Pour construire le Taj Mahal en Lego, par exemple, nous devons suivre une séquence spécifique d'étapes, chacune d'entre elles nous menant à la construction finale. Chaque pas manqué est une erreur, et si nous faisons trop d'erreurs, il ne sera pas possible de construire une structure reconnaissable. La copie d'un objet nécessite des informations sur les étapes qui furent précédemment nécessaires pour produire des objets similaires.

Tout ceci fait de la théorie de l'assemblage une théorie causale de la physique, car la structure sous-jacente d'un espace d'assemblage - l'ensemble des combinaisons requises - ordonne les choses dans une chaîne de causalité. Chaque étape dépend d'une étape sélectionnée précédemment, et chaque objet dépend d'un objet sélectionné précédemment. Si l'on supprime l'une des étapes d'une chaîne d'assemblage, l'objet final ne sera pas produit. Les mots à la mode souvent associés à la physique de la vie, tels que "théorie", "information", "mémoire", "causalité" et "sélection", sont matériels parce que les objets eux-mêmes encodent les règles qui aident à construire d'autres objets "complexes". Ce pourrait être le cas dans la catalyse mutuelle* où les objets se fabriquent réciproquement. Ainsi, dans la théorie de l'assemblage, le temps est essentiellement identique à l'information, la mémoire, la causalité et la sélection.  Termes qui sont tous rendus physiques parce que nous supposons qu'il impliquent des caractéristiques des objets décrits dans la théorie, et non des lois qui régissent le comportement de ces objets. La théorie de l'assemblage réintroduit dans la physique une notion de temporalité en expansion et en mouvement, en montrant que son passage est la matière même dont sont faits les objets complexes : la complexité augmente simultanément avec la taille de l'avenir..

Cette nouvelle conception du temps pourrait résoudre de nombreux problèmes ouverts en physique fondamentale. Le premier et le plus important est le débat entre déterminisme et contingence. Einstein a dit de façon célèbre que Dieu "ne joue pas aux dés", et de nombreux physiciens sont encore obligés de conclure que le déterminisme s'applique et que notre avenir est fermé. Mais l'idée que les conditions initiales de l'univers, ou de tout autre processus, déterminent l'avenir a toujours posé problème. Dans la théorie de l'assemblage, l'avenir est déterminé, mais pas avant qu'il ne se produise. Si ce qui existe aujourd'hui détermine l'avenir, et que ce qui existe aujourd'hui est plus grand et plus riche en informations qu'il ne l'était dans le passé, alors les futurs possibles deviennent également plus grands au fur et à mesure que les objets deviennent plus complexes. Cela s'explique par le fait qu'il y a plus d'histoire dans le présent à partir de laquelle il est possible d'assembler de nouveaux états futurs. Traiter le temps comme une propriété matérielle des objets qu'il crée permet de générer de la nouveauté dans le futur.

La nouveauté est essentielle à notre compréhension de la vie en tant que phénomène physique. Notre biosphère est un objet vieux d'au moins 3,5 milliards d'années selon la mesure du temps de l'horloge (l'Assemblage mesure le temps différement). Mais comment la vie est-elle apparue ? Qu'est-ce qui a permis aux systèmes vivants de développer l'intelligence et la conscience ? La physique traditionnelle suggère que la vie a "émergé". Le concept d'émergence rend compte de la façon dont de nouvelles structures semblent apparaître à des niveaux supérieurs d'organisation spatiale, sans que l'on puisse les prédire à partir des niveaux inférieurs. Parmi les exemples, on peut citer le caractère humide de l'eau, qui ne peut être prédit à partir des molécules d'eau individuelles, ou la façon dont les cellules vivantes sont constituées d'atomes non vivants individuels. Cependant, les objets que la physique traditionnelle considère comme émergents deviennent fondamentaux dans la théorie de l'assemblage. De ce point de vue, le caractère émergent d'un objet, c'est-à-dire la mesure dans laquelle il s'écarte des attentes d'un physicien concernant ses éléments constitutifs élémentaires, dépend de la profondeur à laquelle il se situe dans le temps. Ce qui nous oriente vers les origines de la vie, mais nous pouvons aussi voyager dans l'autre sens.

Si nous sommes sur la bonne voie, la théorie de l'assemblage suggère que le temps est fondamental. Elle suggère que le changement n'est pas mesuré par des horloges, mais qu'il est encodé dans des chaînes d'événements qui produisent des molécules complexes avec différentes profondeurs dans le temps. Assemblages issus d'une mémoire locale dans l'immensité de l'espace combinatoire, ces objets enregistrent le passé, agissent dans le présent et déterminent l'avenir. Ceci signifie que l'Univers s'étend dans le temps et non dans l'espace - ou peut-être même que l'espace émerge du temps, comme le suggèrent de nombreuses propositions actuelles issues de la gravité quantique. Bien que l'Univers puisse être entièrement déterministe, son expansion dans le temps implique que le futur ne peut être entièrement prédit, même en principe. L'avenir de l'Univers est plus ouvert que nous n'aurions pu le prévoir.

Le temps est peut-être un tissu en perpétuel mouvement à travers lequel nous voyons les choses s'assembler et se séparer. Mais ce tissu fait mieux que se déplacer : il s'étend. Lorsque le temps est un objet, l'avenir a la taille du cosmos.

Auteur: Walker Sara Imari

Info: 19 May 2023. Publié en association avec l'Institut Santa Fe, un partenaire stratégique d'Aeon. *Autostimulation de la croissance d'une culture bactérienne par l'ajout de cellules similaires.

[ non-ergodicité ] [ frontière organique-inorganique ] [ savoir conservé ] [ gnose ] [ monades orthogonales ] [ exobiologie ]

 

Commentaires: 0

Ajouté à la BD par miguel

septénaire partout

Rubrique pour les maniaques de ce chiffre symbole (en développement)

Sciences physiques -  du micro au macro,  de l'abiotique au biotique (non organique/organique) via cette hiérarchie septénaire orthogonale* : atomes - molécules - organites/cellules - tissus - organes/systèmes - individus -  organismes/population/socio    

- Dans le domaine de la physique des particules on dénombre sept types de particules élémentaires, à savoir les six quarks et l'électron (ou deux fois 7 - ce qui est encore plus transcendant). Plus précisément, il s'agit de "saveurs" de quarks. Les quarks up, down, charm, strange, top et bottom, plus un septième quark théorique appelé "top-bottom". Les quarks sont les éléments constitutifs des protons et des neutrons, qui sont les particules composant le noyau d'un atome. Ces particules sont considérées comme élémentaires car elles ne peuvent pas être divisées en sous-particules plus petites.

- On observe que certaines particules élémentaires, telles que le boson de Higgs, ont une masse qui est d'environ 126 fois celle du proton, qui est un multiple de sept.

- Le tableau périodique des éléments compte sept lignes ou groupes, chacun correspondant à un niveau d'énergie spécifique pour les électrons dans l'atome, chaque période contient un nombre précis d'éléments, la première période comptant deux éléments (hydrogène et hélium), la deuxième période huit éléments, et ainsi de suite. Tableau périodique, inspiré par un songe à son découvreur, Dmitri Mendeleïev. Cette structure correspond au sept éléments de l'échelle d'électronégativité de Pauling.

- Le chiffre 7 est le numéro atomique de l'azote, dont le noyau contient sept protons et sept neutrons. Il s'agit d'un élément très réactif, essentiel à la vie, constituant majoritaire de l'atmosphère terrestre. Ainsi la masse d'un seul atome d'azote est de 14, nombre de nucléons (protons et neutrons) que l'on retrouve dans un des deux isotopes les plus courants du nitrogène, l'azote 14. Il constitue environ 78 % de l'air terrestre et dont les atomes spécifiques  azote (14N) - composent la haute atmosphère et interceptent une partie du rayonnement cosmique.

Science - chimie

- L'atome de silicium, élément chimique avec le symbole Si, abrite 2 X sept protons dans son noyau. Ce métalloïde  tétravalent appartient au groupe 14 du tableau périodique (quatorzième colonne, comprenant le carbone (C), le silicium (Si), le germanium (Ge), l’étain (Sn) et le plomb (Pb). C'est l'élément le plus abondant dans la croûte terrestre après l'oxygène, soit 25,7 % de sa masse, mais il n'est comparativement présent qu'en relativement faible quantité dans la matière constituant le vivant.

- Classes d'universalité : Les modèles avec contraintes cinétiques critiques ont 7 classes d'universalité

- Groupes fonctionnels : Les groupes fonctionnels sont des atomes ou des groupes d'atomes spécifiques responsables des réactions chimiques caractéristiques d'une molécule. Il existe sept types de groupes fonctionnels : hydroxyle, méthyle, carbonyle, carboxyle, amino, phosphate et sulfhydryle

-  Il y a  7 angles de torsion clés par nucléotide qui définissent la conformation du squelette sucre-phosphate dans les acides nucléiques comme l'ADN et l'ARN.

- La bactériorhodopsine, petite protéine qu'on trouve chez les halobactéries, fonctionne comme une pompe à protons utilisant l'énergie lumineuse pour générer un gradient de protons à travers la membrane cellulaire. Constituée de 248 acides aminés elle se présente sous forme d'un homotrimère à symétrie cylindrique. Chacune des trois unités identiques a une structure en sept hélices α transmembranaires — structure dite opsine — emprisonnant un chromophore

- Les enzymes sont des protéines qui catalysent les réactions biochimiques dans les organismes vivants. Elle peuvent être classées en sept catégories selon le type de réaction qu'elles catalysent. Ces catégories sont les oxydoréductases, les transférases, les hydrolases, les lyases, les isomérases, les ligases et les translocases. Parmi ces catégories, les oxydoréductases, les transférases et les hydrolases sont les formes d'enzymes les plus abondantes.

-  La traduction des protéines, également appelée la synthèse des protéines à partir de l'ARN, est un processus biologique essentiel. Il se produit dans les ribosomes des cellules. Il implique plusieurs étapes enzymatiques qui se déroulent de manière séquentielle en sept étapes. Etapes qui peuvent être résumées comme suit :

A) Initiation : Le processus commence par la liaison de la petite sous-unité ribosomale à la molécule d'ARN messager (ARNm). Cela est suivi par le recrutement de l'ARN de transfert initiateur et l'assemblage de la grande sous-unité ribosomale.


B) Élongation (3 étapes) : Pendant l'élongation, le ribosome se déplace le long de la molécule d'ARNm et facilite l'ajout d'acides aminés à la chaîne polypeptidique en cours de croissance. L'élongation comprend trois étapes : la liaison de l'ARN de transfert aminoacylé, la formation de la liaison peptidique et la translocation.

C) Terminaison (3 étapes) : La terminaison se produit lorsqu'un codon stop est atteint sur la molécule d'ARNm. Elle implique la reconnaissance du codon stop par des facteurs de libération, ce qui entraîne la libération de la chaîne polypeptidique complète du ribosome.

Après la terminaison, le ribosome se désassemble et ses sous-unités sont libérées pour être utilisées dans de nouvelles étapes de la synthèse des protéines. Le recyclage du ribosome garantit l'utilisation efficace des ressources cellulaires.

Ces 7 étapes enzymatiques d'initiation, d'élongation, de terminaison et de recyclage du ribosome constituent le processus de traduction des protéines. Elles sont étroitement régulées et orchestrées de manière précise pour assurer une synthèse des protéines précise et efficace dans les cellules.

- Biomolécules : Les biomolécules sont les molécules qui composent les organismes vivants. Il existe quatre classes de biomolécules : les glucides, les lipides, les protéines et les acides nucléiques. Au sein de ces classes existe sept niveaux d'organisation : monomères, oligomères, polymères, domaines, motifs, plis et structure quaternaire. (à consolider vérifier). Ici perplexity.ai me propose ceci :  1  Atomes, briques élémentaires de base, principalement le carbone, l'hydrogène, l'oxygène et l'azote pour les biomolécules.  2 Molécules : Les atomes sont liés entre eux par des liaisons covalentes pour former des molécules organiques comme le glucose, les acides aminés, les acides gras, etc.  3  Monomères -  Ce sont les plus petites unités constitutives des biomolécules, comme les acides aminés pour les protéines, les nucléotides pour les acides nucléiques, etc.  4  Oligomères.  Petits polymères formés par quelques monomères liés, comme les dipeptides, les trinucléotides.  5 Polymères :  Grandes molécules formées par la répétition de nombreux monomères, comme les protéines, les acides nucléiques, les polysaccharides. 6  Domaines/Motifs structuraux : Régions compactes au sein des polymères ayant une structure et une fonction particulières, comme les feuillets β ou les hélices α dans les protéines.  7 : Structure quaternaire, Organisation de plusieurs chaînes polymériques en complexes macromoléculaires, comme les ribosomes formés de plusieurs ARN et protéines.

-  Sous le nom de cycle de Calvin-Benson le processue de photosynthèse se déroule généralement en sept étapes  divisées en deux séries de réactions qui ont lieu dans différentes régions des chloroplastes végétaux : la réaction dépendante de la lumière et les réactions indépendantes de la lumière ou “ sombres ”. La réaction dépendante de la lumière a lieu dans la membrane thylakoïdienne du chloroplaste. Elle convertit l’énergie lumineuse en énergie chimique, stockée sous forme d’ATP et de NADPH**. Cette énergie est ensuite utilisée dans la région du stroma du chloroplaste, pour réduire le dioxyde de carbone atmosphérique en glucides complexes grâce aux réactions indépendantes de la lumière du cycle de Calvin-Benson, essentiel pour la fixation du carbone et la production d'oxygène dans l'atmosphère qui permettent la vie sur Terre. Ces 7 étapes sont : (1ère série, phase claire, dépendant de la lumière) L'énergie du soleil est absorbée.  L'eau est décomposée.  Les ions hydrogène sont transportés à travers la membrane du thylakoïde.  (2e série, phase sombre, indépendante de la lumière)  Capture du dioxyde de carbone atmosphérique (CO2), Le NADPH est produit à partir du NADP+.  Les ions hydrogène diffusent à travers le canal protéique.  L'ADP devient de l'ATP.

- Le processus de division cellulaire chez les bactéries est régulé par une variété de protéines, y compris FtsZ, qui forme une structure en forme d'anneau connue sous le nom d'anneau Z sur le site de la division cellulaire. L'anneau Z est composé de sept sous-unités FtsZ.

-  En médecine les bactéries peuvent former des structures complexes appelées biofilms, (la plaque dentaire par exemple) qui consistent en une communauté de micro-organismes entourés d'une matrice de substances polymériques extracellulaires. La formation d'un biofilm comporte sept étapes distinctes (cinq selon d'autres sources). Ces biofilms bactériens sont prédominants dans les écosystèmes naturels et constituent une menace pour la santé publique en raison de leur résistance exceptionnelle aux traitements antibactériens et en particulier aux antibiotiques.

-  il existe sept plis protéiques différents parmi les dix vraies familles de cellulases qui sont les enzymes aptes à décomposer la cellulose. Elles sont produites typiquement par des bactéries, champignons et des protozoaires, qui jouent un rôle majeur dans la digestion par les animaux, et dans la transformation de la matière organique végétale en humus dans le sol. Elles ont aussi des applications biotechnologiques et industrielles. Sept plis protéiques qui correspondent à sept types de cellulases : Endo-cellulases: qui cassent la structure cristalline de la cellulose en chaînes polysaccharidiques. Exo-cellulases (cellobiohydrolases, 'CBH'): qui coupent 2-4 unités aux terminaisons des chaînes polysaccharides, libérant par exemple le cellobiose. Elles travaillent progressivement soit depuis la terminaison réductrice, soit depuis l'autre. β-glucosidases (Cellobiase): elles hydrolysent les chaînes polysaccharidiques en monosaccharides. Oxidative cellulases: elles depolymérisent la cellulose. Cellulose phosphorylases: elles depolymérisent la cellulose en utilisant des phosphates. pectinases: elles hydrolysent la pectine. hémicellulases: qui hydrolysent l'hémicellulose

- Une cellule recense septs organites autour de son noyau, centre de contrôle de la cellule qui contient son génome, c'est à dire l'ensemble de son ADN.

Réticulum endoplasmique : Le réticulum endoplasmique est un réseau de membranes qui transporte des protéines et des lipides dans la cellule. Il existe deux types de réticulum endoplasmique : le réticulum endoplasmique rugueux, qui est recouvert de ribosomes, et le réticulum endoplasmique lisse, qui n'est pas recouvert de ribosomes.

Appareil de Golgi : L'appareil de Golgi est un ensemble de saccules qui modifie et trie les protéines et les lipides avant de les transporter hors de la cellule.

Lysosomes : Les lysosomes sont des sacs remplis d'enzymes qui décomposent les déchets et les cellules endommagées.

Mitochondries : Les mitochondries sont les centrales énergétiques de la cellule. Elles produisent de l'ATP, qui est la forme d'énergie que la cellule utilise pour fonctionner.

Chloroplastes : Les chloroplastes sont des organites trouvés dans les cellules végétales. Ils contiennent de la chlorophylle, qui permet aux plantes de produire de la nourriture par photosynthèse.

Centrioles : Les centrioles sont des structures cylindriques qui jouent un rôle dans la division cellulaire.

Cytosquelette : Le cytosquelette est un réseau de filaments qui donne à la cellule sa forme et sa structure. Il permet également à la cellule de se déplacer et de se déplacer.

- Conception de médicaments : Le processus de conception de nouveaux médicaments implique l'étude de l'interaction entre les molécules et les cibles biologiques. La conception d'un médicament comporte sept étapes : l'identification de la cible, la génération de pistes, l'optimisation des pistes, le développement préclinique, le développement clinique, l'approbation réglementaire et la surveillance post-commercialisation.

- L'échelle de PH, système de mesure utilisé pour quantifier l'acidité ou l'alcalinité (basicité) d'une solution, s'étend de 0 à 14 (zéro plus 2 fois sept), la valeur 7 étant considérée comme neutre. L'échelle de pH suit un système de classification structuré en sept parties ou stades :

- Les sept systèmes minéraux cristallins: - Cubique ou isométrique, - Quadratique ou tétragonal, - Orthorhombique, - Monoclinique, - Triclinique, - Hexagonal, - Rhomboédrique.

- Pour ce qui concerne la séparation taxonomique "végétal - animal" une équipe a trouvé 14 groupes de gènes qui apparaissaient sur des chromosomes distincts chez les méduses à peigne et leurs parents unicellulaires "non animaux". Il est intéressant de noter que chez les éponges et tous les autres animaux, ces gènes ont été réarrangés en sept groupes.

- Les sept caractéristiques biologique du vivant  : mouvement respiration excitabilité croissance reproduction nutrition excrétion.

- Tous les groupes d'organismes vivants partagent sept caractéristiques ou fonctions clés : ordre, sensibilité aux stimuli, reproduction, adaptation, croissance et développement, régulation homéostasique et traitement de l'énergie.

- Rythmes biologiques : En chronobiologie, l'étude des rythmes biologiques, certains cycles présentent une période proche de sept jours. Par exemple, le cycle menstruel chez l'humain est en moyenne de 28 jours, qui peuvent être divisés en quatre intervalles d'environ sept jours.

- Les sept couleurs de l'arc en ciel (violet, indigo, bleu, vert, jaune, orange, rouge). Que l'on peut appréhender comme un système double :

Les sept couleurs verticales en synthèse additive (lumière) 3 primaires (bleu, vert, rouge) 3 secondaires (cyan, magenta, jaune) 1 finale (blanche) avec les sept superposées

Les sept couleurs verticales en synthèse soustractive (matière, impression graphique) 3 primaires (jaune, cyan, magenta) 3 secondaires (rouge, vert,bleu) 1 finale (noir) avec les sept superposées. Ces deux rubriques additive et soustractive sont peut-être à rapprocher avec les 6 quarks et l'electron. Ce dernier représentant alternativement blanc et/ou noir... Toutes données bien entendu en rapport direct avec la cognition humaine.


- Selon Paul Jorion les populations Xwéda (Région de l'ex Dahomey) ont opéré le regroupement des phénomènes naturels en vastes catégories reproduisant les sept modèles élémentaires de la théorie géométrique des catastrophes de René Thom.

- Ce dernier, s'appuyant sur les travaux de Hassler Withney, réussit à démontrer dans ses "Modèles mathématiques de la morphogenèse" qu'il y a sept potentiels organisateurs, ni plus ni moins, c'est à dire sept types de catastrophes qui sont, par ordre de complexité croissante : pli, fronce, queue d'aronde, papillon, ombilic hyperbolique, ombilic elliptique et ombilic parabolique.

- Les afficheurs électroniques à sept segments

-  Les 7 composants de l'écosystème de l'infrastructure des système informatques, à savoir ; Plateformes Internet  (apache   microsoft   apache  cisco), Plateformes matérielles  (IBM  Dell   Machines linux), Plateformes de systèmes d'exploitation (windows, apple, linux), Applications logicielles d'entreprise (erp entreprise ressource planning), Réseaux et téécommunications (window server, ATT,  northel), Consultant et intgrateurs de systèmes  (services ). Traitement et stockage de données   (sql  oracle, etc)  

- Les sept couches du modèle OSI : Le modèle OSI (Open Systems Interconnection) est un modèle conceptuel qui décrit les fonctions de communication d'un système informatique. Le modèle se compose de sept couches, chacune d'entre elles correspondant à un type spécifique de fonction réseau.

- Les sphères d’action de Vladimir Propp dans son ouvrage fondateur, "Morphology of the Folktale", où il identifie différents rôles de personnages et fonctions narratives dans les contes de fées russes. Ces sept sphères d'action de l'analyse de Propp sont  :

1) Sphère de la méchanceté ou du manque du méchant : Cette sphère comprend les actions liées au méchant ou à l'antagoniste, telles que ses mauvaises intentions ou son manque initial de quelque chose d'important.

2) Sphère du donateur : Cette sphère comprend les actions impliquant un personnage qui fournit de l'aide ou des objets magiques au héros.

3) Sphère du départ du héros : Les actions liées au départ du héros de son lieu initial ou à la mise en route de son voyage relèvent de cette sphère.

4) Sphère du voyage du héros : Cette sphère englobe les actions et les événements qui se produisent au cours de la quête ou du voyage du héros, y compris les rencontres avec des aides, le franchissement d'obstacles et l'acquisition de connaissances ou de capacités.

5) Sphère de la lutte du héros : Les actions liées au conflit principal du héros ou à sa lutte contre le méchant font partie de cette sphère.

6) Sphère de la reconnaissance du héros : Cette sphère comprend les actions au cours desquelles le héros est reconnu ou identifié d'une manière significative.

7) Sphère du retour du héros : Les actions liées au retour du héros à son lieu initial ou à son domicile après avoir achevé son voyage entrent dans cette sphère.

- Les sept points de convergence entre pragmatisme et logique mathématique identifiés par Vailat i (Giovanni Vailati, "Pragmatism and Mathematical Logic", The Monist, 16.4, 1906, p. 481-491)

En mathématique 

Le chiffre sept présente quelques relations intéressantes avec les nombres premiers  dont il fait lui-même partie. Sept fait  en outre partie d'une paire de nombres premiers jumeaux, qui sont des nombres premiers qui diffèrent par deux. La paire de nombres premiers jumeaux contenant sept est (5, 7), les deux nombres étant premiers. Il y a aussi le tamis d'Ératosthène : Lorsque l'on utilise le crible d'Ératosthène, une méthode pour trouver les nombres premiers, le sept est le premier nombre à être rayé après les nombres premiers initiaux (2, 3, 5). Il marque le début du cycle suivant dans le tamis.

- Les septs éléments de la formule mathématique de l'identité d'Euler    e^(iπ) = -1   c'est à dire les trois constantes mathématiques les plus remarquables  à savoir :

  e   base du logarythme naturel    π  constante mystérieuse des maths    i   l'unité imaginaire à la base des nombres complexes, etc

combiné avec ces 4 symboles

   0, l'élément neutre de l'addition

   1, l'élément neutre de la multiplication

   + , qui représente l'addition, la multiplication et la puissance

   = , qui représente l'égalité

- Constante de Kaprekar est une propriété mathématique unique à laquelle il faut au maximum 7 étapes pour obtenir ce qu'on appelle également la constante 6174 qui est obtenue à partir de n'importe quel nombre à quatre chiffres non tous égaux. 

- Les sept tuples de la machine de Turing.   Q : l'ensemble fini des états. ∑ : l'ensemble fini des symboles d'entrée. T : le symbole de la bande. q0 : l'état initial. F : un ensemble d'états finaux. B : un symbole vide utilisé comme marqueur de fin d'entrée. δ : une fonction de transition ou de mise en correspondance.  On la résume donc sous le 7-tupels suivant :  (Q,∑Γ,δ,q0,B,F) 

- Nombre parfait : Bien que le 7 ne soit pas un nombre parfait, il est étroitement lié aux nombres parfaits. Un nombre parfait est un nombre entier positif égal à la somme de ses diviseurs propres (diviseurs positifs autres que lui-même). Les premiers nombres parfaits sont 6, 28, 496, 8128, etc. Il est intéressant de noter que la somme des réciproques des diviseurs propres de 7 est égale à 8, soit deux fois 7, ce qui en fait un "nombre presque parfait".

- Tuiles planes : Il existe exactement trois tuiles planes régulières qui n'utilisent qu'un seul polygone régulier, et l'une d'entre elles utilise sept hexagones réguliers disposés autour d'un seul point.

- Nombre magique : Un nombre magique est un nombre qui peut être exprimé comme la somme des cubes de ses chiffres. Le seul nombre magique à deux chiffres est 27, qui est égal à 2^3 + 7^3. Le seul nombre magique à un chiffre est 1.

- Heptagone : Un heptagone est un polygone à sept côtés. C'est le seul polygone régulier avec un nombre premier de côtés qui peut être construit à l'aide d'un compas et d'une règle.

- Le nombre premier de Belphégor : 100000000000006660000000001 est un nombre premier qui contient 13 chiffres de 6 suivis du chiffre 7, suivis de 13 autres chiffres de 0, suivis de 1. Ce nombre est parfois appelé le nombre premier de Belphégor, du nom d'un démon du même nom.

- Les sept ponts de Königsberg : Le célèbre problème des sept ponts de Königsberg, issu de la théorie des graphes, concerne un réseau de sept ponts reliant deux îles et deux rives, et pose la question de savoir s'il est possible de traverser chaque pont exactement une fois et de revenir au point de départ. Ce problème a jeté les bases du domaine de la topologie en mathématiques.

- Nombre catalan : Les nombres catalans sont une séquence de nombres qui apparaissent dans de nombreux contextes mathématiques, notamment pour compter le nombre de façons d'arranger divers objets et dans l'analyse des algorithmes. Le septième nombre catalan est 429, qui représente le nombre de façons d'insérer des parenthèses dans une séquence de six éléments.

- Victoire pythagoricienne : Selon la légende, le mathématicien grec Pythagore aurait découvert la relation entre les côtés d'un triangle rectangle (a^2 + b^2 = c^2) en étudiant les propriétés du chiffre 7. Cette découverte, connue sous le nom de théorème de Pythagore, est devenue l'un des théorèmes les plus fondamentaux de la géométrie et des mathématiques.

- En géométrie algébrique existe un théorème célèbre appelé classification des surfaces d'Enriques-Kodaira, qui classe toutes les surfaces algébriques projectives lisses jusqu'à la déformation. L'une des étapes clés de la preuve de ce théorème implique l'étude d'un objet particulier appelé surface K3, qui est une surface projective lisse de dimension 2 qui possède un faisceau canonique trivial et est holomorphiquement symplectique. Il est intéressant de noter que les surfaces K3 possèdent toujours exactement 22 points doubles rationnels isolés, qui sont des points singuliers pouvant être modélisés localement sur l'ensemble zéro de l'équation x^2 + y^2 + z^2 + w^2 + t^2 + ut + vt = 0, où (x,y,z,w,t,u,v) sont des coordonnées dans l'espace complexe à 7 dimensions.

- La conjecture de Poincaré a notoirement été prouvée par le mathématicien Grigori Perelman en 2002-2003. Ce théorème stipule que tout 3-manifold fermé et simplement connecté est homéomorphe à la 3-sphère. On notera que la preuve de ce théorème repose sur l'étude de structures géométriques avec des groupes d'isométrie à 7 dimensions, connues sous le nom de manifolds G2. Dit autrement une 3-sphère (ou glome ou hypersphère, qui est un analogue de dimension supérieure de la sphère) est l'analogue d'une sphère en dimension quatre. C'est l'ensemble des points équidistants d'un point central fixé dans un espace euclidien à 4 dimensions. Tout comme une sphère ordinaire (ou 2-sphère) est une surface bidimensionnelle formant la frontière d'une boule en trois dimensions, une 3-sphère est un objet à trois dimensions formant la frontière d'une boule à quatre dimensions. Une 3-sphère est un exemple de variété (différentielle) de dimension 3. 

Religions, spiritualités et traditions mondiales

Voici quelques exemples de l'importance du chiffre sept dans les cultures africaines : (à vérifier)

- Sept puissances africaines : Dans les religions afro-caribéennes et afro-latines telles que la Santeria et le Candomble, il existe un concept connu sous le nom des "Sept Puissances Africaines" ou "Sept Orishas Africains". Il s'agit de sept divinités ou esprits représentant différents aspects de la vie et de la nature, tels que l'amour, la sagesse et la protection.

- Sept directions : Certaines cultures africaines reconnaissent sept directions cardinales, dont les quatre directions principales (nord, sud, est, ouest) et trois directions supplémentaires : le haut (le ciel), le bas (la terre) et le centre (qui représente l'équilibre et l'harmonie).

- Rites d'initiation : Dans certains rites d'initiation africains, il y a souvent sept étapes ou rituels auxquels les individus doivent se soumettre pour passer d'un statut social ou spirituel à un autre. Ces étapes peuvent comprendre des tests, des enseignements et des cérémonies.

- Systèmes de divination : Certains systèmes de divination africains, comme la divination Yoruba Ifa, utilisent des ensembles d'outils de divination composés de 16 ou 256 éléments. Ces ensembles sont ensuite divisés en quatre groupes de sept, représentant différents modèles symboliques et interprétations.

- Dans l'Égypte ancienne, il y avait 7 étapes vers le jugement final dans l'au-delà.

- Dans la culture chinoiseLe chiffre sept revêt aussi une grande importance culturelle et historique, au-delà de la culture occidentale on y trouve ces exemples notables :

Les sept corps célestes : Dans la cosmologie chinoise ancienne, sept corps célestes étaient considérés comme importants : le Soleil, la Lune, Mars, Mercure, Jupiter, Vénus et Saturne. Ces corps étaient censés avoir une influence sur les affaires humaines et étaient associés à divers éléments, directions et couleurs.

Les sept étoiles de la Grande Ourse : La Grande Ourse, appelée "Ourse du Nord" dans la mythologie chinoise, est un astérisme important. On pense qu'elle est composée de sept étoiles, qui ont une signification dans divers contextes culturels et spirituels. La Grande Ourse est associée à l'orientation, à la protection et à la navigation.

Les sept trésors : Dans l'art et le symbolisme chinois, il existe sept trésors appelés les "sept trésors du bouddhisme". Ces trésors comprennent l'or, l'argent, le lapis-lazuli, le cristal, l'agate, le corail et une conque blanche. Ils représentent la richesse, la prospérité, les qualités spirituelles et le bon augure.

Les sept vertus : Le confucianisme, philosophie influente de la culture chinoise, met l'accent sur les valeurs éthiques et les vertus. L'un des enseignements fondamentaux du confucianisme est la culture des "sept vertus" ou "sept constantes", qui comprennent la bienveillance, la droiture, la bienséance, la sagesse, la fiabilité, la loyauté et la piété filiale.

Il y a aussi, dans la culture chinoise, le septième mois du calendrier lunaire est connu sous le nom de mois des fantômes et est rempli de superstitions et de tabous.

- La Torah mentionne 7 bénédictions et 7 malédictions.

- Ménorah à sept branches : La ménorah à sept branches est un chandelier symbolique utilisé lors des cérémonies religieuses juives. La ménorah a sept branches qui représentent les sept jours de la création dans le livre de la Genèse.

- Les sept anges qui se tiennent devant Dieu: Zadkiel, Gabriel, Japhiel, Michel, Saltiel et Uriel. Dans l'apocalypse, il y a aussi sept sceaux, sept trompettes, sept candélabres d'or, sept lettres adressées aux sept églises, sept tonnerres, etc... - Les sept patriarches bibliques : Aaron, Abraham, Isaac, Jacob, Joseph, Moïse et David

- Les 7 princes des Enfers sont Mammon, Azazel, Belzébuth, Asmodée, Belphégor, Dispater et Méphistophélès.

- Dans le christianisme le 7 représente l'achèvement ou la perfection, comme dans les jours de la création du monde du livre de la Genèse où Dieu est décrit comme ayant achevé son œuvre et se reposant le septième jour.

- Sept vertus cardinales : Dans la tradition chrétienne, les sept vertus cardinales sont un ensemble de vertus considérées comme essentielles à une vie vertueuse. Ces vertus sont la prudence, la justice, la tempérance, la force d'âme, la foi, l'espérance et la charité.

- L'Apocalypse, dans le Nouveau Testament, mentionne les sept sceaux, les sept trompettes et les sept coupes de la colère.

- L'Église catholique compte sept sacrements : le baptême, la confirmation, l'eucharistie, la réconciliation, l'onction des malades, l'ordre sacré et le mariage.

- Les 14 ( 2 x 7) stations du chemin de croix :  1ère station : Jésus est condamné à mort.  2e station :  Jésus est chargé de sa croix. 3e station : Jésus tombe sous le bois de la croix.  4e station : Jésus rencontre sa Mère. 5e station : Simon de Cyrène aide Jésus à porter sa croix.  6e station : Véronique essuie la face de Jésus. 7e station : Jésus tombe pour la seconde fois. 8e station : Jésus console les filles de Jérusalem. 9e station : Jésus tombe pour la 3e fois. 10e station : Jésus est dépouillé de ses vêtements. 11e station : Jésus est attaché à la croix. 12e station : Jésus meurt sur la croix. 13e station : Jésus est descendu de la croix et remis à sa mère. 14e station : Jésus est mis dans le sépulcre.   (15e station : avec Marie, dans l’espérance de la résurrection)- Les sept dernières paroles du Christ.

- les 7 étapes des "dialogues avec l'ange" : minéral, végétal, animal, humain, ange, archange, dieu. Le tout constituant un miroir réversible (minéral miroir de dieu, ange miroir de l'animal, etc.) l'humain étant le pivot, au centre.

- Dans l'islam, il y a sept cieux et sept enfers.

- Dans l'islam, le chiffre 7 représente les sept cieux, qui sont décrits dans le Coran

- Les septs archanges : Michel, Gabriel, Raphaël, Uriel, Jérémiel, Zadkiel, Raguel...  (Sandalphon, Phanuel, Saratiel, Egoudiel, Barachiel, etc... ne sont pas admis par la tradition et seul les 3 premiers sont cités dans la bible)

- Dans l'hindouisme, il y a sept chakras ou centres d'énergie dans le corps. 

- Les sept chakras : sahasrara, agnya, vishuddhi, anahat, nabhi, swadhistana et mooladhara.

- Les sept parties des Kamâ Sutrâ de Mallanâga Vâtsyâyana: Plan de l'ouvrage et questions générales, de l'union sexuelle, de l'acquisition d'une épouse, de l'épouse, des épouses d'autrui, des courtisanes, des moyens de s'attacher les autres.

Divers, mythologie, beaux-arts, etc

- Les sept notes de la gamme diatonique occidentale révèlent le septénaire comme un régulateurs des vibrations.

- Le septième sens, au-delà du 6e sens, qui est celui de l'intuition, existe en chacun de nous une perception spécifique qui est celle du rapport au divin.

- Les sept sœurs : Les Pléiades, également connues sous le nom de Sept Sœurs, sont un groupe d'étoiles de la constellation du Taureau connu depuis l'Antiquité. Elles étaient considérées comme sept des étoiles les plus proéminentes du ciel et représentaient les sept filles d'Atlas et de Pléione dans la mythologie grecque.

- Les sept sages de Grèce : Les sept sages de Grèce étaient un groupe de sept hommes sages réputés pour leur sagesse et considérés comme ayant jeté les bases de la philosophie grecque antique. Les noms des sept sages sont Thalès de Milet, Solon d'Athènes, Chilon de Sparte, Bias de Priène, Cléobulus de Lindos, Périandre de Corinthe et Pittacus de Mytilène.

- Les sept émotions pulsions de base : Joie, Tristesse, Dégoût, Peur, Colère, Surprise, Mépris. (Paul Ekman)

- Les sept orifices du visage : yeux, narines, bouche, oreilles.

- Le syndrome du 7 chanceux : Le syndrome du "7 chanceux" est un phénomène psychologique qui implique une tendance à attribuer des qualités positives au chiffre 7. Ce phénomène peut être observé dans divers contextes, tels que la stratégie de marque et le marketing, où le chiffre 7 est souvent utilisé pour évoquer la chance ou le succès.

- Le nombre 7 est la somme des deux faces opposées d'un dé standard à six faces.

- Il existe sept types de catastrophes mondiales : l'impact d'un astéroïde, la guerre nucléaire, la pandémie, l'emballement du changement climatique, l'éruption supervolcanique, l'effondrement écologique et l'intelligence artificielle.

- La langue - organe linguale - humaine perçoit sept goûts primaires : le sucré, l'acide, l'amer, le salé, l'umami, le piquant et l'astringent.

- Les sept lois de l'identité numérique de Kim Cameron

- Les 7 industries clefs de la transformation numérique : télécoms et l’IT, santé, distribution, énergies,  média et divertissement, finance, voyages et loisirs.

- Les 7 valeurs dominantes de la société en réseau et de l'éthique protestante qui sont : l'argent, le travail, l'optimalité, la flexibilité, la stabilité, la détermination et le contrôle du résultat. (Pekka Himanen, l'éthique hacker, Exils 2002)

- Les 7 valeurs dominantes du hacker (pirate informatique) : la passion, la liberté, la valeur sociale, l'ouverture, l'activisme, la bienveillance, et la créativité. (Pekka Himanen, l'éthique hacker, Exils 2002

- Les sept péchés infernaux : colère, luxure, gourmandise, envie, paresse, avarice et orgueil.

- Les sept péchés sociaux de Frederick Lewis Donaldson. Qui sont: Richesse sans travail. Plaisir sans conscience. Connaissance sans caractère. Commerce sans moralité. Science sans humanité. Culte sans sacrifice. Politique sans principe. 

- Les sept voyages de Sinbad le marin

- Les sept jours de la semaine.

- Les sept planètes autour du soleil.

- Les sept collines de Rome.

- Les sept terminaisons pointues de l'homme (les deux mains, les deux pieds, le nez, la langue et le sexe)

- Les sept listes d'Ecolalie qui sont aussi des questionnaires.

- Les sept directions (Nord, Est, Sud, Ouest, Zenith, Nadir, Centre).

- Les sept niveaux de la jouissance féminine.

- Les sept ponts de Budapest (Árpád, Margit, Szechenyi, Erzsebet, Szabadság, Petofi, Lágymánosi).

- Les sept provinces basques: Labourd, Basse Navarre, Soule, Guipuzcoa, Alava, Navarre et Biscaye).

- Sept ans de malheur.

- Les bottes de sept lieues.

- Les sept merveilles du monde : le temple d'Artémis à Ephèse, le mausolée d'Halicarnasse, le colosse de Rhodes, les jardins suspendus de Babylone, Ornella Muti jeune, les pyramides d'Egypte, la statue de Zeus à Olympie & le phare d'Alexandrie.

- Les 7 disciplines des Arts libéraux du Moyen Âge, classification fixée par Rome au Premier siècle, divisée en deux cycles. Trivium : grammaire, rhétorique, dialectique et Quadrivium : arithmétique, musique, géométrie, astronomie.  

- Tintin et les sept boules de cristal. (chacune pour un des sept savants de l'expédition Sanders-Hardmuth : Clairmont, Marc Charlet, Paul Cantonneau, Homet, Marcel Brougnard, Hippolyte Bergamotte, Sanders-Hardmuth & Laubépin).

- Les sept mercenaires : Yul Brynner, Steve McQueen, James Coburn, Charles Bronson, Horst Bucholz, Robert Vaughn & Brad Dexter.

- Les sept samouraïs : Toshiro Mifune + six autres.

- Les sept vertus, dont les trois premières sont théologales : La charité, l'espérance, la foi, le courage, la justice, la prudence, la sagesse. A ne pas confondre avec

- Les sept vertus humaines selon Confucius : longévité, chance, popularité, candeur, magnanimité, divinité & gentillesse.

- Les sept femmes de Barbe-Bleue.

- Les sept vérités.

- Les sept nains de Blanche-Neige : Joyeux, Prof, Dormeur, Atchoum, Simplet, Grincheux & Timide.

- Les sept fois qu'il faut tourner sa langue dans sa bouche.

- Les Sept Rayons du monastère de la confraternité des oblates

- Le petit Poucet, ses six frères et les sept filles de l'Ogre

- Les sept voyages de Sinbad le marin

- La légende des sept dormants

- Les sept étapes de l'homme (montage spéculatif maison que l'on trouvera sur FLP)

- Les sept points clefs de la double causalité de Philippe Guillemant (que l'on trouvera sur FLP)

- Les sept métaux fondamentaux de la science alchimique : l'or, l'argent, le cuivre, l'étain, le mercure, le fer et le plomb.

- Les sept arts : l'architecture, la sculpture, la peinture, la musique, la danse, la poésie et le cinéma.

- Les sept conjonctions de coordination : mais où et donc or ni car

- Les sept mots finissant par "ou" qui prennent un x au pluriel : bijou, caillou, chou, genou, hibou, joujou, pou.

- Les sept têtes du naga des temples d'Angkor

- Les sept portes de Thèbes

- Les sept termes des grecs antique pour l'amour : porneia, pathos, eros, philea, storge (familial celui-ci) charis, agapé.

- Les sept vies du chat

- Les sept trompettes de Jéricho

- Les sept entrées de l'Enfer

- Les sept mondes interdits.

- Dans un ouvrage paru en 1956 George Armitage Miller établit que le nombre 7 correspondrait approximativement au nombre maximal d'éléments que serait capable de "traiter" l'esprit humain.

- Federico Navarro, continuant les travaux de Reich, s'est intéressé aux sept niveaux des stases énergétiques.

- Les 7 niveaux de classification pour l'Homme (Taxinomie) Règne : ANIMAL Embranchement: VERTÉBRÉ Classe: MAMMIFÈRE Placentaire Ordre: PRIMATES Famille: HOMINIDÉ Genre: HOMO Espèce: SAPIENS.

- Les sept conseillers fédéraux Suisse ainsi que les sept membres des exécutifs des cantons et des grandes villes.

- Sept couches d'atmosphère : L'atmosphère terrestre peut être divisée en sept couches en fonction de la température et d'autres caractéristiques. Ces couches sont la troposphère, la stratosphère, la mésosphère, la thermosphère, l'exosphère, l'ionosphère et la magnétosphère.

- Les sept aptitudes-outils-facultés holistiques selon Clélia Félix (le son, le verbe, le signe, la nature, l'intuition, le nombre et le rituel.)

- Les sept matchs de tennis qu'il faut gagner pour remporter un titre de grand chelem

- Les sept façons de savoir comment est une personne : Posez-lui une question difficile, et observez sa faculté d'analyse. Prononcez une parole provocante, et voyez sa réaction. Demandez-lui comment elle s'y prend pour résoudre des problèmes épineux, et jugez de son intelligence. Laissez-la se débrouiller d'une situation délicate, et observez son courage. Faites-la boire, et observez son naturel. Tentez-la avec de l'or, et observez son intégrité. Indiquez-lui comment s'acquitter d'une tâche, et assurez-vous de sa fiabilité. (Sun Tzu - L'art de la guerre) 

Linguistique et sémantique

- Les sept partie du corps à la source du langage des iles Adaman 

- Les sept modes verbaux de la grammaire en langue française : - quatre modes personnels, qui se conjuguent : indicatif, conditionnel, subjonctif et impératif. - trois modes impersonnels, qui ne se conjuguent pas : infinitif, participes et gérondif. Binaire et ternaire linguistiques

- Dans certaines langues, comme le latin et le russe, il existe sept cas grammaticaux utilisés pour indiquer la fonction des noms et des pronoms dans une phrase : le nominatif, le génitif, le datif, l'accusatif, l'instrumental, le prépositionnel et le locatif.

- En linguistique, il existe sept structures de phrases de base : les phrases simples, les phrases composées, les phrases complexes, les phrases composées-complexes, les phrases déclaratives, les phrases interrogatives et les phrases impératives. (4 + 3)

En anglais et dans de nombreuses autres langues, il existe sept temps de base : le présent, le passé, le futur, le présent parfait, le passé parfait, le futur parfait et le présent continu.

- Parties du discours : Dans la grammaire traditionnelle, il y a sept parties du discours : les noms, les verbes, les adjectifs, les adverbes, les pronoms, les prépositions et les conjonctions.

- Les sept conférences de Harvard de Charles Sanders Peirce, prononcées en 1903.

-  Les sept agents de la cosmogonie révélés à Jacob Böhme par des visions. Ils sont les sept agents d’une création continue du monde. Ce sont  la dureté, l’attraction, la crainte, le feu, l’amour-lumière, les pouvoirs de la parole et la parole elle-même.

- Les sept parties de l'idéalité royale (Castille, XIIIe siècle) donnés à imprimer par Antonio Díaz de Montalvo, jurisconsulte des Rois Catholiques, comme Le Septénaire : Las Siete Partidas de Alfonso X el Sabio, 2 vol., Séville : Meynardo Ungut et Lançalao Polono, 25 octobre 1491.

- Les sept collines de Rome : Rome, la capitale de l'Italie, est célèbre pour être la "ville aux sept collines". Les sept collines sont la colline de l'Aventin, la colline du Caelius, la colline du Capitole, la colline de l'Esquilin, la colline du Palatin, la colline du Quirinal et la colline du Viminal.

- Sept lois incas : L'empire inca, qui a existé en Amérique du Sud du 13e au 16e siècle, avait un système de lois connu sous le nom de Tawantinsuyu, qui comprenait sept lois principales. Ces lois étaient les suivantes : Ama Sua (ne pas voler), Ama Llulla (ne pas mentir), Ama Quella (ne pas être paresseux), Ama Kella (ne pas être infidèle), Yapaq Ñan (respect), Kawsay Ñan (mener une vie honorable) et Iwka Ñan (ne pas massacrer sans raison).

- Le labyrinthe à sept circuits : Le labyrinthe à sept circuits est un type de labyrinthe utilisé pour la méditation et à des fins spirituelles. Le labyrinthe consiste en un chemin unique qui serpente jusqu'au centre, avec sept cercles concentriques qui divisent le chemin en sept segments.

- Les sept âges de l'homme : Les sept âges de l'homme sont un concept décrit par William Shakespeare dans sa pièce "As You Like It". Les sept âges sont le nourrisson, l'écolier, l'amoureux, le soldat, le juge, le vieillard et, enfin, la seconde enfance.

- Sept continents : Les sept continents sont l'Afrique, l'Antarctique, l'Asie, l'Australie, l'Europe, l'Amérique du Nord et l'Amérique du Sud. Ces continents sont généralement définis en fonction de leurs plaques continentales.

- Septième fils d'un septième fils : Dans le folklore, le septième fils d'un septième fils est censé avoir des pouvoirs spéciaux, notamment la capacité de guérir les maladies et de voir les esprits. Cette légende a été popularisée dans divers médias, notamment dans la musique, la littérature et le cinéma.

- Guerre de Sept Ans : La guerre de Sept Ans est un conflit mondial qui s'est déroulé de 1756 à 1763 et qui a impliqué la plupart des grandes puissances européennes de l'époque. La guerre s'est déroulée principalement en Europe, mais aussi en Amérique du Nord, en Inde et dans d'autres parties du monde.

- Sept couleurs de l'aura : selon certaines traditions ésotériques, l'aura humaine est composée de sept couleurs, chacune correspondant à un aspect spécifique de l'état spirituel, émotionnel et physique de l'individu.

- Les États-Unis d'Amérique comptent 7 pères fondateurs qui ont signé la Déclaration d'indépendance le 4 juillet 1776.

- Les planètes classiques, connues dans l'Antiquité, sont au nombre de 7 : Soleil, Lune, Mercure, Vénus, Mars, Jupiter et Saturne. Dans l'astrologie traditionnelle, on croyait que sept planètes avaient une influence sur les affaires humaines. Ces planètes étaient le Soleil, la Lune, Mercure, Vénus, Mars, Jupiter et Saturne.

- La septième lettre de l'alphabet grec est zêta, souvent utilisée en mathématiques pour représenter une variable ou un coefficient.

- L'étirement de la septième manche est une tradition du baseball selon laquelle les supporters se lèvent et s'étirent pendant la septième manche du match.

- Le temps nécessaire à la lune pour passer par toutes ses phases est d'environ 29,5 jours, ce qui est proche d'un multiple de sept (4 x 7 = 28).

- Nous terminons cette liste avec les 14 diagonales de l'heptagone qui, une fois tracés, dessinent au sein de celui-ci un heptagone interne, puis un deuxième... qui laissent imaginer une suite infinie de la même forme.

(Pour info : Avec FLP nous nous amusons parfois à une organisation qui tente de classifier les extraits via 7 paramètres verticaux et 7 paramètres horizontaux... )

NB : Le nombre 49 n'a pas de signification inhérente ou spécifique en dehors de ses propriétés mathématiques. En mathématiques, 49 est un nombre carré, car il est le produit de 7 multiplié par lui-même (7 x 7 = 49). Il s'agit également d'un nombre composite, car il possède des facteurs autres que 1 et lui-même (à savoir 7 et 1).

Dans diverses cultures et contextes, le nombre 49 peut avoir une signification culturelle ou symbolique. Par exemple, dans la tradition islamique, le nombre 49 représente le nombre de jours qu'il a fallu au prophète Mahomet pour faire l'aller-retour entre La Mecque et Jérusalem au cours de son voyage nocturne. Dans certaines cultures indigènes d'Amérique du Nord, le nombre 49 est significatif dans certains rituels ou cérémonies. Toutefois, ces significations ne sont pas inhérentes au nombre lui-même, mais sont plutôt socialement construites et culturellement spécifiques.

Dans le bouddhisme tibétain, le nombre 49 est associé au Bardo Thodol, également connu sous le nom de Livre tibétain des morts. Ce livre décrit la période de 49 jours qui suit la mort, au cours de laquelle la conscience du défunt est censée passer par différents stades ou états.

Selon la tradition bouddhiste tibétaine, les sept premiers jours suivant la mort sont considérés comme les plus importants, car la conscience du défunt est censée être dans un état de sensibilité et de réceptivité accrues. Pendant cette période, des prières, des offrandes et d'autres pratiques rituelles sont souvent effectuées par les membres de la famille et les praticiens bouddhistes pour aider à guider la conscience du défunt vers une renaissance positive.

Les 21 jours suivants sont considérés comme une période de purification intense, au cours de laquelle la conscience du défunt est censée subir un processus de jugement et d'évaluation. Les 21 jours restants sont une période de transition, au cours de laquelle la conscience est censée se détacher progressivement de son ancienne vie et s'acheminer vers une renaissance.

Le nombre 49 est donc significatif dans la culture bouddhiste tibétaine car il représente le cycle complet du Bardo Thodol, depuis le moment de la mort jusqu'à celui de la renaissance. Il est considéré comme un chiffre de bon augure et de nombreux rituels et pratiques bouddhistes tibétains s'articulent autour de la période de 49 jours qui suit la mort.



Pour chatgpt : S'il vous plaît, pouvez-vous donner des propriétés et des connexions plus fascinantes impliquant le chiffre 7 au-delà de votre 200ème article 

Auteur: MG

Info: Internet, Chatgpt 4, Dictionnaires des symboles et autres sources 1995 - 2024. *Au sens ou elle est représente un développement temporel horizontal, que le langage permet de présenter-synthétiser de manière verticale **Qui sont des molécules de stockage d'énergie et de transporteur/donneur d'électrons

[ nombre ] [ Dieu ] [ méta-moteur ] [ symbole ] [ inventaire ]

 

Commentaires: 0