Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 148
Temps de recherche: 0.0576s

origine de la vie

Une IA découvre que plusieurs bases de la vie, notamment sur l'ADN, peuvent émerger naturellement

L'Université de Floride annonce une avancée majeure dans la compréhension de la formation des molécules de la vie. À travers une expérimentation novatrice, des chercheurs ont utilisé le superordinateur HiPerGator pour démontrer que des molécules essentielles à la vie, comme les acides aminés et les bases de l'ADN, peuvent se former naturellement dans des conditions spécifiques.

Le superordinateur HiPerGator, reconnu pour être le plus rapide dans le milieu universitaire américain, a permis de franchir une nouvelle étape dans la recherche moléculaire grâce à ses modèles d'intelligence artificielle et à sa capacité exceptionnelle en unités de traitement graphique (GPU). Ces outils ont rendu possible l'étude des interactions et de l'évolution de vastes ensembles d'atomes et de molécules, une tâche auparavant inenvisageable avec les capacités de calcul disponibles.

Jinze Xue, doctorant à l'Université de Floride, a mené pendant les vacances d'hiver 2023 une expérience de chimie prébiotique. Utilisant plus de 1000 GPU A100, l'expérience a permis d'identifier 12 acides aminés, trois nucléobases, un acide gras et deux dipeptides parmi 22 millions d'atomes. Cette découverte marque un progrès significatif, révélant la formation de molécules complexes qui n'auraient pas été détectables avec des systèmes de calcul moins puissants.

La réussite de cette recherche repose sur l'utilisation de l'apprentissage automatique et de l'intelligence artificielle pour calculer les énergies et les forces agissant sur les systèmes moléculaires. Ces méthodes, selon Adrian Roitberg, professeur au Département de Chimie de l'Université de Floride, fournissent des résultats comparables à ceux de la chimie quantique de haut niveau, mais environ un million de fois plus rapidement.

Erik Deumens, directeur senior pour UFIT Research Computing, souligne la capacité unique de HiPerGator à réaliser de grands calculs, ouvrant la voie à des percées scientifiques majeures. Cette collaboration étroite entre l'université et l'équipe de Ying Zhang, responsable du soutien à l'intelligence artificielle chez UFIT, a permis d'accélérer l'analyse des données, réduisant le temps d'analyse à seulement sept heures, contre trois jours initialement estimés.

Cette recherche illustre le potentiel des simulations informatiques de grande envergure pour découvrir comment les molécules complexes peuvent se former à partir de blocs de construction simples. Elle marque une étape vers la compréhension des origines de la vie sur Terre et démontre l'importance des infrastructures de calcul avancées dans la recherche scientifique contemporaine.

Auteur: Internet

Info: https://www.techno-science.net/ - Adrien le 15/02/2024, Source: Université de Floride

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

neurochirurgie

Quant à cette opération, il s’agit, comme vous le savez certainement, de chirurgie éveillée. Cela signifie que vous serez d’abord endormi pour que nous puissions ouvrir le crâne et librement accéder à la surface du cerveau sur laquelle il nous faut intervenir. Soit, chez vous, la partie gauche immédiatement au-dessus de l’oreille et approximativement jusqu’au milieu de la partie supérieure de la tête… Cela prendra environ deux heures. Puis nous vous réveillerons. Vous ne sentirez aucune douleur mais serez allongé sur votre côté droit et attaché de tous côtés, de manière à être totalement immobilisé. Vous serez légèrement penché vers le bas afin que la gravitation pousse naturellement votre cerveau sur la surface supérieure droite de votre crâne. Ceci nous donnera moins de pression et un peu plus d’espace au lieu exact de l’intervention. Seule votre main droite pourra bouger et par moments nous vous demanderons de le faire pour nous assurer que nous ne provoquons pas une éventuelle paralysie.

Par ailleurs, vous aurez devant les yeux un ordinateur dont l’écran vous présentera divers exercices de lecture et de calcul. Exercices qu’il vous faudra faire à haute voix. Il s’agira pour nous, pendant cette période initiale, d’identifier le plus précisément possible où se trouvent, dans votre cerveau, les liens dont dépendent le langage et les mathématiques. Vous savez évidemment que la neurologie situe depuis longtemps, chez des droitiers comme vous, ces capacités dans l’hémisphère gauche, à des endroits spécifiques. Toutefois quelques sujets fonctionnent, si l’on veut, comme à l’envers. Chez eux l’hémisphère droit joue la fonction de l’hémisphère gauche et réciproquement. C’est ce que l’on appelle "les gauchers". Il arrive aussi qu’un accident ou une tumeur d’évolution lente, comme la vôtre, permette aux fonctions cérébrales d’émigrer – il n’y a pas d’autre terme – d’un hémisphère à l’autre. C’est rare, mais cela arrive. Ce n’est pas votre cas. […] Donc, chez vous, c’est bien à gauche que se trouvent ces fonctions. Mais nous savons, depuis maintenant plusieurs années, que la localisation de ces régions cérébrales varie très légèrement d’individu à individu. Afin de tenter d’éviter tout dommage chirurgical, nous sommes donc obligés de commencer par dresser une carte spécifique de votre cerveau. En vous faisant faire ces exercices, qui sont élémentaires, nous ferons passer par endroit un très léger courant électrique. Rassurez-vous, vous ne sentirez rien, mais l’intérêt de ce courant est que lorsqu’il passera exactement à l’endroit où votre cerveau sera en train de travailler pour lire ou calculer, il cessera alors, lui, de fonctionner, et vous de parler. De cette espèce de paralysie d’un instant, vous ne vous rendrez très probablement même pas compte, mais nous si. Nous aurons alors trouvé les lieux qui, chez vous, concernent le langage et le calcul.

Auteur: Declerck Patrick

Info: Dans "Crâne", pages 53 à 55

[ technique ] [ aires cérébrales ] [ opération chirurgicale ]

 

Commentaires: 0

Ajouté à la BD par Coli Masson

réfléchir

Le calcul mental active des aires cérébrales impliquées dans l'attention spatiale. Une étude menée par des chercheurs du CEA, de l'Inserm, de l'Inria, de l'Université Paris-Sud au sein de l'unité Inserm/CEA "Neuro imagerie cognitive", à NeuroSpin.
Grâce à l'imagerie cérébrale par résonance magnétique à 3 Teslas de NeuroSpin, ces équipes viennent de mettre en évidence un rapprochement inattendu entre les représentations des nombres et celles de l'espace dans le cerveau. Ces travaux, qui sont publiés dans Science Express, pourraient avoir des conséquences importantes pour l'enseignement de l'arithmétique.
Au sein de l'équipe de Stanislas Dehaene dans l'unité Inserm/CEA de neuro imagerie cognitive à NeuroSpin, André Knops a enregistré l'activité du cerveau au moyen d'un appareil d'imagerie par résonance magnétique (IRM) de 3 Teslas, alors que des adultes volontaires effectuaient, soit des additions et des soustractions mentales, soit des mouvements des yeux vers la droite ou vers la gauche de l'écran. Un logiciel de traitement du signal a ensuite permis d'identifier des régions du cerveau impliquées dans les mouvements des yeux, et d'en déduire un algorithme qui, à partir de l'activité cérébrale, dévoile un aspect du comportement des sujets.
À partir des images IRM de haute résolution obtenues, les chercheurs ont été en mesure de déduire, essai par essai, si la personne avait orienté son regard vers la droite ou vers la gauche, avec un taux de succès de 70 %. Plus surprenant, cette classification s'est étendue au calcul mental: les chercheurs ont ainsi observé la même distinction entre l'activité cérébrale évoquée pendant les mouvements à gauche ou à droite et pendant les opérations de soustraction ou d'addition - que ces opérations soient réalisées avec des ensembles concrets d'objets (calcul non symbolique) ou avec des nombres symboliques (calcul symbolique) présentés sous formes de chiffres arabes.
Ils en ont conclu que le calcul mental ressemblait à un déplacement spatial. Par exemple, dans une certaine mesure, lorsqu'une personne qui a appris à lire de gauche à droite, calcule 18 + 5, son attention se déplace "vers la droite" de 18 à 23 dans l'espace des nombres, comme si les nombres étaient représentés sur une ligne virtuelle.
En mettant en évidence l'interconnexion entre le sens des nombres et celui de l'espace, ces résultats éclairent l'organisation de l'arithmétique dans le cerveau. Ils sont compatibles avec l'hypothèse, développée par Stanislas Dehaene, que les apprentissages scolaires entraînent un recyclage neuronal de régions cérébrales héritées de notre évolution et dédiées à des fonctions proches.
Chez les enfants en difficultés, l'utilisation de jeux qui insistent sur la correspondance entre les nombres et l'espace, tels que le jeu des "petits chevaux", peut conduire à des améliorations prononcées des compétences en mathématiques. Sur ce principe, un logiciel ludo-pédagogique en libre accès, "La course aux nombres", a été développé par le même groupe afin de faciliter l'apprentissage de l'arithmétique.

Auteur: Internet

Info: 13 Mai 2009

[ voir ]

 

Commentaires: 0

métalinguistique

Parlant de "l'erreur de Frege" Hintikka explique : La véritable source du pouvoir expressif de la logique du premier ordre ne réside pas dans la notion de quantificateur en soi, mais dans l'idée de quantificateur dépendant.

Car la logique du premier ordre n'a que deux quantificateurs :

-  universel, qui signifie "tous" ou "pour tout".

-  existentiel, qui signifie "il existe" ou "il existe au moins un".

Un quantificateur dépendant est lui lié à une autre variable. Par exemple, la proposition "Pour tout nombre x, il existe un nombre y tel que x < y" utilise un quantificateur dépendant. La variable x est liée à la variable y par la relation "x < y".

Ce quantificateur dépendant permet donc d'exprimer des propositions plus complexes que celles qui peuvent être exprimées avec les 2 quantificateurs du 1er ordre.

Par exemple, la proposition "Pour tout nombre x, il existe un nombre y tel que x < y"  (Pour tout nombre, il existe un autre nombre qui est plus grand que lui) poura être utilisée pour exprimer le concept de suite ordonnée.

Les quantificateurs dépendants sont donc essentiels à la puissance expressive d'une logique du premier ordre, beaucoup plus limitée dans ses capacités.

- Autre exemple : "Pour toute fonction f, il existe une constante c telle que f(c) = 0".

Qui veut dire que le 0 symbolise une "variable à possibilité infinie" qui offre un point d'entrée sur réel (la dimension de départ). Donc la quantification de ce 0 permettra de calculer une dimension. En physique pour calculer la longueur d'onde d'une onde électromagnétique. En chimie pour calculer la distance entre deux atomes. En biologie pour calculer la taille d'une cellule. Etc. 

Ainsi, en linguistique, ce 0, "variable à possibilité infinie" ou " symbole universel" peut être remplacé par un simple mot (pensons ici à un terme-univers à la Borges en littérature)...   Mot qui de fait, et grâce à l'imaginaire humain, pourra ouvrir beaucoup plus loin.

Pour qui voudra s'amuser avec ceci sur FLP pourra s'y essayer avec des termes comme "amour", ou "mort"...  ça marche avec à peu près tous les termes.

Autre exemple : La formule "Pour tout ensemble A, il existe un ensemble B tel que A ⊆ B".  Peut être vue comme un outil de contextualisation, voire de méta-contextualisation. Par exemple : un mot à besoin d'un texte pour prendre son sens. Ou, plus globalement :  l'ensemble A, le langage, a besoin d'un ensemble plus B grand : la réalité.

Il est possible que FLP, en tentant de briser la séquencialité (linéarité) du langage, et en proposant l'adoption d'une logique tétravalente, permette d'ouvrir de nouvelles pistes,  susceptibles de briser quelques barrières, de dépasser certaines limitations... et d'aller vers une intrication peut-être nécessaire pour celà. 

Auteur: Mg

Info: Avec l'aide de certains textes et de Bard

[ poésie ] [ philosophie ] [ prospective ] [ métalangage ] [ règle de trois ] [ proportionnalité ]

 
Mis dans la chaine

Commentaires: 0

Ajouté à la BD par miguel

psycho-sociologie

Comment le cerveau résout-il le "dilemme du volontaire" ?

Un problème important en sciences sociales est de savoir quand il faut ou non se sacrifier pour le groupe. Lors de décisions collectives, les individus décident souvent de contribuer ou non de leurs ressources à un bien public qui est effectivement implémenté si et seulement si un certain niveau de contribution est atteint.

Cependant, leur contribution est gaspillée s'il y a trop de volontaires, et le projet public échoue si pas assez de volontaires y contribuent. Ce dilemme social s'appelle le dilemme du volontaire. Un exemple classique de ce dilemme est le comportement adopté par les voisins de Kitty Genovese, une jeune femme assassinée en bas de son immeuble sans qu'aucun voisin n'intervienne alors qu'ils avaient entendu ses appels au secours (chacun pensant que d'autres contribueraient à la secourir).

Dans le dilemme du volontaire, l'utilité de la décision de l'un dépend de la décision des autres. Lorsque de telles décisions collectives sont prises à plusieurs reprises au sein d'un même groupe, il est donc crucial d'actualiser sa croyance relative à la décision des autres après chaque interaction. En particulier, le cerveau doit calculer non seulement le bénéfice supplémentaire attendu de l'interaction immédiate, mais également le bénéfice potentiel que le groupe peut tirer des récompenses collectives des interactions sociales restantes après l'interaction en cours. Le cerveau pondère ensuite ces utilités individuelles et collectives pour choisir la stratégie optimale afin de maximiser les bénéfices totaux lors d'interactions sociales.

Ici, les chercheurs ont utilisé l'imagerie cérébrale et le jeu du dilemme du volontaire dans lequel les participants prenaient des décisions avec les mêmes membres d'un groupe à plusieurs reprises lors d'interactions sociales répétées. Le groupe n'obtenait des récompenses que lorsque qu'un certain nombre spécifique de membres consacraient leurs ressources. Une telle règle incitait les individus à prendre des décisions sur le moment où ils devaient ou non engager leurs ressources. Chaque membre du groupe assignait donc des probabilités spécifiques à des stratégies de contribuer ou pas, et la décision optimale variait de manière dynamique en fonction de sa croyance en la décision potentielle des autres.

Malgré l'omniprésence de la prise de décision collective dans la société, la façon dont le cerveau calcule ces utilités individuelles et de groupe reste peu comprise. Les résultats de cette recherche montrent que le cerveau calcule les utilités individuelles et collectives de contribuer ou non dans des régions cérébrales distinctes. Une région antérieure du cerveau, le cortex préfrontal ventromédial calcule l'utilité individuelle tandis que le cortex frontopolaire calcule l'utilité collective. De cette façon, la valeur de chaque état lors des interactions futures est mis à jour en fonction des changements de la croyance quant à la décision d'autres.

Ces résultats permettent de comprendre les mécanismes cérébraux sous-jacents aux décisions collectives stratégiques. Cette étude a permis d'identifier les mécanismes cérébraux engagés lors de décisions collectives de contribuer ou pas à un bien public.

Auteur: Internet

Info: traduit et publié par Adrien le 22/11/2019, Source: CNRS INSB. Source A : Neural computations underlying strategic social decision-making in groups. Park, S.A., Sestito, M., Boorman, E.D, Dreher, J.C.

[ PNL ] [ égoïsme ] [ altruisme ] [ éthologie ]

 

Commentaires: 0

Ajouté à la BD par miguel

organisation scientifique du travail

Du point de vue de l’effet moral sur les ouvriers, la taylorisation a sans aucun doute provoqué la disqualification des ouvriers. Ceci a été contesté par les apologistes de la rationalisation, notamment par Dubreuilh dans Standards. Mais Taylor a été le premier à s’en vanter, en arrivant à ne faire entrer que 75 % d’ouvriers qualifiés dans la production, contre 25 % d’ouvriers non qualifiés pour le finissage. Chez Ford, il n’y a que 1 % d’ouvriers qui aient besoin d’un apprentissage de plus d’un jour.

Ce système a aussi réduit les ouvriers à l’état de molécules, pour ainsi dire, en en faisant une espèce de structure atomique dans les usines. Il a amené l’isolement des travailleurs. C’est une des formules essentielles de Taylor qu’il faut s’adresser à l’ouvrier individuellement ; considérer en lui l’individu. Ce qu’il veut dire, c’est qu’il faut détruire la solidarité ouvrière au moyen des primes et de la concurrence. C’est cela qui produit cette solitude qui est peut-être le caractère le plus frappant des usines organisées selon le système actuel, solitude morale qui a été certainement diminuée par les événements de juin. Ford dit ingénument qu’il est excellent d’avoir des ouvriers qui s’entendent bien, mais qu’il ne faut pas qu’ils s’entendent trop bien, parce que cela diminue l’esprit de concurrence et d’émulation indispensable à la production.

La division de la classe ouvrière est donc à la base de cette méthode. Le développement de la concurrence entre les ouvriers en fait partie intégrante ; comme l’appel aux sentiments les plus bas. Le salaire en est l’unique mobile. Quand le salaire ne suffit pas, c’est le renvoi brutal. À chaque instant du travail, le salaire est déterminé par une prime. À tout instant, il faut que l’ouvrier calcule pour savoir ce qu’il a gagné. Ce que je dis est d’autant plus vrai qu’il s’agit de travail moins qualifié.

Ce système a produit la monotonie du travail. Dubreuilh et Ford disent que le travail monotone n’est pas pénible pour la classe ouvrière. Ford dit bien qu’il ne pourrait pas passer une journée entière à un seul travail de l’usine, mais qu’il faut croire que ses ouvriers sont autrement faits que lui, parce qu’ils refusent un travail plus varié. C’est lui qui le dit. Si vraiment il arrive que par un tel système la monotonie soit supportable pour les ouvriers, c’est peut-être ce que l’on peut dire de pire d’un tel système ; car il est certain que la monotonie du travail commence toujours par être une souffrance. Si on arrive à s’y accoutumer, c’est au prix d’une diminution morale.

En fait, on ne s’y accoutume pas, sauf si l’on peut travailler en pensant à autre chose. Mais alors il faut travailler à un rythme ne réclamant pas trop d’assiduité dans l’attention nécessitée par la cadence du travail. Mais si on fait un travail auquel on doive penser tout le temps, on ne peut pas penser à autre chose, et il est faux de dire que l’ouvrier puisse s’accommoder de la monotonie de ce travail.

Auteur: Weil Simone

Info: "La condition ouvrière", Journal d'usine, éditions Gallimard, 2002, pages 321-322

[ conséquences ] [ individualisation ] [ clivage ]

 
Commentaires: 1
Ajouté à la BD par Coli Masson

métissages

- Pourquoi nous sommes tous cousins...

- Il existe un calcul très simple qui permet de comprendre pourquoi on peut affirmer avec certitude que nous sommes tous cousins. Nous avons tous deux parents, quatre grands-parents, huit arrières grands-parents, 16 arrière-arrière-grands-parents. Le calcul se continue en multipliant par deux le nombre d’ancêtres à chaque génération. Et on arrive vite à des valeurs vertigineuses.

Il y a 40 générations, vers l’an 800 à l’époque de Charlemagne cela représente mille milliards d’ancêtres, un chiffre astronomique, à une époque où la France comptait moins de 10 millions d’habitants. Seule explication : tous nos ancêtres généalogiques ne sont pas des individus différents. Mon arrière-arrière-grand-mère par mon père est peut être aussi une arrière arrière-grand-mère par ma mère et aussi une de vos arrière arrière-grand-mère. Nous partageons plein d’ancêtres communs. Nous sommes tous cousins !

Et, encore plus fort, non seulement nous avons des ancêtres communs, mais si on remonte dans le passé, on arrive à un moment où nous avons tous exactement les mêmes ancêtres. Un ancêtre qui est dans une généalogie l’est dans toutes les généalogies. Ainsi, en Europe, il y a environ 1000 ans, tous les ancêtres qui vivaient et qui ont eu des descendants jusqu’à nos jours sont les ancêtres de quasiment tous les Européens.

Ce qui permet d’affirmer sans craindre de trop se tromper que si certains de vos grands-parents sont nés en France, Charlemagne qui d’après certains généalogistes a eu des descendants jusqu’à nos jours, et bien, il est également votre ancêtre !

- Et à l’échelle de la planète ?

- Toujours avec le même modèle mathématique très simple, il est possible de calculer de quand date notre premier ancêtre commun. Le premier ancêtre commun aux Européens daterait d’environ 600 ans, et l’ancêtre commun le plus récent de toute l’humanité aurait vécu il y a moins de 5000 ans.

Comment imaginer ce résultat surprenant ? Du fait des migrations qui ont toujours eu lieu sur la planète, parmi tous vos ancêtres certains viennent du Caucase qui eux-mêmes ont certainement un ou plusieurs ancêtres venant de plus à l’Est, qui sont eux-mêmes ancêtres de personnes vivant maintenant en Chine. Et vous avez certainement parmi tous vos ancêtres certains qui viennent du Moyen-Orient ,qui sont aussi commun à des Africains de la corne de l’Afrique, eux-mêmes communs à des Africains sub-sahariens. De proche en proche, vous récupérez des ancêtres venus de toute la planète et mécaniquement tous les ancêtres de ces ancêtres.

Ce qui est vraiment vertigineux est d’imaginer que nous avons tous dans nos ancêtres un cultivateur de riz de Chine, un Sibérien éleveur de rennes, un Africain chasseur d’éléphants.

- Mais alors comment expliquer que nous soyons quand même tous différents ?

- C’est simple : tous ces ancêtres n’ont pas le même poids dans les généalogies. Si vous êtes Gabonais, vos ancêtres africains sont plus fréquents ; Suédois, plus d’ancêtres européens. En plus, chaque ancêtre n’a pas transmis à chaque descendant les mêmes bouts d’ADN. Au hasard, vous en transmettez la moitié à vos enfants. D’ailleurs un ancêtre à la dixième génération a une chance sur deux de ne rien vous avoir transmis.

Voilà pourquoi nous sommes bien tous parents et tous différents ! 


Auteur: Heyer Evelyne

Info: La saga du vivant, France Inter, jeudi 7 janvier 2021, à propos de son livre : 'L’Odyssée des gènes, 7 millions d’années d’histoire de l’humanité révélées par l’ADN' - Evelyne Heyer (Flammarion)

[ frères humains ] [ recoupement ]

 

Commentaires: 0

Ajouté à la BD par miguel

monde subatomique

Des physiciens comprennent enfin pourquoi l’interaction forte est si tenace 

Il existe quatre forces fondamentales : la force de gravité, l’électromagnétisme, l’interaction faible et l’interaction (ou force) forte. Cette dernière est la plus intense. L’interaction forte agit en liant les quarks au sein des protons et des neutrons. Elle maintient ainsi les nucléons ensemble pour former des noyaux atomiques. La force forte est jusqu’à 100 000 milliards de milliards de fois plus intense que la force de gravité. Malgré cette intensité, elle est relativement peu comprise, par rapport aux autres forces. Récemment, des chercheurs ont percé l’un des mystères de l’interaction forte expliquant sa ténacité et sont notamment parvenus à la mesurer de façon plus précise.

L’interaction forte est quantifiée par la constante de couplage (que les auteurs de l’étude choisissent d’appeler simplement " couplage "), notée αs (alpha s). Il s’agit d’un paramètre fondamental dans la théorie de la chromodynamique quantique (QCD).

La difficulté de la mesure de αs réside principalement dans sa nature très variable : plus deux quarks sont éloignés, plus le couplage est élevé, et plus l’attraction entre eux devient forte. À des distances faibles, où αs est encore faible, les physiciens parviennent à appliquer des méthodes de calcul basique pour déterminer le couplage. Cependant, ces techniques deviennent inefficaces à des distances plus importantes. Dans une nouvelle étude, des physiciens ont ainsi réussi à appliquer de nouvelles méthodes pour mieux déterminer αs à des distances plus importantes. 

Un calcul basé sur l’intégrale de Bjorken

Poussé par sa curiosité, l’un des chercheurs a testé l’utilisation de l’intégrale de Bjorken pour prédire αs sur de longues distances. Cette méthode permet de définir des paramètres relatifs à la rotation de la structure des nucléons et ainsi de calculer le couplage de la force forte à courte distance. Le scientifique ne s’attendait donc pas à faire une découverte de ce calibre en faisant cet essai. Pourtant, contre toute attente, ses résultats ont montré qu’à un moment donné, αs cesse d’augmenter pour devenir constant. Il a ainsi partagé ses découvertes avec son mentor qui avait, lui aussi, obtenu des résultats similaires dans des travaux antérieurs.

 "Ce fut une chance, car même si personne ne s’en était encore rendu compte, l’intégrale de Bjorken est particulièrement adaptée aux calculs de αs sur de longues distances ", déclarent les chercheurs dans un article du Scientific American. Les résultats ont été présentés lors de diverses conférences de physique, durant l’une desquelles l’auteur principal a rencontré un autre physicien, Stanley Brodsky, qui aurait appuyé les résultats obtenus.

Une méthode par holographie

En parallèle à cette découverte, d’autres physiciens ont travaillé sur la mise au point d’une autre méthode de calcul de αs sur de longues distances, qu’ils ont appelée " holographie du front lumineux ". L’holographie est une technique mathématique qui a initialement été développée dans le contexte de la théorie des cordes et de la physique des trous noirs.

Cependant, en physique des particules, elle sert à modéliser des phénomènes en quatre dimensions (incluant les trois dimensions spatiales et une dimension temporelle) en se basant sur des calculs effectués dans un espace à cinq dimensions. Dans cette méthode, la cinquième dimension n’est pas nécessairement une dimension physique réelle, mais peut servir d’outil mathématique pour faciliter les calculs. L’idée est que certaines équations complexes en quatre dimensions peuvent devenir plus simples ou plus intuitives quand elles sont envisagées dans un espace à cinq dimensions.

Auteur: Internet

Info: https://trustmyscience.com/ - Miotisoa Randrianarisoa & J. Paiano·15 avril 2024

[ gluons ] [ force de cohésion nucléaire ]

 

Commentaires: 0

Ajouté à la BD par miguel

pédagogie

Apprentissage par récompense ou par punition: quelles différences ?
Apprendre à rechercher le plaisir ("récompenses") et à éviter la douleur ("punitions") joue un rôle fondamental pour la survie de tout animal, homme inclus. C'est ce que viennent de démontrer dans un article paru dans la revue Nature Communications, des chercheurs issus du CNRS - et notamment du Groupe d'analyse et de théorie économique Lyon St-Etienne
Malgré leur égale importance, l'apprentissage par récompense est beaucoup mieux compris que l'apprentissage par punition, d'un point de vue non seulement psychologique mais aussi neurobiologique. La principale raison à cela est que l'apprentissage par récompense est plus simple: il suffit de répéter les choix qui ont amené dans le passé à l'obtention du plaisir. En d'autres termes, il y a une association directe entre le "bon choix à faire" et le stimulus qui motive l'apprentissage (la récompense, qui a une valeur positive).
La figure montre des activations cérébrales dans deux régions, le striatum ventral (en vert) et l'insula antérieur (en rouge), qui sont connues pour travailler en opposition et être impliquées dans l'apprentissage par récompense et celui par punition, respectivement. Dans notre étude nous montrons que la contextualisation des valeurs supprime la nécessité d'activer l'insula, lors de l'apprentissage par punition, produisant un transfert d'activation du système de punition vers le système de récompense à mesure que les actions acquièrent une valeur relative positive.
L'apprentissage par punition est cognitivement plus complexe, car cette association n'est justement pas directe. Prenons l'exemple d'un animal qui est poursuivi par un prédateur. Le bon choix consisterait à se cacher dans un trou pour fuir le prédateur et amènerait à la disparition du stimulus qui motive l'apprentissage (le prédateur, qui a une valeur négative). Par conséquent, il est difficile d'expliquer comment ce bon choix se maintient en l'absence du stimulus. Les théories courantes ont ainsi du mal à démontrer comment les hommes peuvent être aussi performants dans le domaine de la punition que dans celui de la récompense.
L'équipe de recherche a découvert récemment un algorithme permettant au cerveau humain d'apprendre à éviter des punitions aussi efficacement qu'il apprend à rechercher des récompenses. La clef de voûte de cet algorithme - appelé "RELATIVE" - consiste à calculer les résultats des actions de manière dépendante du contexte dans lequel le résultat est obtenu. Ainsi, dans l'apprentissage par punition, le résultat d'une action qui a une valeur nulle (voire légèrement négative) - se cacher dans un trou - est rapporté au contexte dans lequel ce résultat a été obtenu, qui a une valeur très négative - être poursuivi par un prédateur. Si l'on considère que la valeur de l'action est plus grande que la valeur moyenne du contexte, le bon choix acquiert ainsi une valeur "relative" positive. Il permet donc un apprentissage par récompense aussi bien que par punition.
Grâce à l'imagerie par résonance magnétique cérébrale, l'équipe de recherche a aussi pu valider cet algorithme d'un point de vue neurobiologique, en montrant qu'il explique les variations d'activité cérébrale dans le cortex préfrontal médian, une zone du cerveau connue pour être impliquée dans la prise de décision. L'IRM a également permis de trancher un débat contradictoire important en sciences et dans la littérature: y a-t-il des systèmes ou réseaux distincts dans le cerveau pour l'apprentissage basé sur la récompense et celui basé sur la punition ?
L'analyse démontre qu'au départ, lorsque les sujets ne semblent pas encore avoir bien appris la valeur du contexte, le système d'apprentissage basé sur la récompense (le striatum ventral) et celui basé sur la punition (l'insula) sont tous les deux activés. Puis, à mesure que la contextualisation des valeurs négatives se met en place, l'insula s'active de moins en moins, et les essais d'apprentissage dans le contexte de punition se mettent à impliquer le striatum ventral qui s'active de plus en plus.

Auteur: Internet

Info: Contextual modulation of value signals in reward and punishment learning. Stefano Palminteri, Mehdi Khamassi, Mateus Joffily, Georgio Coricelli, Nature Communications, 25 août 2015

[ reptilien ]

 

Commentaires: 0

conjecture scientifique

L’Univers pourrait être dominé par des tachyons, des particules se déplaçant plus vite que la lumière

 (Photo : Une délicate sphère de gaz créée par une onde de souffle de supernova à 160 000 années-lumière de la Terre.)

Dans un article préliminaire récent, deux physiciens avancent une proposition qui pourrait révolutionner notre compréhension de l’Univers. Leur théorie audacieuse suggère que notre cosmos pourrait être gouverné par des particules hypothétiques appelées tachyons qui se déplacent toujours plus vite que la lumière.

L’hypothèse des tachyons

Dans le monde fascinant de la physique théorique où les frontières de la connaissance sont sans cesse repoussées, la quête pour comprendre les mystères de l’Univers est incessante. Récemment, deux physiciens ont par exemple fait une proposition audacieuse qui pourrait potentiellement transformer notre vision fondamentale de l’Univers : l’hypothèse des tachyons. Selon la théorie, il s’agirait de particules hypothétiques qui se déplacent toujours plus vite que la lumière.

Bien que leur existence soit largement contestée et contredite par les principes de la relativité restreinte, qui dit qu’aucune particule dotée de masse ne peut voyager à une vitesse supérieure à celle de la lumière dans le vide, les tachyons continuent de susciter l’intérêt des chercheurs en raison de leur potentiel à repousser les frontières de notre compréhension.

Comment leur présence pourrait-elle changer le monde ?

Les chercheurs avancent plus précisément l’hypothèse audacieuse que les tachyons pourraient jouer un rôle fondamental dans notre compréhension de la composition de l’Univers. Dans ce modèle, ces particules pourraient en effet être la clé pour expliquer deux phénomènes mystérieux : la matière noire et l’énergie noire. La première est une substance invisible qui compose la majorité de la masse de l’Univers observable, mais dont la nature exacte reste largement inconnue. L’énergie noire est quant à elle responsable de l’expansion accélérée de l’univers. Plus précisément, les chercheurs suggèrent que les tachyons pourraient être la véritable identité de la matière noire.

Concernant l’énergie noire, rappelons que les astronomes peuvent mesurer la luminosité intrinsèque des supernovae de type Ia, ce qui leur permet de déterminer leur distance par rapport à la Terre. En comparant cette luminosité apparente à la luminosité intrinsèque attendue d’une supernova de type Ia standard, ils peuvent calculer la distance de la supernova et ainsi estimer la distance de l’objet hôte (généralement une galaxie).

En combinant les mesures de distance de nombreuses supernovae de ce type à différentes distances, les astronomes peuvent alors tracer la relation entre la distance et le taux d’expansion de l’Univers. Dans le cadre de cette étude sur les tachyons, les chercheurs ont appliqué leur modèle cosmologique alternatif aux données observées sur ces supernovae. Il s’est alors avéré que ce dernier était tout aussi cohérent avec ces observations.

En intégrant les tachyons dans leur modèle, les physiciens suggèrent que ces particules pourraient ainsi fournir une explication unifiée à ces deux phénomènes cosmologiques complexes.

Quelles sont les limites de cette théorie ?

Malgré son potentiel révolutionnaire, la théorie des tachyons est confrontée à de nombreuses limites. Tout d’abord, leur existence même est hautement improbable selon les connaissances actuelles de la physique. En effet, la notion de voyager plus vite que la lumière soulève des questions fondamentales sur la causalité et les principes de la relativité. De plus, bien que ce modèle cosmologique puisse expliquer certaines observations, il nécessite encore des tests expérimentaux rigoureux pour être validé.

En conclusion, l’étude des tachyons représente une exploration audacieuse des limites de notre compréhension de l’Univers. Cependant, bien que cette théorie ouvre de nouvelles perspectives fascinantes, elle devra être soumise à un examen minutieux et à des tests rigoureux pour être pleinement acceptée par la communauté scientifique.

Les recherches de l’équipe ont été publiées dans la base de données pré-imprimée arXiv en mars.



 

Auteur: Internet

Info: https://sciencepost.fr/ - Brice Louvet, expert espace et sciences18 avril 2024

[ spéculations ] [ monde subatomique ] [ vitesse supraluminique ] [ effet Tcherenkov ] [ superluminique ]

 

Commentaires: 0

Ajouté à la BD par miguel