Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 135
Temps de recherche: 0.0682s

orient-ponant

La pensée chinoise archaïque

Quelques éléments sur ce que nous savons aujourd’hui de la pensée chinoise archaïque (XVe – XIe siècles av. J.-C.).

La manière dont les Chinois parlent et écrivent constitue, chacun le sait, un langage dont la structure grammaticale est très éloignée de la nôtre, occidentale. Ce que nous appelons les " mots d’armature " : les articles, les prépositions, les conjonctions, ces mots qui nous permettent de relier entre eux les " mots de contenu " : les substantifs, les verbes, les adjectifs qualificatifs, les adverbes, ces mots d’armature qui constituent à nos yeux le " tissu conjonctif " de la langue, sont pour la plupart absents du chinois.

Alors que nous, Occidentaux, nous attendons à lire ces mots d’armature dans un texte comme la manière requise pour l’articuler, nous constatons à la place en chinois des séquences de noms de choses à la queue leu-leu, lesquels peuvent éventuellement être reliés par quelques éléments syntaxiques mais en tout cas d’une façon beaucoup plus rudimentaire que chez nous.

Il existe en particulier dans la phrase chinoise un mot que nous écrivons dans notre graphie comme " yeh " et que nous qualifions de marqueur d’affirmation, pour préciser la façon dont il sert à relier deux notions. Un philologue de la Chine, Kyril Ryjik, dit à propos de yeh : " … ce caractère entretient, entre son sens original et son emploi opératoire, le type de rapport qu’entretient la notion de “copule” […]. Il opère avec une notion de très forte jonction entre deux termes " (Ryjik 1980 : 218). Deux termes chinois sont rapprochés et il est suggéré à l’aide du terme yeh qu’il existe un lien spécial entre les deux.

Chad Hansen, commentateur éminent de la langue chinoise archaïque, explique : 

" Il n’y a pas en chinois de est, pas d’expression prédicative dénotant l’identité ou l’inclusion. La juxtaposition de deux termes (ordinairement suivis de la particule yeh) constitue une phrase relationnelle grossièrement équivalente à une phrase affirmant l’identité ou l’inclusion […] La phrase pai ma ma yeh (blanc cheval cheval “est”) : “(du) cheval blanc ‘est’ (du) cheval”, est un exemple d’une telle structure de phrase " (Hansen 1983 : 45). 

Par ailleurs, si je prononce l’un après l’autre les mots chinois pour cheval et pour bœuf et que je fais suivre leur séquence de yeh : " cheval bœuf yeh ", je laisse entendre qu’il existe quelque chose reliant les deux termes, quelque chose fait qu’ils aient été mentionnés ensemble et je réunis ce faisant automatiquement ces deux notions sous un seul concept qui conduit à parler de ce que nous caractérisons nous comme " animal de trait ", parce que l’union établie entre le bœuf et le cheval par la particule yeh met en avant ce qui nous apparaît comme un trait commun aux deux notions évoquées. Si l’on recourt au vocabulaire de la théorie mathématique des ensembles, on dira que leur rapprochement souligné par yeh met en avant l’intersection de leurs caractères propres : le principe de l’animal de trait ne combine pas l’équinité et la bovinité selon leur union, additionnant l’ensemble des chevaux à celui des bœufs, mais selon leur intersection : là où la blancheur recoupe l’équinité, nous avons " du cheval blanc ", là où l’équinité rencontre la bovinité, nous trouvons le principe de l’animal de trait, en l’occurrence le fait qu’ils puissent l’un et l’autre tracter un objet lourd, comme un chariot, une charrue, la meule d’un moulin à grain, etc. Et à partir de là, la conjonction cheval bœuf signifie en chinois " animal de trait ".

Nous disposons dès lors d’éléments susceptibles de nous faire appréhender de plus près cette notion d’affinité qui nous semble propre à la pensée totémique dont je considère, à la suite de Durkheim et de Mauss, qu’il s’agit avec elle des échos de la pensée archaïque chinoise dans le reste de la zone circum-pacifique, échos dus à un processus historique de diffusion à partir de la Chine ou à une identité foncière trouvant sa source dans leur origine commune.

Deux notions sont rapprochées, sans qu’il soit précisé pour quelle raison précise elles le sont, le seul geste posé étant cette suggestion d’un lien entre les deux. Comment opérons-nous, par exemple en français, dans un contexte similaire ? Dans un usage de copule, nous disposons de deux verbes : être et avoir. Le verbe être, nous l’utilisons pour exprimer la nature de la chose : " Le cheval est blanc ", où un élément de l’ordre d’une caractéristique vient compléter la description de la chose jusque-là : une nouvelle qualification est apportée en complément. Mais nous utilisons aussi le verbe être pour dire : " Le cheval est un mammifère ", ce qui nous permet de signaler l’inclusion d’une sorte dans une autre sorte. La sorte " cheval " est l’une des composantes de la sorte " mammifère ".

Le verbe avoir a un sens qui peut être en français celui de la possession mais également celui d’un lien plus lâche, à la façon de ce yeh que je viens d’évoquer. Quand nous disons : " Le pharaon et la pyramide ", nous savons qu’il existe un lien entre les deux sans qu’il soit clair de quel lien précis nous voulons parler. Est-ce le fait que le pharaon a une pyramide ? Que le pharaon a fait bâtir une pyramide ? Quoi qu’il en soit, que nous précisions d’une manière ou d’une autre, nous savons qu’il existe un lien, qu’il existe – pour recourir à ce terme vague que nous utilisons en Occident pour évoquer la pensée totémique ou celle de la Chine archaïque – une affinité entre le pharaon et la pyramide.

Un autre exemple, quand on dit " L’abeille et son miel ", on peut vouloir dire que l’abeille fait du miel ou que l’abeille dispose de miel. On peut dire aussi " le miel de l’abeille ". Là aussi, nous pouvons préciser la relation exacte mais quand on se contente de dire " l’abeille et son miel ", on procède comme le faisait le chinois dans la forme archaïque de sa langue quand il rapprochait, rassemblait, les deux notions à l’aide de ce terme yeh. Un autre exemple encore, fenêtre et verre : " la fenêtre est en verre ", " il y a du verre dans la fenêtre ", " le verre de la fenêtre ", etc. Tout cela demeure de l’ordre du réversible, d’une symétrie essentielle entre les deux notions rapprochées, alors que, par contraste, les langues de l’Occident, aussi haut que nous puissions retracer leur ascendance, sont familières de la relation anti-symétrique d’inclusion, ingrédient indispensable du raisonnement scientifique. L’émergence du discours théorique qu’est la science a permis la naissance d’une technologie qui soit à proprement parler de la " science appliquée ", par opposition à la technologie résultant de la méthode empirique de l’essai et erreur, la seule que connaissait la culture humaine, à l’Ouest comme à l’Est, dans la période qui précéda le XVIIe siècle.

Le moyen de signifier la relation d’inclusion manquait au chinois, du coup quand il s’agissait d’indiquer un rapport entre deux notions, n’existait dans tous les cas de figure que l’option d’indiquer une proximité, un apparentement, ou comme nous nous exprimons, une " affinité ", faute de pouvoir qualifier la relation plus précisément. Impossible dans ce contexte d’opérer une véritable classification de l’ensemble de ces notions : nous ne pouvons au mieux qu’en établir la liste.

H. G. Creel explique : " Le point crucial est que les anciens Chinois n’étaient dans l’ensemble ni des penseurs systématiques ni ordonnés […]. Ils étaient des cataloguistes infatigables ; ils n’étaient pas systématiciens " (in Hansen 1983 : 25).

Pour qu’un classement systématique puisse être opéré dans l’espace d’une langue, il faut qu’elle dispose parmi ses outils de cette relation d’inclusion et qu’elle permette en particulier d’utiliser le verbe être – ou ce qui en tient lieu – dans le sens qui est le sien quand nous disons : " Le cheval est un animal " ou " Le rat est un mammifère ", soit l’inclusion d’une sorte dans une autre.

Si vous êtes familier de l’œuvre de Jorge Luis Borges. Vous n’ignorez pas alors qu’il nous a diverti avec de petits textes mettant habilement en scène certains paradoxes essentiels. Parmi ceux-ci, celui qui est consacré à " Pierre Ménard, auteur du Don Quichotte ". Ménard, explique Borges, est considéré comme l’un des grands auteurs des années 1930 parce qu’il est parvenu à s’imprégner à ce point de l’esprit du temps de de Cervantes, qu’il a pu réécrire à l’identique deux chapitres (et une partie importante d’un troisième) du Don Quichotte. L’idée est ridicule bien sûr parce que l’on peut imaginer aussi bien qu’au lieu de s’imprégner à la perfection de l’esprit d’une époque, le Ménard en question se soit contenté de recopier le texte du Don Quichotte. Borges avait par ailleurs saisi dans l’une de ses petites fables ce qu’avançait Creel quand il rapportait que les Chinois anciens étaient " des cataloguistes infatigables et non des systématiciens ". Selon Borges, on pouvait trouver dans un ancien texte chinois que :

" Les animaux se divisent en : a) appartenant à l’Empereur, b) embaumés, c) apprivoisés, d) cochons de lait, e) sirènes, f) fabuleux, g) chiens en liberté, h) inclus dans la présente classification, i) qui s’agitent comme des fous, j) innombrables, k) dessinés avec un pinceau très fin en poils de chameau, l) etc., m) qui viennent de casser la cruche, n) qui de loin semblent des mouches ".

Un inventaire sans doute, mais privé de tout caractère systématique, au pôle opposé d’une classification fondée sur l’emboîtement des sortes sur plusieurs niveaux, les niveaux étant ici mélangés. Il s’agit d’une plaisanterie bien entendu et non d’un vrai texte chinois, mais Borges a su saisir ce qui caractérisait à nos yeux d’Occidentaux, l’essence de la … chinoiserie.

Lucien Lévy-Bruhl caractérisait de la même manière la " mentalité primitive ", l’autre nom chez lui, nous le verrons, du totémisme, qui est aussi ce que j’appelle, comme leur synonyme, et à la suite de Durkheim et Mauss, la pensée chinoise archaïque : 

" … les connaissances ne se hiérarchisent pas en concepts subordonnés les uns aux autres. Elles demeurent simplement juxtaposées sans ordre. Elles forment une sorte d’amas ou de tas " (Lévy-Bruhl 1935 : xiv).

Il s’agit bien avec la " mentalité primitive " selon Lévy-Bruhl, le totémisme et la pensée chinoise archaïque d’une seule et même entité.

Auteur: Jorion Paul

Info: 20 janvier 2024, sur son blog.

[ langues comparées ] [ listes ] [ éparpillement ] [ imprécision sémantique ] [ historique ] [ différences ] [ nord-sud ]

 
Commentaires: 1
Ajouté à la BD par Le sous-projectionniste

citation s'appliquant à FLP

A l'origine il y a cet atavisme, l'attrait et le plaisir des formules verbales. Mais que dans la tête donc, parce qu'à l'époque, on n'avait pas de portables pour enregistrer en vitesse un bon mot sur la fonction dictaphone... Plus tard je me suis amusé à noter les idées, marrantes ou pas. J'avais mes petits papiers... cahiers...

Mon premier ordinateur était un Atari, avec une mémoire de termite : 500 ko si je me rappelle bien, c'était l'équivalent d'une disquette d'alors. Mais quel ne fut pas mon plaisir, par ce confort informatique soudain, de pouvoir conserver et organiser les extraits qui me plaisaient. Et surtout corriger et peaufiner mes propres textes au fur et à mesure. Et puis arriva Microsoft Office et surtout Excel, ce qui permit l'ouverture de deux bases de données, parallèles aux textes proprement dits, bases qui n'ont cessé de se développer depuis : une pour les auteurs (avec les dates, pays, profession, etc..) l'autre avec les catégories et leurs corrélats... J'étais sur la voie d'un début d'organisation.

De fils en aiguille, les années passant et les ordinateurs s'améliorant, sans oublier l'irruption d'Internet, cette manie s'amplifia... J'en vins à parler de ce syndrome quasi maladif avec un élève de mes cours de musique, Fabrice. Etant informaticien, il se proposa de programmer un logiciel PHP afin de classer le moins mal possible ces données. Il fut décidé de faire simple, en taguant les textes/formules à deux niveaux distincts : CATEGORIE et CORRELATS. La recherche pouvant ensuite se combiner de multiples manières (par corrélat, mot du texte, catégorie, auteur, etc... et leurs mélanges). Il faut aussi savoir que le mot du tag n'apparait pas dans le texte cible, ce qui constitue une véritable VALEUR AJOUTEE, même si elle est subjective. Ainsi se sont développées des grappes de citations classées par catégories... Les tags des corrélats venant soit en éclairage secondaire soit, en les prenant tous ensemble, comme un mur de mots venant préciser l'extrait où la formule. En même temps se développaient les deux bases. Celle des auteurs permettant d'avoir une structure temporelle très intéressante puisqu'on peut voir les 21000 auteurs se déployer chronologiquement sur près de 5000 ans, en commençant par les égyptiens. Et celle des catégorie et des corrélats, structure centrale de tous les tags connectés, tablés sur Excel, un peu comme une transposition des associations diverses - et bien sûr subjectives - de mon petit cerveau... Outil fort utile ma foi quand, ne sachant plus trop quoi faire pour taguer ou associer intelligemment une citation ou un mot, je m'y réfère, utilisant aussi beaucoup les dictionnaires de synonymes en ligne pour ce faire.

Il y a bien sûr énormément de manques, de redondances, d'erreurs, doublons... Cette application est tout sauf exhaustive. Je conserve cependant espoir que l'électronique aidant il sera toujours plus aisé de corriger, d'augmenter les entrées, d'affiner et de contrôler mieux les tags, etc., d'autant qu'avec une mise en ligne on pourra user du retours des internautes. Tiens, par exemple il fut ajouté sur suggestion externe un filtre pour pouvoir choisir la longueur du texte recherché. (actuellement 25 mots au max, ou 100, ou illimité). L'établissement des catégories est une problématique complexe. Il faudrait pouvoir synthétiser le plus possible avec un mot unique ce qui est impossible. Et puis la langue évolue... et nous aussi... et chacun a sa manière de voir. Bref je me suis de fait retrouvé à établir des "mots clefs catégories" toujours plus affinés, et qui s'affineront encore avec le temps je suppose. Exemples : hommes-par-femmes, femmes-par-hommes, dialogue-web (pour mes emprunts sur les chats), pensée-de-femme, art-de-vivre, fond-forme... et beaucoup d'autres que vous découvrirez si vous vous promenez sur l'application.

Ainsi, au fil des années, (à ce jour près d'une trentaine), s'est établi une routine matinale d'une ou deux heures où je vais à la pêche aux extraits. Une prédation qui prend plusieurs formes. D'abord la traduction (de l'anglais et de l'allemand, avec une dilection pour les sciences et l'humour), ce qui constitue un excellent exercice, et qui permet parfois d'importer des idées différentes dans la langue française. Ensuite par le surf, au hasard d'un concept, en allant sur des sites spécialisés ou autre. Enfin, en lisant tel livre ou tel dictionnaire et en en annotant les parties que je fais ensuite saisir par ma fille ainée - contre salaire ! Cette marotte matinale me permet du coup de noter les idées qui me viennent au cours du processus. Transmutées en langage électronique je les tague aussi, avant de les mettre dans la base de données, ce qui me permet, oh immense présomption, de mêler mon nom et mes cogitations à celles d'immenses créateurs... tout autant qu'à celles d'illustre inconnus. 

Je me vois souvent mieux en sémanticien-joueur-explorateur, plutôt qu'en écrivain ou compilateur ; le langage - en tant qu'émergence de codes de communication - m'intéresse finalement plus que les histoires proprement dites. On pourra donc déceler un fort tropisme vers les jeux de mots, la poésie, les réparties amusantes, les paradoxes...

Mais en fait, ce qui est passionnant ici, c'est de taguer. Car classer est une forme de jugement, de critique... (avec une petit pensée au passage pour Perec). Alors : classer de manière neuronale ?!.. Bref c'est un plaisir, une quête... Du coup j'ai pris aussi quelques voies latérales, établissant par exemple, à l'aide de sites spécialisés, un classement personnel des personnages importants de l'histoire et de la pensée humaine dans plusieurs domaines (penseurs militaires, philosophes, maîtres spirituels...). Ce qui me permit, en utilisant ma classification des écrivains clefs, d'ouvrir quelques catégories sur certains pivots de la littérature mondiale. On retrouvera donc des textes où sont commentés Dostoïevski, Nietzsche, les grecs anciens, Montaigne, Dante, Shakespeare, Cervantès, etc. Auteurs qui se retrouvent de fait être les seuls et uniques à exister aussi bien dans la base de données "auteurs" que dans celle des "mots/clefs et corrélats". La problématique du tri sélectif dans l'histoire de la culture humaine a toujours été une grande interrogation personnelle. Pourquoi ceci ou cela demeure dans la culture humaine.

Il existe beaucoup de pistes pour des éléments de réponse mais il me semble que j'aurai vécu cette époque charnière, c'est à dire celle d'une explosion informatique ou l'outil intellectuel s'est retrouvé multiplié de manière incroyable. De fait ce délire personnel participera peut-être d'une manière ou d'une autre à quelque forme de tri futur ? Allons savoir.

On aura donc compris combien l'application FLP ne fut initiée que par des choix subordonnés à mon bon plaisir, mon goût pour l'ordre et la fantaisie... et aussi une ouverture naturelle que je ne réfrène aucunement. C'est à dire, pour être vraiment clair, que j'ai toujours eu une appétence autant pour le sérieux que pour le vulgaire, le superficiel, voire le grossier choquant... Est-ce ce qu'on appelle aimer les extrêmes ? Avec pour résultat que j'ai parfois une légère honte rétrospective quant à certaines catégories : porno, vulgarité... Je n'y suis parfois pas allé avec le dos de la cuillère... je ne sais pas me restreindre je vous dis... et comme l'informatique ne nous limite pas en terme de mémoire...

A aussi émergé, avant de bien se développer, une catégorie "Citations s'appliquant au logiciel", à l'instar de "Titre possible pour ce logiciel", qui permettent de consulter un grand nombre du vues que moi ou d'autres considèrent comme pertinentes quant à la définition de cette application.

Maintenant une de mes principales espérance reste qu'il devrait être possible pour tout un chacun, avec cet outil, tout comme je le fais moi-même, de développer et de fixer des filaments de pensées, (voir sous Memex) un peu à l'image de ces photos de l'univers où l'on voit les amas de galaxies s'étirer en de grands lambeaux dorés... J'ai vécu beaucoup de ces "voyages sur un concept" de par et grâce à l'organisation de cette base de donnée, les voyant se développer malgré moi en fonction de l'avancée de l'indexation de tel ou tel mot. Une des premières rubriques qui fit scintiller mes neurones se passa avec ce beau mot : "réminiscence"...

Beaucoup de catégories se sont donc développées en parallèle, certaines comme "humour" ou "littérature" venant au fil du temps envelopper de grands pans de la base. D'autres prenant de très grandes dimensions en terme de nombre d'entrées : femmes-hommes, déclarations d'amour, justifications... Au point qu'un jour cela donna lieu à l'édition d'un recueil, les "dernières paroles". J'avais fait sans le savoir de l'édition "en live".

Il y a aussi quelques domaines où, de par ma curiosité propre, mon parcours de vie et l'accumulation des données, j'ai la faiblesse de m'auto bombarder "connaisseur". En voici quelques-uns : musique, extraterrestres, judaïsme...

Il y eu souvent aussi des périodes, de quelques jours à quelques semaines, où je me suis concentré sur un mot/concept/catégorie précis, comme : haïkus, questions, positiver, réparties, quête.... Ou mieux. Suite à des demandes, il m'est arrivé de faire des recherches plus précises. Sur deux mots par exemple. Un jour une connaissance m'interrogea sur l'existence d'un extrait "littéraire" où serait décrit quelqu'un en pleine lecture lors d'une forte pluie. Ne trouvant pas l'extrait, je l'ai écrit. Eh oui... Le client est finalement roi !! Donc, pour qui utiliserait le logiciel pour ce cas précis, il lui faudra faire une recherche qui associera ces deux mots : pluie et lecture.

Et puis il y eut la rencontre avec cet incroyable logicien sémanticien que fut C.S. Peirce, qu'on pourra découvrir via les extraits que nous avons intégrés, sur Internet... ou dans la profession de foi de FLP. Et puis je fis connaissance avec notre chère Colimasson dont les retours et autres remontrances aidèrent, à partir de 2015, à préciser beaucoup de choses. Et puis il y a tous les autres contributeurs, que je ne puis que chaleureusement remercier ici. 

Bon, assez, je vous laisse essayer si ça vous dit -, moi j'y retourne. Ces temps j'ai un petit faible pour "crépuscule" et "source"... Que suis-je d'autre, ma foi, que la personne, subjective et égocentrée, à la source de cette compilation multidimensionnelle. Le dico des avocats ? Devenu FLP.

Avec maintenant les chatbots, bons outils comparatifs, qui nous aident à préciser certaines choses.

Auteur: Mg

Info: 24 nov. 2012. Précisé et mis à jour au fil du temps

[ création ] [ autocritique ] [ confession ] [ au coeur de FLP ]

 

Commentaires: 0

écrivain-sur-écrivain

Créateur d'étoiles d'Olaf Stapledon : voir l'ensemble des choses

Au regard du monde  de 1937 en ébullition et à la veille de la Seconde Guerre mondiale, Olaf Stapledon présenta Star Maker avec une puissante justification pour une science-fiction en temps de crise : " …Peut-être que la tentative de voir notre monde turbulent sur fond d’étoiles pourrait, après tout, augmenter, et non diminuer, l’importance de la crise humaine actuelle. …. Dans cette optique, j’ai essayé de construire une esquisse imaginative de cet ensemble redoutable mais vital. "

Je doute qu’aucun écrivain avant ou depuis ait pris au pied de la lettre la tâche de décrire " l’ensemble des choses " comme un mythe de l’esprit cosmique ou ne l’ait fait avec autant d’efficacité.

Des écrivains aussi divers que Brian Aldiss, Arthur C. Clarke, Jorge Luis Borges, Doris Lessing et Virginia Woolf, entre autres, ont loué le travail de Stapledon, en particulier Star Maker. Considérant que Stapledon avait une formation de philosophe et qu’il connaissait peu la science-fiction avant d’écrire ses romans, il eut une énorme influence dans le domaine. Star Maker s'est avéré être une mine d'idées pour le travail d'innombrables écrivains.

On voit bien pourquoi. Même si Stapledon abandonne l'intrigue conventionnelle, son narrateur décrit avec des détails fascinants un voyage à travers le cosmos. Qui commence au milieu d'une crise personnelle lorsqu'un homme se promène sur une colline près de chez lui.

La recherche de sens

Il est submergé par un sentiment d'irréalité et de futilité dans la vie quotidienne ainsi que par le délire du monde. Pourtant, alors qu'il réfléchit à la petitesse de la vie dans le vaste vide de l'espace, sa vision change soudainement, balayant d'abord toute l'étendue de la terre, puis s'élève dans l'espace. Sous lui, la terre en déclin apparaît comme un caillou dans la vaste étendue des étoiles. Sous cette forme désincarnée, il se retrouve à voyager dans l’espace à une vitesse ahurissante.

Ainsi commence un voyage épique à la recherche de la source de l’être lui-même et de la communauté d’autres esprits capables de donner un sens à la vie dans le contexte d’un univers apparemment infini. Bien que Stapledon soit agnostique quant aux croyances religieuses, il ressentait fortement le désir de saisir les mystères de l'existence. Il fit de cet élan essentiellement religieux le moteur qui porte le voyage vers son ineffable apogée dans un aperçu de la force créatrice suprême du cosmos.

Une communauté de voyageurs psychiques

Le narrateur voyage en tant qu'entité psychique de monde en monde à la recherche d'êtres sensibles à travers la galaxie. Il trouve un moyen de s'infiltrer dans leur esprit et même de communiquer avec eux tout en partageant leur espace mental. À mesure que le nombre de ces voyageurs psychiques augmente, ils ressentent un objectif commun en tant qu’explorateurs galactiques.

Ils réalisent que leurs voyages ne sont pas simplement des aventures personnelles mais font partie d’une force de conscience plus vaste. Ils sentent émerger une conscience distincte qui met de côté le caractère unique culturel de chaque individu et se concentre sur " les attributs essentiels à l’esprit ".

Ainsi émerge un esprit cosmique qui exerce une force d’attraction vers d’autres intelligences qui recherchent également une compréhension plus large. Cette force psychique vient déterminer la direction du voyage, car ils sont attirés vers des êtres partageant les mêmes idées dans des mondes différents.

Espèces en évolution

Le narrateur, tout en participant à cette conscience plus large, enregistre ses propres impressions alors que le voyage se poursuit à travers des centaines de mondes. Il fait voir des civilisations à tous les stades, depuis le niveau primitif de créatures peu évoluées jusqu'aux sociétés avancées d'êtres plus accomplis que les humains. Alors que de nombreux peuples qu'il rencontre sont de forme humanoïde, bien que d'apparence très différente, d'autres représentent des formes de vie basées sur des espèces totalement différentes.

Il existe des " échinodermes humains " issus d'une créature comme une étoile de mer qui avait développé des organes sensoriels élaborés et un cerveau spécialisé dans plusieurs bras et qui a finalement migré sur terre et formé des civilisations industrielles. Il y a les nautiloïdes qui ont évolué vers des structures semblables à des navires d’une grande intelligence qui ont construit leur propre civilisation. Les espèces aviaires sur une planète se sont combinées en grands essaims pour former un seul esprit et une seule conscience, bien que le corps reste multiple.

Mais les plus avancés sont les symbiotes qui combinent les caractéristiques avantageuses de formes de vie radicalement différentes. L’une d’elles combine la nature méditative d’une vie végétale intelligente avec les impulsions actives d’une nature animale. Un autre combine les capacités d’une existence sous-marine ichtyoïde avec une espèce de crustacé ou d’arachnoïde qui a appris à vivre sur terre. Ils se sont adaptés physiquement les uns aux autres pour former des couples permanents, leurs corps étant assemblés et partageant une intelligence commune.

Technologies et civilisations

Toutes ces espèces qui atteignent une intelligence avancée doivent faire face aux problèmes de la production industrielle et de ses effets planétaires. Leurs sociétés atteignent des points de crise lorsqu’elles abusent du pouvoir qu’apporte la technologie avancée.

Une société développe un genre d'Internet et de l'expérience virtuelle grâce à des postes de radio de poche et à la radio-stimulation cérébrale. Beaucoup utilisent ces postes pour des émissions à caractère sexuel. La passion pour le " bonheur radio " devient une drogue pour les classes inférieures et remplace la réforme économique.

Les sociétés avancées ne sont pas les seules à réaliser des voyages spatiaux. Elles apprennent également à manipuler l’énergie des étoiles en les entourant de sphères de conversion d’énergie*. Ils construisent des essaims de planètes artificielles et déplacent les planètes existantes vers de nouveaux emplacements pour les rendre plus habitables.

Le plus grand exploit des êtres les plus avancés est peut-être la fusion des consciences individuelles de populations entières, puis de mondes, puis d’une galaxie entière, pour former un esprit cosmique.

Société des Mondes Galactique

La compétence télépathique de cet esprit cosmique en expansion dans la culture la plus avancée devient une force irrésistible qui embrasse tous les " mondes éveillés ". Grâce à la communication télépathique, ils font appel aux esprits de toute la galaxie pour former une utopie.

En créant un vaste " continent galactique " qui constitue une Société de Mondes, ces êtres opèrent des changements radicaux. Ils démontent les étoiles mourantes pour utiliser leur énergie pour voyager dans l’espace et même déplacer les étoiles vers de nouveaux emplacements. Mais alors qu’ils tentent d’avancer au-delà d’une seule galaxie, ils rencontrent des revers inattendus.

Les étoiles elles-mêmes ont leur propre forme de conscience et commencent à se rebeller.

L'esprit des étoiles et des galaxies

Certaines étoiles explosent, effaçant toutes les planètes et mondes artificiels qui les entourent. La Société des Mondes se rend compte que les étoiles sont elles-mêmes vivantes et tentent de communiquer avec elle pour permettre aux différentes formes de vie de vivre ensemble.

Stapledon ne cesse d'expandre sa carte mentale du cosmos vers des échelles et des perspectives plus vastes pour englobert des niveaux d'être et de conscience toujours plus grands.

Et il y a toujours une conscience. Même les nébuleuses partagent la pulsion commune à toutes les formes d'esprit, qui consiste à tendre la main pour créer une union mentale et comprendre la source dont elles sont issues.

Elles communiquent entre elles grâce au stress gravitationnel. Les messages mettent des éons à être formulés et des millions d’années pour atteindre leur destination. " Quand les nébuleuses étaient à leur apogée, le cosmos tout entier résonnait de leurs paroles. "

Créateur d'étoiles

Le narrateur et son groupe d'explorateurs galactiques, partageant cette conscience croissante, acquièrent une nouvelle notion du temps. Les éons deviennent des minutes, car ils perçoivent toute la vie du cosmos comme une brève course contre le temps au galop.

Dans cet état, le narrateur, en tant que partie de l’esprit cosmique, perçoit l’être spirituel ultime de l’univers. Mais ce n’est qu’un flash, éclair d'une aveuglant clarté qui disparaît aussitôt.

Ce que le narrateur peut décrire, c'est la séquelle de sa vision fugace, " un écho, un symbole, un mythe, un rêve fou " du Faiseur d'Etoile qu'il a entrevu alors que son voyage touche à sa fin.

Un mythe de la création

Il voit ce créateur créer non seulement des mondes d’une grande diversité, mais des univers entiers qui fonctionnent selon des principes différents. Dans certains cas, les individus font l'expérience de plusieurs dimensions temporelles. Dans l’un d’entre eux, ils perçoivent vaguement leur propre moi alternatif dans d’autres réalités. Dans une autre, ils zigzaguent entre les dimensions temporelles à différentes périodes de leur vie.

Il existe d’autres univers (anticipant le concept de multivers) dans lesquels les individus génèrent plusieurs lignes temporelles à chaque instant où des choix doivent être faits. Chaque possibilité peut être réalisée en même temps dans différentes zones de l'être.

Parfois, dans cette vision, le Créateur d’Étoiles semble considérer tous les mondes et univers créés ainsi que les vastes échelles de civilisation et de destruction qu’ils entraînent avec une froide indifférence. Il n'a aucune sympathie pour toutes les souffrances des êtres hautement évolués vivant sur ces mondes, les considérant uniquement comme autant de magnifiques fils tissés en une seule grande tapisserie. À d’autres moments, cependant, ces créations semblent imprégnées d’amour.

En fin de compte, le narrateur se retrouve épuisé par l’effort visant à capturer quelque chose qui se situe bien au-delà de l’expérience humaine et du langage. Il ne peut que résumer ce qu’il considère comme un mystère effrayant, une adoration irrésistible.

Le narrateur se réveille sur le flanc d'une colline près de chez lui et regarde à nouveau à travers la terre les terribles luttes alors en cours dans le monde de 1937. Il voit un vaste conflit entre le bien et le mal dans lequel tout ce qui est cher aux humains est en danger. Il sent deux sources de lumière et d’espoir dans cette obscurité. L’une d’entre elles est " le petit atome brillant " de la communauté humaine. L’autre la lumière froide des étoiles et la " réalité hypercosmique " qu’elles représentent. Ce voyage cosmique se termine donc là où il a commencé, mais en offrant au voyageur une conscience de la vie beaucoup plus large.

Stapledon s'est détourné de l'écriture philosophique au sens académique du terme parce qu'il souhaitait atteindre un large public en utilisant un langage plus simple. L’incroyable abondance d’idées et de descriptions détaillées de technologies et de mondes étranges est en effet facile à saisir. Mais ce que je trouve le plus puissant, c’est la clarté souvent lyrique et la fluidité rythmique de son style. Il existe peu de scènes dramatiques conventionnelles, mais la narration soutenue d'un voyage fantastique pour comprendre le cosmos devient un mythe de la création plus convaincant que n'importe quel page-turner conventionnel. 

Auteur: Folk-Williams John

Info: préfiguration des sphères de Dyson (note de Mg)

[ compte-rendu de lecture ] [ visionnaire ] [ quête théologique ] [ théorie du tout ] [ décorporation ]

 

Commentaires: 0

Ajouté à la BD par miguel

tour d'horizon de l'IA

Intelligence artificielle symbolique et machine learning, l’essor des technologies disruptives

Définie par le parlement Européen comme la " reproduction des comportements liés aux humains, tels que le raisonnement, la planification et la créativité ", l’intelligence artificielle s’initie de façon spectaculaire dans nos vies. Théorisée au milieu des années 50, plusieurs approches technologiques coexistent telles que l’approche machine learning dite statistique basée sur l’apprentissage automatique, ou l’approche symbolique basée sur l’interprétation et la manipulation des symboles. Mais comment se différencient ces approches ? Et pour quels usages ?

L’intelligence artificielle, une histoire ancienne

Entre les années 1948 et 1966, l’Intelligence Artificielle a connu un essor rapide, stimulé par des financements importants du gouvernement américain pour des projets de recherche sur l’IA, notamment en linguistique. Des progrès significatifs ont été réalisés dans la résolution de problèmes de logique symbolique, mais la capacité de l’IA à traiter des données complexes et imprécises était encore limitée.

A la fin des années 70, plus précisément lors du deuxième “été de l’IA” entre 1978 et 1987,  l’IA connaît un regain d’intérêt. Les chercheurs ont commencé à explorer de nouvelles approches, notamment l’utilisation de réseaux neuronaux et de systèmes experts. Les réseaux neuronaux sont des modèles de traitement de l’information inspirés par le fonctionnement du cerveau humain, tandis que les systèmes experts sont des programmes informatiques qui simulent l’expertise humaine dans un domaine spécifique.

Il faudra attendre la fin des années 90 pour voir un renouveau de ces domaines scientifiques, stimulé par des avancées majeures dans le traitement des données et les progrès de l’apprentissage automatique. C’est d’ailleurs dans cette période qu’une IA, Deepblue, gagne contre le champion mondial Garry Kasparov aux échecs.$

Au cours des dernières années, cette technologie a connu une croissance exponentielle, stimulée par des progrès majeurs dans le deep learning, la robotique ou la compréhension du langage naturel (NLU). L’IA est maintenant utilisée dans un large éventail de domaines, notamment la médecine, l’agriculture, l’industrie et les services. C’est aujourd’hui un moteur clé de l’innovation et de la transformation de notre monde, accentué par l’essor des generative AIs. 

Parmi ces innovations, deux grandes approches en intelligence artificielle sont aujourd’hui utilisées : 

1 - Le Machine Learning : qui est un système d’apprentissage automatique basé sur l’exploitation de données, imitant un réseau neuronal

2 - L’IA Symbolique : qui se base sur un système d’exploitation de " symboles ”, ce qui inspire des technologies comme le “système expert” basé sur une suite de règles par exemple.

Mais comment fonctionnent ces deux approches et quels sont leurs avantages et leurs inconvénients ? Quels sont leurs champs d’application ? Peuvent-ils être complémentaires ?

Le machine learning

Le Machine Learning est le courant le plus populaire ces dernières années, il est notamment à l’origine de ChatGPT ou bien MidJourney, qui font beaucoup parler d’eux ces derniers temps. Le Machine Learning (ML) est une famille de méthodes d’apprentissage automatique qui permet aux ordinateurs d’apprendre à partir de données, sans être explicitement programmés. En utilisant des algorithmes, le ML permet aux ordinateurs de comprendre les structures et les relations dans les données et de les utiliser pour prendre des décisions.

Le ML consiste à entraîner des modèles informatiques sur de vastes ensembles de données. Ces modèles sont des algorithmes auto apprenant se basant sur des échantillons de données, tout en déterminant des schémas et des relations/corrélations entre elles. Le processus d’entraînement consiste à fournir à l’algorithme des données étiquetées, c’est-à-dire des données qui ont déjà été classifiées ou étiquetées pour leur attribuer une signification. L’algorithme apprend ensuite à associer les caractéristiques des données étiquetées aux catégories définies en amont. Il existe cependant une approche non-supervisée qui consiste à découvrir ce que sont les étiquettes elles-mêmes (ex: tâche de clustering).

Traditionnellement, le machine learning se divise en 4 sous-catégories : 

Apprentissage supervisé : 

Les ensembles de données sont étiquetés, ce qui permet à l’algorithme de trouver des corrélations et des relations entre les caractéristiques des données et les étiquettes correspondantes. 

Apprentissage non supervisé : 

Les ensembles de données ne sont pas étiquetés et l’algorithme doit découvrir les étiquettes par lui-même. 

Apprentissage semi-supervisé : 

L’algorithme utilise un mélange de données étiquetées et non étiquetées pour l’entraînement.

Apprentissage par renforcement : 

L’algorithme apprend à prendre des décisions en interagissant avec son environnement. Il reçoit des récompenses ou des pénalités pour chaque action, ce qui lui permet d’ajuster sa stratégie pour maximiser sa récompense globale.

Un exemple d’application du Machine Learning est la reconnaissance d’images. Des modèles d’apprentissages profonds sont entraînés sur des millions d’images pour apprendre à reconnaître des objets, des personnes, des animaux, etc. Un autre exemple est la prédiction de la demande dans le commerce de détail, où des modèles sont entraînés sur des données de ventes passées pour prédire les ventes futures.

Quels sont les avantages ? 

Étant entraîné sur un vaste corpus de données, le ML permet de prédire des tendances en fonction de données.  

- Le machine learning offre la capacité de détecter des tendances and des modèles dans les données qui peuvent échapper à l’observation humaine.

- Une fois configuré, le machine learning peut fonctionner de manière autonome, sans l’intervention humaine. Par exemple, dans le domaine de la cybersécurité, il peut surveiller en permanence le trafic réseau pour identifier les anomalies.

- Les résultats obtenus par le machine learning peuvent s’affiner et s’améliorer avec le temps, car l’algorithme peut apprendre de nouvelles informations et ajuster ses prédictions en conséquence.

- Le machine learning est capable de traiter des volumes massifs et variés de données, même dans des environnements dynamiques et complexes.

L’intelligence artificielle symbolique

L’IA symbolique est une autre approche de l’intelligence artificielle. Elle utilise des symboles and des règles de traitement de l’information pour effectuer des tâches. Les symboles peuvent être des concepts, des objets, des relations, etc. Les règles peuvent être des règles de déduction, des règles de production, des règles d’inférence…etc.

Un exemple d’application de l’IA symbolique est le système expert. Un système expert est un programme informatique qui utilise des règles de déduction pour résoudre des problèmes dans un domaine spécifique, comme le diagnostic médical ou l’aide à la décision en entreprise. Un autre exemple est la traduction automatique basée sur des règles, les règles de grammaire et de syntaxe sont utilisées pour traduire un texte d’une langue à une autre.

Quelques exemples d’usages de l’IA symbolique :

La traduction

L’IA symbolique a été utilisée pour développer des systèmes de traduction automatique basés sur des règles. Ces systèmes utilisent des règles de grammaire et de syntaxe pour convertir un texte d’une langue à une autre. Par exemple, le système SYSTRAN, développé dans les années 1960, est un des premiers systèmes de traduction automatique basé sur des règles. Ce type de système se distingue des approches basées sur le Machine Learning, comme Google Translate, qui utilisent des modèles statistiques pour apprendre à traduire des textes à partir de corpus bilingues.

Le raisonnement logique

L’IA symbolique est également utilisée pour développer des systèmes capables de raisonnement logique, en exploitant des règles et des connaissances déclaratives pour résoudre des problèmes complexes. Par exemple, les systèmes d’aide à la décision basés sur des règles peuvent être utilisés dans des domaines tels que la finance, l’assurance ou la logistique, pour aider les entreprises à prendre des décisions éclairées. Un exemple concret est le système MYCIN, développé dans les années 1970 pour aider les médecins à diagnostiquer des infections bactériennes et à prescrire des antibiotiques adaptés.

L’analyse de textes

L’IA symbolique peut être utilisée pour l’analyse de textes, en exploitant des règles et des connaissances linguistiques pour extraire des informations pertinentes à partir de documents. Par exemple, les systèmes d’extraction d’information basés sur des règles peuvent être utilisés pour identifier des entités nommées (noms de personnes, d’organisations, de lieux, etc.) et des relations entre ces entités dans des textes. Un exemple d’application est l’analyse et la catégorisation des messages entrants pour les entreprises, cœur de métier de Golem.ai avec la solution InboxCare.

Les avantages de l’IA symbolique 

L’IA symbolique est une approche qui utilise des symboles, et parfois des " règles” basées sur des connaissances, qui comporte plusieurs avantages :

- Explicablilité : Les décisions prises par les systèmes d’IA symbolique sont explicites et peuvent être expliquées en fonction des règles logiques et des connaissances déclaratives utilisées par le système. Cette transparence peut être essentielle dans des applications critiques, comme la médecine ou la défense.

- Frugalité : Contrairement au Machine Learning, l’IA symbolique ne nécessite pas d’entraînement, ce qui la rend moins gourmande en énergie à la fois lors de la conception et de l’utilisation.

- Adaptabilité : Les systèmes d’IA symbolique peuvent être facilement adaptés à de nouveaux domaines en ajoutant de nouvelles règles logiques et connaissances déclaratives à leurs bases de connaissances existantes, leurs permettant de s’adapter rapidement à de nouvelles situations.

L’intelligence artificielle hybride ou le neuro-symbolique 

Les systèmes hybrides combinent les avantages de l’IA symbolique et du Machine Learning en utilisant une approche mixte. Dans ce type de système, l’IA symbolique est utilisée pour représenter les connaissances et les règles logiques dans un domaine spécifique. Les techniques de Machine Learning sont ensuite utilisées pour améliorer les performances de l’IA symbolique en utilisant des ensembles de données pour apprendre des modèles de décision plus précis et plus flexibles. Mais nous pouvons également voir d’autres articulations comme la taxonomie de Kautz par exemple.

L’IA symbolique est souvent utilisée dans des domaines où il est important de comprendre et de contrôler la façon dont les décisions sont prises, comme la médecine, la finance ou la sécurité. En revanche, le Machine Learning est souvent utilisé pour des tâches de classification ou de prédiction à grande échelle, telles que la reconnaissance de voix ou d’image, ou pour détecter des modèles dans des données massives.

En combinant les deux approches, les systèmes hybrides peuvent bénéficier de la compréhensibilité et de la fiabilité de l’IA symbolique, tout en utilisant la flexibilité et la capacité de traitement massif de données du Machine Learning pour améliorer la performance des décisions. Ces systèmes hybrides peuvent également offrir une plus grande précision et un temps de réponse plus rapide que l’une ou l’autre approche utilisée seule.

Que retenir de ces deux approches ?

L’Intelligence Artificielle est en constante évolution et transforme de nombreux secteurs d’activité. Les deux approches principales de l’IA ont leurs avantages et inconvénients et peuvent être complémentaires. Il est donc crucial pour les entreprises de comprendre ces technologies pour rester compétitives. 

Cependant, les implications éthiques et sociales de l’IA doivent également être prises en compte. Les décisions des algorithmes peuvent avoir un impact sur la vie des personnes, leur travail, leurs droits et leurs libertés. Il est donc essentiel de mettre en place des normes éthiques et des réglementations pour garantir que l’IA soit au service de l’humanité. Les entreprises et les gouvernements doivent travailler ensemble pour développer des IA responsables, transparentes et équitables qui servent les intérêts de tous. En travaillant ensemble, nous pouvons assurer que l’IA soit une force positive pour l’humanité dans les années à venir. 



 

Auteur: Merindol Hector

Info: https://golem.ai/en/blog/technologie/ia-symbolique-machinelearning-nlp - 4 avril 2023

[ dualité ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

manipulation des masses

De l'hégémonie du dollar au réchauffement climatique : mondialisation, glyphosate et doctrine du consentement.

Depuis l'abandon des accords de Bretton Woods en 1971, il y a eu un changement tectonique continu en Occident. Qui s'est accéléré lorsque l'URSS a pris fin et a abouti à la " mondialisation néolibérale " que nous connaissons aujourd'hui.

Dans le même temps, une campagne sans précédent a été menée pour réinventer le consensus social en Occident. Une partie de cette stratégie consistant à amener les populations des pays occidentaux à se focaliser sur le "réchauffement climatique", l'"équité entre les sexes" et l'"antiracisme". Les effets dévastateurs et les injustices causés par le capitalisme mondialisé et le militarisme qui en découle restant largement inexprimé pour la masse des gens.

Tel est l'argument présenté par Denis Rancourt, chercheur à l'Ontario Civil Liberties Association, dans un nouveau rapport. M. Rancourt est un ancien professeur titulaire de physique à l'Université d'Ottawa au Canada et auteur de : "La géoéconomie et la géo-politique conduisent à des époques successives de mondialisation prédatrice et d'ingénierie sociale : Historical emergence of climate change, gender equity, and antiracism as state doctrines' (avril 2019)."

Dans ce rapport, Rancourt fait référence au livre de Michael Hudson de 1972 intitulé "Super Imperialism" : The Economic Strategy of American Empire" pour aider à expliquer le rôle clé du maintien de l'hégémonie du dollar et l'importance du pétrodollar dans la domination mondiale des États-Unis. Outre l'importance du pétrole, M. Rancourt soutient que les États-Unis ont un intérêt existentiel à faire en sorte que les opioïdes soient commercialisés en dollars américains, un autre grand produit mondial. Ce qui explique en partie l'occupation américaine de l'Afghanistan. Il souligne également l'importance de l'agro-industrie et de l'industrie de l'armement américaines pour la réalisation des objectifs géostratégiques des États-Unis.

Depuis la chute de l'URSS en 1991, M. Rancourt indique que les campagnes de guerre américaines ont, entre autres, protégé le dollar américain de l'abandon, détruit des nations en quête de souveraineté contre la domination américaine, assuré le commerce de l'opium, renforcé leur contrôle du pétrole et entravé l'intégration eurasiatique. En outre, nous avons vu certains pays faire face à un bombardement de sanctions et d'hostilité dans une tentative de détruire des centres de production d'énergie que les États-Unis ne contrôlent pas, notamment la Russie.

Il souligne également les impacts dans les pays occidentaux, y compris : la perte relative systématique du rang économique de la classe moyenne, la montée du sans-abrisme urbain, la décimation de la classe ouvrière industrielle, les méga-fusions des entreprises, la montée des inégalités, le démantèlement du bien-être, la spéculation financière, les salaires qui stagnent, les dettes, la dérégulation et les privatisation. De plus, l'assouplissement accru de la réglementation des aliments et des médicaments a entraîné une augmentation spectaculaire de l'utilisation de l'herbicide glyphosate, qui s'est accompagnée d'une recrudescence de nombreuses maladies et affections chroniques.

Face à cette dévastation, les pays occidentaux ont dû obtenir le maintien du consentement de leurs propres populations. Pour aider à expliquer comment cela a été réalisé, Rancourt se concentre sur l'équité entre les sexes, l'antiracisme et le réchauffement climatique en tant que doctrines d'État qui ont été utilisées pour détourner l'attention des machinations de l'empire américain (et aussi pour empêcher la prise de conscience de classe). J'ai récemment interrogé Denis Rancourt sur cet aspect de son rapport.

CT : Pouvez-vous nous en dire un peu plus sur vous et sur la façon dont vous avez produit ce rapport ? Quel est son objectif ?

DR : Ancien professeur de physique, scientifique de l'environnement et défenseur des droits civils, je travaille actuellement comme chercheur pour l'Ontario Civil Liberties Association (ocla.ca). Au cours d'une conversation que j'ai eue avec le directeur exécutif de l'OCLA au sujet des droits civils, nous avons identifié plusieurs phénomènes sociaux et économiques importants qui semblaient liés au début des années 1990. J'ai donc fini par m'installer pour faire ce "gros boulot", du point de vue de la recherche.

Bien que nous ne manquions pas d'intellectuels et d'experts engagés pour guider notre perception à tort, mes recherches démontrent qu'il existe un lien entre la montée en flèche de la répression et de l'exploitation à grande échelle des populations nationales et l'accélération d'une mondialisation agressive et abusive.

CT : Dans votre rapport, vous avez décrit les conséquences de l'abandon de Bretton Woods et de la dissolution de l'URSS en termes d'hégémonie du dollar, du militarisme américain et des effets dévastateurs de la "mondialisation néolibérale" tant pour les États nations que pour les citoyens.

Il ne fait guère de doute que les analystes russes et chinois comprennent bien ce que j'ai exposé dans mon rapport. Par exemple, en prévision de la guerre commerciale de Trump, le discours prononcé en avril 2015 par le major-général Qiao Liang de l'Armée populaire de libération du peuple devant le Comité central et le bureau du gouvernement du Parti communiste chinois, comprenait ce qui suit :

"Depuis ce jour [dissolution de Bretton Woods], un véritable empire financier a émergé, l'hégémonie du dollar américain s'est établie, et nous sommes entrés dans une véritable ère de monnaie de papier. Il n'y a pas de métal précieux derrière le dollar américain. Le crédit du gouvernement est le seul soutien du dollar américain. Les États-Unis tirent profit du monde entier. Cela signifie que les Américains peuvent obtenir des richesses matérielles du monde entier en imprimant un morceau de papier vert. (...) Si nous reconnaissons [maintenant] qu'il existe un cycle de l'indice du dollar américain [ponctué de crises machinées, dont la guerre] et que les Américains utilisent ce cycle pour faire la récolte dans les autres pays, alors nous pouvons conclure que le moment était venu pour eux d'en faire autant en Chine..."

CT : Vous discutez de la nécessité pour les États d'obtenir le consentement : la nécessité de pacifier, d'hypnotiser et d'aligner les populations pour poursuivre la mondialisation ; plus précisément, la nécessité de détourner l'attention de la violence structurelle des politiques économiques et de la violence réelle du militarisme. Pouvez-vous nous dire comment la question du réchauffement climatique est liée à cela ?

DR : Que la soi-disant "crise climatique" soit réelle, exagérée ou fabriquée de toutes pièces, il est clair, d'après les données de mon rapport, que l'éthique du réchauffement climatique a été conçue et manipulée à l'échelle mondiale et qu'elle bénéficie aux exploiteurs de l'économie du carbone et, plus indirectement, à l'État.

Par exemple, l'une des études que j'ai passées en revue montre qu'une multiplication des reportages sur le réchauffement climatique dans les médias grand public s'est soudainement produite au milieu des années 2000, dans tous les grands médias, au moment même où les financiers et leurs acolytes, comme Al Gore, ont décidé de créer et de gérer une économie mondiale du carbone. Cette campagne médiatique s'est poursuivie depuis lors et l'éthique du réchauffement climatique a été institutionnalisée.

Les programmes de piégeage du carbone ont dévasté les communautés locales sur tous les continents occupés. En fait, les programmes de réduction des émissions de carbone - des parcs éoliens à la récolte de biocarburants, en passant par la production industrielle de batteries, les installations de panneaux solaires, l'extraction de l'uranium, la construction de méga barrages hydroélectriques, etc. on accéléré les destructions d'habitats.

Pendant ce temps, la guerre économique et militaire fait rage, le glyphosate est déversé dans l'écosphère à un rythme sans précédent (déversé sur des cultures mercantiles résistant aux phytocides GM), des génocides actifs sont en cours (Yémen), les États-Unis se désistent de façon unilatérale et imposent une course aux armes aux machines nucléaires et aux armes nucléaires de prochaine génération ; des prêts extortionnels sont accordés par les Etats-Unis qui ont transformé l'usage de leurs terres au plan national, et des enfants scolarisés développent des crises psychotiques afin de faire "bouger les gouvernements" pour qu'ils "agissent" contre le climat.

Au début des années 1990, une conférence mondiale sur l'environnementalisme climatique fut une réponse expresse à la dissolution de l'Union soviétique. Cela faisait partie d'un projet de propagande globale visant à masquer la nouvelle vague de mondialisation accélérée et prédatrice qui se déchaînait alors que l'URSS était définitivement sortie du droit chemin.

CT : Que pensez-vous de Greta Thunberg et du mouvement qui l'entoure ?

DR : C'est triste et pathétique. Ce mouvement témoigne du succès du projet mondial de propagande que je décris dans mon rapport. Le mouvement est aussi un indicateur du degré d'enracinement du totalitarisme dans les sociétés occidentales, où les individus, les associations et les institutions perdent leur capacité de pensée indépendante pour détourner la société des des desseins d'une élite d'occupation. Les individus (et leurs parents) deviennent la police de la moralité au service de cet "environnementalisme".

CT : Vous parlez aussi de l'émergence de l'égalité des sexes (féminisme de la troisième vague) et de l'antiracisme comme doctrines d'État. Pouvez-vous dire quelque chose à ce sujet ?

DR : Dans mon rapport, j'utilise des documents institutionnels historiques et des données sociétales pour démontrer qu'une triade de "religions d'État" a été engendrée à l'échelle mondiale et qu'elle est apparue au moment opportun après la dissolution de l'Union soviétique. Cette triade se compose d'alarmisme climatique, d'une vision tunnel exagérée de l'équité entre les sexes et d'une campagne antiraciste machinée axée sur les pensées, le langage et les attitudes.

Ces idéologies étatiques ont été conçues et propulsées via les efforts de l'ONU et les protocoles signés qui en ont résulté. Le milieu universitaire de l'Ouest a adopté et institutionnalisé le programme avec enthousiasme. Les médias grand public ont fait la promotion religieuse de l'ethos nouvellement créé. Les partis politiques ont largement appliqué des quotas accrus de représentants élus par sexe et par race.

Ces processus et ces idées ont servi à apaiser, à assouplir, rassembler et à occuper l'esprit occidental, en particulier chez les classes moyennes supérieures, professionnelles et de gestion et les élites des territoires économiquement occupés, mais n'ont rien fait pour atténuer les formes de racisme et de misogynie les plus violentes et répandues dans le monde en raison de la mondialisation prédatrice et du militarisme.

Ironiquement, les atteintes globales à la dignité humaine, à la santé humaine et à l'environnement ont été proportionnelles aux appels systématiques et parfois criards à l'équité entre les sexes, à la lutte contre le racisme et à l'"action" climatique. Tout l'édifice de ces "religions d'Etat" ne laisse aucune place aux conflits de classes nécessaires et sape expressément toute remise en cause des mécanismes et des conséquences de la mondialisation.

CT : Pouvez-vous nous parler des Gilets Jaunes, de Brexit et du phénomène électoral Trump ?

DR : Combiner une mondialisation agressive, une prédation financière constante, l'éviscération des classes ouvrières et moyennes occidentales et un discours désinvolte sur le changement climatique, l'antiracisme et l'équité entre les sexes fait quelque chose ne peut qu'arriver. Le géographe français Christophe Guilluy a prédit ces réactions de façon assez détaillée, ce qui n'est pas difficile à comprendre. Ce n'est pas un hasard si les classes populaires et moyennes qui se révoltent critiquent les récits de la crise climatique, de l'antiracisme et de l'équité entre les sexes, d'autant que les médias grand public les présentent comme racistes, misogynes et ignorants des sciences.

Il semble que toute classe qui s'oppose à sa propre destruction soit accusée d'être peuplée de gens racistes et ignorants qui ne voient pas que le salut réside dans un monde géré par le carbone et globalisé. Il devient donc impératif de fermer tous les lieux où un tel "lot d'ignorants" pourrait communiquer ses vues, tenter de s'organiser et ainsi menacer l'ordre social dominant.

Auteur: Todhunter Colin

Info: Counterpunch.org. Trad Mg

[ géopolitique ] [ ingénierie sociale ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-machine

La théorie des jeux peut rendre l'IA plus correcte et plus efficace

Les chercheurs s’appuient sur des idées issues de la théorie des jeux pour améliorer les grands modèles de langage et les rendre plus cohérents.

Imaginez que vous ayez un ami qui donne des réponses différentes à la même question, selon la façon dont vous la posez. " Quelle est la capitale du Pérou ? "  btiendrait une réponse : " Lima est-elle la capitale du Pérou ? " en obtiendrait un autre. Vous seriez probablement un peu inquiet au sujet des facultés mentales de votre ami et vous auriez certainement du mal à faire confiance à ses réponses.

C'est exactement ce qui se passe avec de nombreux grands modèles de langage (LLM), les outils d'apprentissage automatique ultra-puissants qui alimentent ChatGPT et d'autres merveilles de l'intelligence artificielle. Une question générative, ouverte, donne une réponse, et une question discriminante, qui implique de devoir choisir entre des options, en donne souvent une différente. "Il y a un décalage lorsque la même question est formulée différemment", a déclaré Athul Paul Jacob , doctorant au Massachusetts Institute of Technology.

Pour rendre les réponses d'un modèle de langage plus cohérentes - et rendre le modèle globalement plus fiable - Jacob et ses collègues ont conçu un jeu dans lequel les deux modes du modèle sont amenés à trouver une réponse sur laquelle ils peuvent s'entendre. Surnommée le jeu du consensus , cette procédure simple oppose un LLM à lui-même, en utilisant les outils de la théorie des jeux pour améliorer la précision et la cohérence interne du modèle.

"Les recherches explorant l'autocohérence au sein de ces modèles ont été très limitées", a déclaré Shayegan Omidshafiei , directeur scientifique de la société de robotique Field AI. "Cet article est l'un des premiers à aborder ce problème, de manière intelligente et systématique, en créant un jeu permettant au modèle de langage de jouer avec lui-même."

"C'est un travail vraiment passionnant", a ajouté Ahmad Beirami, chercheur scientifique chez Google Research. Pendant des décennies, a-t-il déclaré, les modèles linguistiques ont généré des réponses aux invites de la même manière. "Avec leur idée novatrice consistant à intégrer un jeu dans ce processus, les chercheurs du MIT ont introduit un paradigme totalement différent, qui peut potentiellement conduire à une multitude de nouvelles applications."

Mettre le jeu au travail

Ce nouveau travail, qui utilise les jeux pour améliorer l'IA, contraste avec les approches précédentes, qui mesuraient le succès d'un programme d'IA via sa maîtrise des jeux. En 1997, par exemple, l'ordinateur Deep Blue d'IBM a battu le grand maître d'échecs Garry Kasparov – une étape importante pour les machines dites pensantes. Dix-neuf ans plus tard, un programme de Google DeepMind nommé AlphaGo a remporté quatre matchs sur cinq contre l'ancien champion de Go Lee Sedol, révélant ainsi une autre arène dans laquelle les humains ne régnaient plus en maître. Les machines ont également surpassé les humains dans les jeux de dames, le poker à deux joueurs et d’autres jeux à somme nulle, dans lesquels la victoire d’un joueur condamne invariablement l’autre.

Le jeu de la diplomatie, un jeu favori de politiciens comme John F. Kennedy et Henry Kissinger, posait un défi bien plus grand aux chercheurs en IA. Au lieu de seulement deux adversaires, le jeu met en scène sept joueurs dont les motivations peuvent être difficiles à lire. Pour gagner, un joueur doit négocier et conclure des accords de coopération que n'importe qui peut rompre à tout moment. La diplomatie est tellement complexe qu'un groupe de Meta s'est félicité qu'en 2022, son programme d'IA Cicero ait développé un « jeu de niveau humain » sur une période de 40 parties. Bien qu'il n'ait pas vaincu le champion du monde, Cicero s'est suffisamment bien comporté pour se classer dans les 10 % les plus performants face à des participants humains.

Au cours du projet, Jacob — membre de l'équipe Meta — a été frappé par le fait que Cicéron s'appuyait sur un modèle de langage pour générer son dialogue avec les autres joueurs. Il a senti un potentiel inexploité. L'objectif de l'équipe, a-t-il déclaré, " était de créer le meilleur modèle de langage possible pour jouer à ce jeu ". Mais qu'en serait-il s’ils se concentraient plutôt sur la création du meilleur jeu possible pour améliorer les performances des grands modèles de langage ?

Interactions consensuelles

En 2023, Jacob a commencé à approfondir cette question au MIT, en travaillant avec Yikang Shen, Gabriele Farina et son conseiller Jacob Andreas sur ce qui allait devenir le jeu du consensus. L'idée centrale est venue d'imaginer une conversation entre deux personnes comme un jeu coopératif, où le succès se concrétise lorsqu'un auditeur comprend ce que l'orateur essaie de transmettre. En particulier, le jeu de consensus est conçu pour aligner les deux systèmes du modèle linguistique : le générateur, qui gère les questions génératives, et le discriminateur, qui gère les questions discriminatives.

Après quelques mois d’arrêts et de redémarrages, l’équipe a transposé ce principe dans un jeu complet. Tout d'abord, le générateur reçoit une question. Cela peut provenir d’un humain, ou d’une liste préexistante. Par exemple, " Où est né Barack Obama ? " Le générateur obtient ensuite des réponses de candidats, disons Honolulu, Chicago et Nairobi. Encore une fois, ces options peuvent provenir d'un humain, d'une liste ou d'une recherche effectuée par le modèle de langage lui-même.

Mais avant de répondre, il est également indiqué au générateur s'il doit répondre correctement ou incorrectement à la question, en fonction des résultats d'un pile ou face équitable.

Si c'est face, alors la machine tente de répondre correctement. Le générateur envoie la question initiale, accompagnée de la réponse choisie, au discriminateur. Si le discriminateur détermine que le générateur a intentionnellement envoyé la bonne réponse, chacun obtient un point, en guise d'incitation.

Si la pièce tombe sur pile, le générateur envoie ce qu’il pense être la mauvaise réponse. Si le discriminateur décide qu’on lui a délibérément donné la mauvaise réponse, ils marquent à nouveau tous les deux un point. L’idée ici est d’encourager l’accord. " C'est comme apprendre un tour à un chien ", a expliqué Jacob. " On lui donne une friandise lorsqu'ils fait la bonne chose. "

Le générateur et le discriminateur commencent également doté chacun de  quelques " croyances " initiales. Credo sous forme d'une distribution de probabilité liée aux différents choix. Par exemple, le générateur peut croire, sur la base des informations qu'il a glanées sur Internet, qu'il y a 80 % de chances qu'Obama soit né à Honolulu, 10 % de chances qu'il soit né à Chicago, 5 % de chances qu'il soit né à Nairobi et 5 % de chances qu'il soit ailleurs. Le discriminateur peut commencer avec une distribution différente. Si les deux " acteurs " sont toujours récompensés après être parvenus à un accord, ils se voient également retirer des points s'ils s'écartent trop de leurs convictions initiales. Cet arrangement encourage les joueurs à intégrer leur connaissance du monde – toujours tirée d'Internet – dans leurs réponses, ce qui devrait rendre le modèle plus précis. Sans ce prérequis ils pourraient s’entendre sur une réponse totalement fausse comme celle de Delhi, mais accumuler quand même des points.

Pour chaque question, les deux systèmes jouent environ 1 000 parties l'un contre l'autre. Au cours de ces nombreuses itérations, chaque camp apprend les croyances de l'autre et modifie ses stratégies en conséquence.

Finalement, le générateur et le discriminateur commencent à être davantage d’accord à mesure qu’ils s’installent dans ce qu’on appelle l’équilibre de Nash. C’est sans doute le concept central de la théorie des jeux. Cela représente une sorte d’équilibre dans un jeu – le point auquel aucun joueur ne peut améliorer ses résultats personnels en changeant de stratégie. Au jeu du chifoumi, par exemple, les joueurs obtiennent de meilleurs résultats lorsqu'ils choisissent chacune des trois options exactement un tiers du temps, et ils obtiendront invariablement de moins bons résultats avec toute autre tactique.

Dans le jeu du consensus, cela peut se jouer de plusieurs manières. Le discriminateur pourrait observer qu'il marque un point lorsqu'il dit " correct " chaque fois que le générateur envoie le mot " Honolulu " pour le lieu de naissance d'Obama. Le générateur et le discriminateur apprendront, après avoir joué plusieurs fois, qu'ils seront récompensés s'ils continuent de le faire, et qu'aucun d'eux n'aura aucune motivation pour faire autre chose... consensus qui représente l'un des nombreux exemples possibles d'équilibre de Nash pour cette question. Le groupe du MIT s'est également appuyé sur une forme modifiée d'équilibre de Nash qui intègre les croyances antérieures des joueurs, ce qui permet de maintenir leurs réponses ancrées dans la réalité.

L'effet net, ont observé les chercheurs, est de rendre le modèle linguistique jouant ce jeu plus précis et plus susceptible de donner la même réponse, quelle que soit la façon dont la question est posée. Pour tester les effets du jeu du consensus, l'équipe a essayé une série de questions standard sur divers modèles de langage de taille modérée comportant de 7 milliards à 13 milliards de paramètres. Ces modèles ont systématiquement obtenu un pourcentage plus élevé de réponses correctes que les modèles qui n'avaient pas joué, même ceux de taille beaucoup plus importante, comportant jusqu'à 540 milliards de paramètres. La participation au jeu a également amélioré la cohérence interne d'un modèle.

En principe, n'importe quel LLM pourrait gagner à jouer contre lui-même, et 1 000 tours ne prendraient que quelques millisecondes sur un ordinateur portable standard. "Un avantage appréciable de l'approche globale", a déclaré Omidshafiei, "est qu'elle est très légère sur le plan informatique, n'impliquant aucune formation ni modification du modèle de langage de base."

Jouer à des jeux avec le langage

Après ce premier succès, Jacob étudie désormais d’autres moyens d’intégrer la théorie des jeux dans la recherche LLM. Les résultats préliminaires ont montré qu’un LLM déjà solide peut encore s’améliorer en jouant à un jeu différent – ​​provisoirement appelé jeu d’ensemble – avec un nombre arbitraire de modèles plus petits. Le LLM principal aurait au moins un modèle plus petit servant d’allié et au moins un modèle plus petit jouant un rôle antagoniste. Si l'on demande au LLM primaire de nommer le président des États-Unis, il obtient un point chaque fois qu'il choisit la même réponse que son allié, et il obtient également un point lorsqu'il choisit une réponse différente de celle de son adversaire. Ces interactions avec des modèles beaucoup plus petits peuvent non seulement améliorer les performances d'un LLM, suggèrent les tests, mais peuvent le faire sans formation supplémentaire ni modification des paramètres.

Et ce n'est que le début. Étant donné qu'une variété de situations peuvent être considérées comme des jeux, les outils de la théorie des jeux peuvent être mis en œuvre dans divers contextes du monde réel, a déclaré Ian Gemp , chercheur scientifique chez Google DeepMind. Dans un article de février 2024 , lui et ses collègues se sont concentrés sur des scénarios de négociation qui nécessitent des échanges plus élaborés que de simples questions et réponses. "L'objectif principal de ce projet est de rendre les modèles linguistiques plus stratégiques", a-t-il déclaré.

Un exemple dont il a parlé lors d'une conférence universitaire est le processus d'examen des articles en vue de leur acceptation par une revue ou une conférence, en particulier après que la soumission initiale ait reçu une évaluation sévère. Étant donné que les modèles linguistiques attribuent des probabilités à différentes réponses, les chercheurs peuvent construire des arbres de jeu similaires à ceux conçus pour les jeux de poker, qui tracent les choix disponibles et leurs conséquences possibles. "Une fois que vous avez fait cela, vous pouvez commencer à calculer les équilibres de Nash, puis classer un certain nombre de réfutations", a déclaré Gemp. Le modèle vous dit essentiellement : c'est ce que nous pensons que vous devriez répondre.

Grâce aux connaissances de la théorie des jeux, les modèles de langage seront capables de gérer des interactions encore plus sophistiquées, plutôt que de se limiter à des problèmes de type questions-réponses. "Le gros gain à venir réside dans les conversations plus longues", a déclaré Andreas. "La prochaine étape consiste à faire interagir une IA avec une personne, et pas seulement avec un autre modèle de langage."

Jacob considère le travail de DeepMind comme complémentaire aux jeux de consensus et d'ensemble. " À un niveau élevé, ces deux méthodes combinent des modèles de langage et la théorie des jeux ", a-t-il déclaré, même si les objectifs sont quelque peu différents. Alors que le groupe Gemp transforme des situations courantes dans un format de jeu pour aider à la prise de décision stratégique, Jacob a déclaré : " nous utilisons ce que nous savons de la théorie des jeux pour améliorer les modèles de langage dans les tâches générales. "

À l’heure actuelle, ces efforts représentent " deux branches du même arbre ", a déclaré Jacob : deux manières différentes d’améliorer le fonctionnement des modèles de langage. " Je pense personnellement  que dans un an ou deux, ces deux branches convergeront. " 

Auteur: Internet

Info: https://www.quantamagazine.org/ - Steve Nadis, 9 mai 2024

[ maïeutique machine-machine ] [ discussion IA - FLP ]

 
Commentaires: 1
Ajouté à la BD par miguel

biophysique

Lorsque le biologiste Tibor Gánti est décédé le 15 avril 2009, à l'âge de 75 ans, il était loin d'être connu. Une grande partie de sa carrière s'est déroulée derrière le rideau de fer qui a divisé l'Europe pendant des décennies, entravant les échanges d'idées.

Mais si les théories de Gánti avaient été plus largement connues à l'époque communiste, il pourrait aujourd'hui être acclamé comme l'un des biologistes les plus novateurs du XXe siècle. En effet, il a conçu un modèle d'organisme vivant le plus simple possible, qu'il a appelé le chimiotone ( Chemoton ) , et qui permet d'expliquer l'apparition de la vie sur Terre.

Pour les astrobiologistes qui s'intéressent à la vie au-delà de notre planète, le chimiotactisme offre une définition universelle de la vie, qui n'est pas liée à des substances chimiques spécifiques comme l'ADN, mais plutôt à un modèle d'organisation global.

"Il semble que Ganti a réfléchi aux fondements de la vie plus profondément que quiconque", déclare le biologiste Eörs Szathmáry, du Centre de recherche écologique de Tihany, en Hongrie.

Les débuts de la vie

Il n'existe pas de définition scientifique commune de la vie, mais ce n'est pas faute d'avoir essayé : Un article de 2012 a recensé 123 définitions publiées. Il est difficile d'en rédiger une qui englobe toute la vie tout en excluant tout ce qui n'est pas vivant et qui possède des attributs semblables à ceux de la vie, comme le feu et les voitures. De nombreuses définitions indiquent que les êtres vivants peuvent se reproduire. Mais un lapin, un être humain ou une baleine ne peuvent se reproduire seuls.

En 1994, un comité de la NASA a décrit la vie comme "un système chimique autonome capable d'une évolution darwinienne". Le mot "système" peut désigner un organisme individuel, une population ou un écosystème. Cela permet de contourner le problème de la reproduction, mais à un prix : l'imprécision.

(Photo : un cercle cellule contenant un autre cercle cellule en train de se dédoubler) 

Fonctionnement du chimiotactisme. Ce modèle théorique de la forme de vie la plus simple nécessite trois mécanismes interdépendants :

a) un cycle métabolique, pour transformer la nourriture en énergie

b)  la réplication des gabarits, pour la reproduction du modèle ;

c) une membrane, pour délimiter l'organisme.

Avec ce processus en 5 phases

1 Les molécules sont absorbées de l'environnement par le métabolisme

2 Le cycle métabolique produit d'abord des éléments pour renforcer sa menbrane

3  Le cylce métabolique use des molécules pour constituer sa réplique

4  La réplique produit une substance chimique qui est un composant clé de la membrane.

5 Les parties non utilisées des molécules sont éjectée à l'extérieur de la menbrane principale

Mais Tibor Ganti avait proposé une autre voie deux décennies plus tôt.

Il était né en 1933 dans la petite ville de Vác, dans le centre de la Hongrie. Ses débuts ayant été marqués par des conflits. La Hongrie s'est alliée à l'Allemagne nazie pendant la Seconde Guerre mondiale, mais en 1945, son armée a été vaincue par l'Union soviétique. Le régime totalitaire dominera l'Eurasie orientale pendant des décennies, la Hongrie devenant un État satellite, comme la plupart des autres pays d'Europe de l'Est.

Fasciné par la nature des êtres vivants, Gánti a étudié l'ingénierie chimique avant de devenir biochimiste industriel. En 1966, il a publié un livre sur la biologie moléculaire intitulé Forradalom az Élet Kutatásában, ou Révolution dans la recherche sur la vie, qui est resté pendant des années un manuel universitaire dominant, en partie parce qu'il n'y en avait pas beaucoup d'autres. L'ouvrage posait la question de savoir si la science comprenait comment la vie était organisée et concluait que ce n'était pas le cas.

En 1971, Gánti aborda le problème de front dans un nouveau livre, Az Élet Princípiuma, ou Les principes de la vie. Publié uniquement en hongrois, ce livre contient la première version de son modèle de chimiotactisme, qui décrit ce qu'il considère comme l'unité fondamentale de la vie. Toutefois, ce premier modèle d'organisme était incomplet et il lui a fallu trois années supplémentaires pour publier ce qui est aujourd'hui considéré comme la version définitive, toujours en hongrois, dans un document qui n'est pas disponible en ligne.

L'année du miracle

Globalement, 1971 a été une année faste pour la recherche sur l'origine de la vie. Outre les travaux de Gánti, la science a proposé deux autres modèles théoriques importants.

Le premier est celui du biologiste théoricien américain Stuart Kauffman, qui soutient que les organismes vivants doivent être capables de se copier eux-mêmes. En spéculant sur la manière dont cela aurait pu fonctionner avant la formation des cellules, il s'est concentré sur les mélanges de produits chimiques.

Supposons que le produit chimique A entraîne la formation du produit chimique B, qui entraîne à son tour la formation du produit chimique C, et ainsi de suite, jusqu'à ce qu'un élément de la chaîne produise une nouvelle version du produit chimique A. Après un cycle, il existera deux copies de chaque ensemble de produits chimiques. Si les matières premières sont suffisantes, un autre cycle produira quatre copies et continuera de manière exponentielle.

Kauffman a appelé un tel groupe un "ensemble autocatalytique" et il a soutenu que de tels groupes de produits chimiques auraient pu constituer la base de la première vie, les ensembles devenant plus complexes jusqu'à ce qu'ils produisent et utilisent une série de molécules complexes, telles que l'ADN.

Dans la seconde idée, le chimiste allemand Manfred Eigen a décrit ce qu'il a appelé un "hypercycle", dans lequel plusieurs ensembles autocatalytiques se combinent pour en former un seul plus grand. La variante d'Eigen introduit une distinction cruciale : Dans un hypercycle, certains des produits chimiques sont des gènes et sont donc constitués d'ADN ou d'un autre acide nucléique, tandis que d'autres sont des protéines fabriquées sur mesure en fonction des informations contenues dans les gènes. Ce système pourrait évoluer en fonction des changements - mutations - dans les gènes, une fonction qui manquait au modèle de Kauffman.

Gánti était arrivé indépendamment à une notion similaire, mais il l'a poussée encore plus loin. Selon lui, deux processus clés doivent se dérouler dans chaque organisme vivant. Premièrement, il doit construire et entretenir son corps, c'est-à-dire qu'il a besoin d'un métabolisme. Deuxièmement, il doit disposer d'une sorte de système de stockage de l'information, tel qu'un ou plusieurs gènes, qui peuvent être copiés et transmis à la descendance.

La première version du modèle de Gánti consistait essentiellement en deux ensembles autocatalytiques aux fonctions distinctes qui se combinaient pour former un ensemble autocatalytique plus important, ce qui n'est pas si différent de l'hypercycle d'Eigen. Cependant, l'année suivante, Gánti a été interrogé par un journaliste qui a mis en évidence une faille importante. Gánti supposait que les deux systèmes étaient basés sur des produits chimiques flottant dans l'eau. Or, laissés à eux-mêmes, ils s'éloigneraient les uns des autres et le chimiotone "mourrait".

La seule solution était d'ajouter un troisième système : une barrière extérieure pour les contenir. Dans les cellules vivantes, cette barrière est une membrane composée de substances chimiques ressemblant à des graisses, appelées lipides. Le chimiotone devait posséder une telle barrière pour se maintenir, et Gánti en a conclu qu'il devait également être autocatalytique pour pouvoir se maintenir et croître.

Voici enfin le chimiotone complet, le concept de Gánti de l'organisme vivant le plus simple possible : gènes, métabolisme et membrane, tous liés. Le métabolisme produit des éléments de construction pour les gènes et la membrane, et les gènes exercent une influence sur la membrane. Ensemble, ils forment une unité autoreproductible : une cellule si simple qu'elle pourrait non seulement apparaître avec une relative facilité sur Terre, mais qu'elle pourrait même rendre compte de biochimies alternatives sur des mondes extraterrestres.

Un modèle oublié

"Gánti a très bien saisi la vie", déclare le biologiste synthétique Nediljko Budisa, de l'université du Manitoba à Winnipeg, au Canada. "Sa lecture a été une révélation. Cependant, Budisa n'a découvert le travail de Gánti que vers 2005. En dehors de l'Europe de l'Est, l'ouvrage est resté obscur pendant des décennies, avec seulement quelques traductions anglaises sur le marché.

Le chimiotactisme est apparu en anglais en 1987, dans un livre de poche avec une traduction assez approximative, explique James Griesemer, de l'université de Californie, à Davis. Peu de gens l'ont remarqué. Szathmáry a ensuite donné au chimiotone une place de choix dans son livre de 1995, The Major Transitions in Evolution, coécrit avec John Maynard Smith. Cela a conduit à une nouvelle traduction anglaise du livre de Gánti de 1971, avec du matériel supplémentaire, publiée en 2003. Mais le chimiotone est resté dans une niche, et six ans plus tard, Gánti est mort.

Dans une certaine mesure, Gánti n'a pas aidé son modèle à s'imposer : il était connu pour être un collègue difficile. Selon Szathmáry, Gánti était obstinément attaché à son modèle, et paranoïaque de surcroît, ce qui le rendait "impossible à travailler".

Mais le plus gros problème du modèle chimiotactique est peut-être que, dans les dernières décennies du XXe siècle, la tendance de la recherche était de supprimer la complexité de la vie au profit d'approches de plus en plus minimalistes.

Par exemple, l'une des hypothèses les plus en vogue aujourd'hui est que la vie a commencé uniquement avec l'ARN, un proche cousin de l'ADN.

Comme son parent moléculaire plus célèbre, l'ARN peut porter des gènes. Mais l'ARN peut aussi agir comme une enzyme et accélérer les réactions chimiques, ce qui a conduit de nombreux experts à affirmer que la première vie n'avait besoin que d'ARN pour démarrer. Cependant, cette hypothèse du monde de l'ARN a été repoussée, notamment parce que la science n'a pas trouvé de type d'ARN capable de se copier sans aide - pensons aux virus à ARN comme le coronavirus, qui ont besoin de cellules humaines pour se reproduire.

D'autres chercheurs ont soutenu que la vie a commencé avec des protéines et rien d'autre, ou des lipides et rien d'autre. Ces idées sont très éloignées de l'approche intégrée de Gánti.

Un véritable chimiotactisme ?

Cependant, les scientifiques de ce siècle ont inversé la tendance. Les chercheurs ont désormais tendance à mettre l'accent sur la façon dont les substances chimiques de la vie fonctionnent ensemble et sur la manière dont ces réseaux coopératifs ont pu émerger.

Depuis 2003, Jack Szostak, de la Harvard Medical School, et ses collègues ont construit des protocellules de plus en plus réalistes : des versions simples de cellules contenant une série de substances chimiques. Ces protocellules peuvent croître et se diviser, ce qui signifie qu'elles peuvent s'autoreproduire.

En 2013, Szostak et Kate Adamala, alors étudiante, ont persuadé l'ARN de se copier à l'intérieur d'une protocellule. De plus, les gènes et la membrane peuvent être couplés : lorsque l'ARN s'accumule à l'intérieur, il exerce une pression sur la membrane extérieure, ce qui encourage la protocellule à s'agrandir.

Les recherches de Szostak "ressemblent beaucoup à celles de Gánti", déclare Petra Schwille, biologiste synthétique à l'Institut Max Planck de biochimie de Martinsried, en Allemagne. Elle souligne également les travaux de Taro Toyota, de l'université de Tokyo au Japon, qui a fabriqué des lipides à l'intérieur d'une protocellule, de sorte que celle-ci puisse développer sa propre membrane.

L'un des arguments avancés contre l'idée d'un chimiotone comme première forme de vie est qu'il nécessite un grand nombre de composants chimiques, notamment des acides nucléiques, des protéines et des lipides. De nombreux experts ont estimé qu'il était peu probable que ces substances chimiques soient toutes issues des mêmes matériaux de départ au même endroit, d'où l'attrait d'idées simples comme celle du monde de l'ARN.

Mais des biochimistes ont récemment trouvé des preuves que toutes les substances chimiques clés de la vie peuvent se former à partir des mêmes matériaux de départ simples. Dans une étude publiée en septembre, des chercheurs dirigés par Sara Szymkuć, alors à l'Académie polonaise des sciences à Varsovie, ont compilé une base de données à partir de décennies d'expériences visant à fabriquer les éléments chimiques de base de la vie. En partant de six produits chimiques simples, comme l'eau et le méthane, Szymkuć a découvert qu'il était possible de fabriquer des dizaines de milliers d'ingrédients clés, y compris les composants de base des protéines et de l'ARN.

Aucune de ces expériences n'a encore permis de construire un chimiotone fonctionnel. C'est peut-être simplement parce que c'est difficile, ou parce que la formulation exacte de Gánti ne correspond pas tout à fait à la façon dont la première vie a fonctionné. Quoi qu'il en soit, le chimiotone nous permet de réfléchir à la manière dont les composants de la vie fonctionnent ensemble, ce qui oriente de plus en plus les approches actuelles visant à comprendre comment la vie est apparue.

Il est révélateur, ajoute Szathmáry, que les citations des travaux de Gánti s'accumulent rapidement. Même si les détails exacts diffèrent, les approches actuelles de l'origine de la vie sont beaucoup plus proches de ce qu'il avait à l'esprit - une approche intégrée qui ne se concentre pas sur un seul des systèmes clés de la vie.

"La vie n'est pas une protéine, la vie n'est pas un ARN, la vie n'est pas une bicouche lipidique", explique M. Griesemer. "Qu'est-ce que c'est ? C'est l'ensemble de ces éléments reliés entre eux selon la bonne organisation.


Auteur: Internet

Info: https://www.nationalgeographic.com, 14 déc. 2020, par Michael Marshall

[ origine du vivant ] [ mécanisme ] [ matérialisme ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-machine

Une nouvelle approche du calcul réinvente l'intelligence artificielle

Par l'imprégnation d'énormes vecteurs de sens sémantique, nous pouvons amener les machines à raisonner de manière plus abstraite et plus efficace qu'auparavant.

M
algré le succès retentissant de ChatGPT et d'autres grands modèles de langage, les réseaux de neurones artificiels (ANN) qui sous-tendent ces systèmes pourraient être sur la mauvaise voie.

D'une part, les ANN sont "super gourmands en énergie", a déclaré Cornelia Fermüller , informaticienne à l'Université du Maryland. "Et l'autre problème est [leur] manque de transparence." De tels systèmes sont si compliqués que personne ne comprend vraiment ce qu'ils font, ou pourquoi ils fonctionnent si bien. Ceci, à son tour, rend presque impossible de les amener à raisonner par analogie, ce que font les humains - en utilisant des symboles pour les objets, les idées et les relations entre eux.

Ces lacunes proviennent probablement de la structure actuelle des RNA et de leurs éléments constitutifs : les neurones artificiels individuels. Chaque neurone reçoit des entrées, effectue des calculs et produit des sorties. Les RNA modernes sont des réseaux élaborés de ces unités de calcul, formés pour effectuer des tâches spécifiques.

Pourtant, les limites des RNA sont évidentes depuis longtemps. Considérez, par exemple, un ANN qui sépare les cercles et les carrés. Une façon de le faire est d'avoir deux neurones dans sa couche de sortie, un qui indique un cercle et un qui indique un carré. Si vous voulez que votre ANN discerne également la couleur de la forme - bleu ou rouge - vous aurez besoin de quatre neurones de sortie : un pour le cercle bleu, le carré bleu, le cercle rouge et le carré rouge. Plus de fonctionnalités signifie encore plus de neurones.

Cela ne peut pas être la façon dont notre cerveau perçoit le monde naturel, avec toutes ses variations. "Vous devez proposer que, eh bien, vous avez un neurone pour toutes les combinaisons", a déclaré Bruno Olshausen , neuroscientifique à l'Université de Californie à Berkeley. "Donc, vous auriez dans votre cerveau, [disons,] un détecteur Volkswagen violet."

Au lieu de cela, Olshausen et d'autres soutiennent que l'information dans le cerveau est représentée par l'activité de nombreux neurones. Ainsi, la perception d'une Volkswagen violette n'est pas codée comme les actions d'un seul neurone, mais comme celles de milliers de neurones. Le même ensemble de neurones, tirant différemment, pourrait représenter un concept entièrement différent (une Cadillac rose, peut-être).

C'est le point de départ d'une approche radicalement différente de l'informatique connue sous le nom d'informatique hyperdimensionnelle. La clé est que chaque élément d'information, comme la notion d'une voiture, ou sa marque, son modèle ou sa couleur, ou tout cela ensemble, est représenté comme une seule entité : un vecteur hyperdimensionnel.

Un vecteur est simplement un tableau ordonné de nombres. Un vecteur 3D, par exemple, comprend trois nombres : les coordonnées x , y et z d'un point dans l'espace 3D. Un vecteur hyperdimensionnel, ou hypervecteur, pourrait être un tableau de 10 000 nombres, par exemple, représentant un point dans un espace à 10 000 dimensions. Ces objets mathématiques et l'algèbre pour les manipuler sont suffisamment flexibles et puissants pour amener l'informatique moderne au-delà de certaines de ses limites actuelles et favoriser une nouvelle approche de l'intelligence artificielle.

"C'est ce qui m'a le plus enthousiasmé, pratiquement de toute ma carrière", a déclaré Olshausen. Pour lui et pour beaucoup d'autres, l'informatique hyperdimensionnelle promet un nouveau monde dans lequel l'informatique est efficace et robuste, et les décisions prises par les machines sont entièrement transparentes.

Entrez dans les espaces de grande dimension

Pour comprendre comment les hypervecteurs rendent le calcul possible, revenons aux images avec des cercles rouges et des carrés bleus. Nous avons d'abord besoin de vecteurs pour représenter les variables SHAPE et COLOR. Ensuite, nous avons également besoin de vecteurs pour les valeurs pouvant être affectées aux variables : CERCLE, CARRÉ, BLEU et ROUGE.

Les vecteurs doivent être distincts. Cette distinction peut être quantifiée par une propriété appelée orthogonalité, ce qui signifie être à angle droit. Dans l'espace 3D, il existe trois vecteurs orthogonaux entre eux : un dans la direction x , un autre dans la direction y et un troisième dans la direction z . Dans un espace à 10 000 dimensions, il existe 10 000 vecteurs mutuellement orthogonaux.

Mais si nous permettons aux vecteurs d'être presque orthogonaux, le nombre de ces vecteurs distincts dans un espace de grande dimension explose. Dans un espace à 10 000 dimensions, il existe des millions de vecteurs presque orthogonaux.

Créons maintenant des vecteurs distincts pour représenter FORME, COULEUR, CERCLE, CARRÉ, BLEU et ROUGE. Parce qu'il y a tellement de vecteurs presque orthogonaux possibles dans un espace de grande dimension, vous pouvez simplement assigner six vecteurs aléatoires pour représenter les six éléments ; ils sont presque garantis d'être presque orthogonaux. "La facilité de créer des vecteurs presque orthogonaux est une raison majeure d'utiliser la représentation hyperdimensionnelle", a écrit Pentti Kanerva , chercheur au Redwood Center for Theoretical Neuroscience de l'Université de Californie à Berkeley, dans un article influent de 2009.

L'article s'appuyait sur des travaux effectués au milieu des années 1990 par Kanerva et Tony Plate, alors étudiant au doctorat avec Geoff Hinton à l'Université de Toronto. Les deux ont développé indépendamment l'algèbre pour manipuler les hypervecteurs et ont fait allusion à son utilité pour le calcul en haute dimension.

Étant donné nos hypervecteurs pour les formes et les couleurs, le système développé par Kanerva et Plate nous montre comment les manipuler à l'aide de certaines opérations mathématiques. Ces actions correspondent à des manières de manipuler symboliquement des concepts.

La première opération est la multiplication. C'est une façon de combiner les idées. Par exemple, multiplier le vecteur FORME par le vecteur CERCLE lie les deux en une représentation de l'idée "LA FORME est CERCLE". Ce nouveau vecteur "lié" est presque orthogonal à la fois à SHAPE et à CIRCLE. Et les composants individuels sont récupérables - une caractéristique importante si vous souhaitez extraire des informations à partir de vecteurs liés. Étant donné un vecteur lié qui représente votre Volkswagen, vous pouvez dissocier et récupérer le vecteur pour sa couleur : VIOLET.

La deuxième opération, l'addition, crée un nouveau vecteur qui représente ce qu'on appelle une superposition de concepts. Par exemple, vous pouvez prendre deux vecteurs liés, "SHAPE is CIRCLE" et "COLOR is RED", et les additionner pour créer un vecteur qui représente une forme circulaire de couleur rouge. Là encore, le vecteur superposé peut être décomposé en ses constituants.

La troisième opération est la permutation ; cela implique de réorganiser les éléments individuels des vecteurs. Par exemple, si vous avez un vecteur tridimensionnel avec des valeurs étiquetées x , y et z , la permutation peut déplacer la valeur de x vers y , y vers z et z vers x. "La permutation vous permet de construire une structure", a déclaré Kanerva. "Ça permet de gérer des séquences, des choses qui se succèdent." Considérons deux événements, représentés par les hypervecteurs A et B. Nous pouvons les superposer en un seul vecteur, mais cela détruirait les informations sur l'ordre des événements. La combinaison de l'addition et de la permutation préserve l'ordre ; les événements peuvent être récupérés dans l'ordre en inversant les opérations.

Ensemble, ces trois opérations se sont avérées suffisantes pour créer une algèbre formelle d'hypervecteurs permettant un raisonnement symbolique. Mais de nombreux chercheurs ont été lents à saisir le potentiel de l'informatique hyperdimensionnelle, y compris Olshausen. "Cela n'a tout simplement pas été pris en compte", a-t-il déclaré.

Exploiter le pouvoir

En 2015, un étudiant d'Olshausen nommé Eric Weiss a démontré un aspect des capacités uniques de l'informatique hyperdimensionnelle. Weiss a compris comment représenter une image complexe comme un seul vecteur hyperdimensionnel contenant des informations sur tous les objets de l'image, y compris leurs propriétés, telles que les couleurs, les positions et les tailles.

"Je suis pratiquement tombé de ma chaise", a déclaré Olshausen. "Tout d'un coup, l'ampoule s'est allumée."

Bientôt, d'autres équipes ont commencé à développer des algorithmes hyperdimensionnels pour reproduire des tâches simples que les réseaux de neurones profonds avaient commencé à effectuer environ deux décennies auparavant, comme la classification d'images.

Considérons un ensemble de données annotées composé d'images de chiffres manuscrits. Un algorithme analyse les caractéristiques de chaque image en utilisant un schéma prédéterminé. Il crée ensuite un hypervecteur pour chaque image. Ensuite, l'algorithme ajoute les hypervecteurs pour toutes les images de zéro pour créer un hypervecteur pour l'idée de zéro. Il fait ensuite la même chose pour tous les chiffres, créant 10 hypervecteurs "de classe", un pour chaque chiffre.

Maintenant, l'algorithme reçoit une image non étiquetée. Il crée un hypervecteur pour cette nouvelle image, puis compare l'hypervecteur aux hypervecteurs de classe stockés. Cette comparaison détermine le chiffre auquel la nouvelle image ressemble le plus.

Pourtant, ce n'est que le début. Les points forts de l'informatique hyperdimensionnelle résident dans la capacité de composer et de décomposer des hypervecteurs pour le raisonnement. La dernière démonstration en date a eu lieu en mars, lorsqu'Abbas Rahimi et ses collègues d'IBM Research à Zurich ont utilisé l'informatique hyperdimensionnelle avec des réseaux de neurones pour résoudre un problème classique de raisonnement visuel abstrait - un défi important pour les RNA typiques, et même certains humains. Connu sous le nom de matrices progressives de Raven, le problème présente des images d'objets géométriques dans, disons, une grille 3 par 3. Une position dans la grille est vide. Le sujet doit choisir, parmi un ensemble d'images candidates, l'image qui correspond le mieux au blanc.

"Nous avons dit:" C'est vraiment ... l'exemple qui tue pour le raisonnement abstrait visuel, allons-y "", a déclaré Rahimi.

Pour résoudre le problème à l'aide de l'informatique hyperdimensionnelle, l'équipe a d'abord créé un dictionnaire d'hypervecteurs pour représenter les objets dans chaque image ; chaque hypervecteur du dictionnaire représente un objet et une combinaison de ses attributs. L'équipe a ensuite formé un réseau de neurones pour examiner une image et générer un hypervecteur bipolaire - un élément peut être +1 ou -1 - aussi proche que possible d'une superposition d'hypervecteurs dans le dictionnaire ; l'hypervecteur généré contient donc des informations sur tous les objets et leurs attributs dans l'image. "Vous guidez le réseau de neurones vers un espace conceptuel significatif", a déclaré Rahimi.

Une fois que le réseau a généré des hypervecteurs pour chacune des images de contexte et pour chaque candidat pour l'emplacement vide, un autre algorithme analyse les hypervecteurs pour créer des distributions de probabilité pour le nombre d'objets dans chaque image, leur taille et d'autres caractéristiques. Ces distributions de probabilité, qui parlent des caractéristiques probables à la fois du contexte et des images candidates, peuvent être transformées en hypervecteurs, permettant l'utilisation de l'algèbre pour prédire l'image candidate la plus susceptible de remplir l'emplacement vacant.

Leur approche était précise à près de 88 % sur un ensemble de problèmes, tandis que les solutions de réseau neuronal uniquement étaient précises à moins de 61 %. L'équipe a également montré que, pour les grilles 3 par 3, leur système était presque 250 fois plus rapide qu'une méthode traditionnelle qui utilise des règles de logique symbolique pour raisonner, car cette méthode doit parcourir un énorme livre de règles pour déterminer la bonne prochaine étape.

Un début prometteur

Non seulement l'informatique hyperdimensionnelle nous donne le pouvoir de résoudre symboliquement des problèmes, mais elle résout également certains problèmes épineux de l'informatique traditionnelle. Les performances des ordinateurs d'aujourd'hui se dégradent rapidement si les erreurs causées, par exemple, par un retournement de bit aléatoire (un 0 devient 1 ou vice versa) ne peuvent pas être corrigées par des mécanismes de correction d'erreurs intégrés. De plus, ces mécanismes de correction d'erreurs peuvent imposer une pénalité sur les performances allant jusqu'à 25 %, a déclaré Xun Jiao , informaticien à l'Université de Villanova.

Le calcul hyperdimensionnel tolère mieux les erreurs, car même si un hypervecteur subit un nombre important de retournements de bits aléatoires, il reste proche du vecteur d'origine. Cela implique que tout raisonnement utilisant ces vecteurs n'est pas significativement impacté face aux erreurs. L'équipe de Jiao a montré que ces systèmes sont au moins 10 fois plus tolérants aux pannes matérielles que les ANN traditionnels, qui sont eux-mêmes des ordres de grandeur plus résistants que les architectures informatiques traditionnelles. "Nous pouvons tirer parti de toute [cette] résilience pour concevoir du matériel efficace", a déclaré Jiao.

Un autre avantage de l'informatique hyperdimensionnelle est la transparence : l'algèbre vous indique clairement pourquoi le système a choisi la réponse qu'il a choisie. Il n'en va pas de même pour les réseaux de neurones traditionnels. Olshausen, Rahimi et d'autres développent des systèmes hybrides dans lesquels les réseaux de neurones cartographient les éléments du monde physique en hypervecteurs, puis l'algèbre hyperdimensionnelle prend le relais. "Des choses comme le raisonnement analogique vous tombent dessus", a déclaré Olshausen. "C'est ce que nous devrions attendre de tout système d'IA. Nous devrions pouvoir le comprendre comme nous comprenons un avion ou un téléviseur.

Tous ces avantages par rapport à l'informatique traditionnelle suggèrent que l'informatique hyperdimensionnelle est bien adaptée à une nouvelle génération de matériel extrêmement robuste et à faible consommation d'énergie. Il est également compatible avec les "systèmes informatiques en mémoire", qui effectuent le calcul sur le même matériel qui stocke les données (contrairement aux ordinateurs von Neumann existants qui transfèrent inefficacement les données entre la mémoire et l'unité centrale de traitement). Certains de ces nouveaux appareils peuvent être analogiques, fonctionnant à très basse tension, ce qui les rend économes en énergie mais également sujets aux bruits aléatoires. Pour l'informatique de von Neumann, ce caractère aléatoire est "le mur que vous ne pouvez pas franchir", a déclaré Olshausen. Mais avec l'informatique hyperdimensionnelle, "vous pouvez simplement percer".

Malgré ces avantages, l'informatique hyperdimensionnelle en est encore à ses balbutiements. "Il y a un vrai potentiel ici", a déclaré Fermüller. Mais elle souligne qu'il doit encore être testé contre des problèmes du monde réel et à des échelles plus grandes, plus proches de la taille des réseaux de neurones modernes.

"Pour les problèmes à grande échelle, cela nécessite un matériel très efficace", a déclaré Rahimi. "Par exemple, comment [faites-vous] une recherche efficace sur plus d'un milliard d'articles ?"

Tout cela devrait venir avec le temps, a déclaré Kanerva. "Il y a d'autres secrets [que] les espaces de grande dimension détiennent", a-t-il déclaré. "Je vois cela comme le tout début du temps pour le calcul avec des vecteurs."

Auteur: Ananthaswamy Anil

Info: https://www.quantamagazine.org/ Mais 2023

[ machine learning ]

 

Commentaires: 0

Ajouté à la BD par miguel

bio-évolution

La "tectonique" des chromosomes révèle les secrets de l'évolution des premiers animaux

De grands blocs de gènes conservés au cours de centaines de millions d'années d'évolution permettent de comprendre comment les premiers chromosomes animaux sont apparus.

De nouvelles recherches ont montré que des blocs de gènes liés peuvent conserver leur intégrité et être suivis au cours de l'évolution. Cette découverte est à la base de ce que l'on appelle la tectonique des génomes (photo).

Les chromosomes, ces faisceaux d'ADN qui se mettent en scène dans le ballet mitotique de la division cellulaire, jouent un rôle de premier plan dans la vie complexe. Mais la question de savoir comment les chromosomes sont apparus et ont évolué a longtemps été d'une difficulté décourageante. C'est dû en partie au manque d'informations génomiques au niveau des chromosomes et en partie au fait que l'on soupçonne que des siècles de changements évolutifs ont fait disparaître tout indice sur cette histoire ancienne.

Dans un article paru dans Science Advances, une équipe internationale de chercheurs dirigée par Daniel Rokhsar, professeur de sciences biologiques à l'université de Californie à Berkeley, a suivi les changements survenus dans les chromosomes il y a 800 millions d'années.  Ils ont identifié 29 grands blocs de gènes qui sont restés identifiables lors de leur passage dans trois des plus anciennes subdivisions de la vie animale multicellulaire. En utilisant ces blocs comme marqueurs, les scientifiques ont pu déterminer comment les chromosomes se sont fusionnés et recombinés au fur et à mesure que ces premiers groupes d'animaux devenaient distincts.

Les chercheurs appellent cette approche "tectonique du génome". De la même manière que les géologues utilisent leur compréhension de la tectonique des plaques pour comprendre l'apparition et le mouvement des continents, ces biologistes reconstituent comment diverses duplications, fusions et translocations génomiques ont créé les chromosomes que nous voyons aujourd'hui.

Ces travaux annoncent une nouvelle ère de la génomique comparative : Auparavant, les chercheurs étudiaient des collections de gènes de différentes lignées et décrivaient les changements une paire de bases à la fois. Aujourd'hui, grâce à la multiplication des assemblages de chromosomes, les chercheurs peuvent retracer l'évolution de chromosomes entiers jusqu'à leur origine. Ils peuvent ensuite utiliser ces informations pour faire des prédictions statistiques et tester rigoureusement des hypothèses sur la façon dont les groupes d'organismes sont liés.

Il y a deux ans, à l'aide de méthodes novatrices similaires, M. Rokhsar et ses collègues ont résolu un mystère de longue date concernant la chronologie des duplications du génome qui ont accompagné l'apparition des vertébrés à mâchoires. Mais l'importance de cette approche n'est pas purement rétrospective. En faisant ces découvertes, les chercheurs apprennent les règles algébriques simples qui régissent ce qui se passe lorsque les chromosomes échangent des parties d'eux-mêmes. Ces informations peuvent orienter les futures études génomiques et aider les biologistes à prédire ce qu'ils trouveront dans les génomes des espèces qui n'ont pas encore été séquencées.

"Nous commençons à avoir une vision plus large de l'évolution des chromosomes dans l'arbre de la vie", a déclaré Paulyn Cartwright, professeur d'écologie et de biologie évolutive à l'université du Kansas. Selon elle, les scientifiques peuvent désormais tirer des conclusions sur le contenu des chromosomes des tout premiers animaux. Ils peuvent également examiner comment les différents contenus des chromosomes ont changé ou sont restés les mêmes - et pourquoi - à mesure que les animaux se sont diversifiés. "Nous ne pouvions vraiment pas faire cela avant de disposer de ces génomes de haute qualité". 

Ce que partagent les anciens génomes

Dans l'étude publiée aujourd'hui, Rokhsar et une grande équipe internationale de collaborateurs ont produit le premier assemblage de haute qualité, au niveau des chromosomes, du génome de l'hydre, qu'ils décrivent comme un modèle de "vénérable cnidaire". En le comparant à d'autres génomes animaux disponibles, ils ont découvert des groupes de gènes liés hautement conservés. Bien que l'ordre des gènes au sein d'un bloc soit souvent modifié, les blocs eux-mêmes sont restés stables sur de longues périodes d'évolution.

Lorsque les scientifiques ont commencé à séquencer les génomes animaux il y a une vingtaine d'années, beaucoup d'entre eux n'étaient pas convaincus que des groupes de gènes liés entre eux sur les chromosomes pouvaient rester stables et reconnaissables au cours des éons, et encore moins qu'il serait possible de suivre le passage de ces blocs de gènes à travers pratiquement toutes les lignées animales.

Les animaux ont divergé de leurs parents unicellulaires il y a 600 ou 700 millions d'années, et "être capable de reconnaître les morceaux de chromosomes qui sont encore conservés après cette période de temps est étonnant", a déclaré Jordi Paps, un biologiste de l'évolution à l'Université de Bristol au Royaume-Uni.

"Avant de disposer de ces données sur les chromosomes entiers, nous examinions de petits fragments de chromosomes et nous observions de nombreux réarrangements", a déclaré M. Cartwright. "Nous supposions donc qu'il n'y avait pas de conservation, car les gènes eux-mêmes dans une région du chromosome changent de position assez fréquemment."

Pourtant, bien que l'ordre des gènes soit fréquemment remanié le long des chromosomes, Rokhsar a eu l'intuition, grâce à ses études antérieures sur les génomes animaux, qu'il y avait une relative stabilité dans les gènes apparaissant ensemble. "Si vous comparez une anémone de mer ou une éponge à un être humain, le fait que les gènes se trouvent sur le même morceau d'ADN semble être conservé", explique Rokhsar. "Et le modèle suggérait que des chromosomes entiers étaient également conservés". Mais cette notion n'a pu être testée que récemment, lorsque suffisamment d'informations génomiques à l'échelle du chromosome sur divers groupes d'animaux sont devenues disponibles.

Inertie génomique

Mais pourquoi des blocs de gènes restent-ils liés entre eux ? Selon Harris Lewin, professeur d'évolution et d'écologie à l'université de Californie à Davis, qui étudie l'évolution des génomes de mammifères, une des explications de ce phénomène, appelé synténie, est liée à la fonction des gènes. Il peut être plus efficace pour les gènes qui fonctionnent ensemble d'être physiquement situés ensemble ; ainsi, lorsqu'une cellule a besoin de transcrire des gènes, elle n'a pas à coordonner la transcription à partir de plusieurs endroits sur différents chromosomes. 

Ceci explique probablement la conservation de certains ensembles de gènes dont l'agencement est crucial : les gènes Hox qui établissent les plans corporels des animaux, par exemple, doivent être placés dans un ordre spécifique pour établir correctement le schéma corporel. Mais ces gènes étroitement liés se trouvent dans un morceau d'ADN relativement court. M. Rokhsar dit qu'il ne connaît aucune corrélation fonctionnelle s'étendant sur un chromosome entier qui pourrait expliquer leurs résultats.

(Ici une image décrit les différents types de fusion de chromosomes et l'effet de chacun sur l'ordre des gènes qu'ils contiennent.)

C'est pourquoi Rokhsar est sceptique quant à une explication fonctionnelle. Elle est séduisante ("Ce serait le résultat le plus cool, d'une certaine manière", dit-il) mais peut-être aussi inutile car, à moins qu'un réarrangement chromosomique ne présente un avantage fonctionnel important, il est intrinsèquement difficile pour ce réarrangement de se propager. Et les réarrangements ne sont généralement pas avantageux : Au cours de la méiose et de la formation des gamètes, tous les chromosomes doivent s'apparier avec un partenaire correspondant. Sans partenaire, un chromosome de taille inhabituelle ne pourra pas faire partie d'un gamète viable, et il a donc peu de chances de se retrouver dans la génération suivante. De petites mutations qui remanient l'ordre des gènes à l'intérieur des chromosomes peuvent encore se produire ("Il y a probablement une petite marge d'erreur en termes de réarrangements mineurs, de sorte qu'ils peuvent encore se reconnaître", a déclaré Cartwright). Mais les chromosomes brisés ou fusionnés ont tendance à être des impasses.

Peut-être que dans des groupes comme les mammifères, qui ont des populations de petite taille, un réarrangement pourrait se propager de façon aléatoire par ce qu'on appelle la dérive génétique, suggère Rokhsar. Mais dans les grandes populations qui se mélangent librement, comme celles des invertébrés marins qui pondent des centaines ou des milliers d'œufs, "il est vraiment difficile pour l'un des nouveaux réarrangements de s'imposer", a-t-il déclaré. "Ce n'est pas qu'ils ne sont pas tentés. C'est juste qu'ils ne parviennent jamais à s'imposer dans l'évolution."

Par conséquent, les gènes ont tendance à rester bloqués sur un seul chromosome. "Les processus par lesquels ils se déplacent sont tout simplement lents, sur une échelle de 500 millions d'années", déclare Rokhsar. "Même s'il s'est écoulé énormément de temps, ce n'est toujours pas assez long pour qu'ils puissent se développer".

( une image avec affichage de données montre comment des blocs de gènes ont eu tendance à rester ensemble même lorsqu'ils se déplaçaient vers différents chromosomes dans l'évolution de cinq premières espèces animales.)

L'équipe de Rokhsar a toutefois constaté que lorsque ces rares fusions de chromosomes se produisaient, elles laissaient une signature claire : Après une fusion, les gènes des deux blocs s'entremêlent et sont réorganisés car des "mutations d'inversion" s'y sont accumulées au fil du temps. En conséquence, les gènes des deux blocs se sont mélangés comme du lait versé dans une tasse de thé, pour ne plus jamais être séparés. "Il y a un mouvement entropique vers le mélange qui ne peut être annulé", affirme Rokhsar.

Et parce que les processus de fusion, de mélange et de duplication de blocs génétiques sont si rares, irréversibles et spécifiques, ils sont traçables : Il est très improbable qu'un chromosome se fracture deux fois au même endroit, puis fusionne et se mélange avec un autre bloc génétique de la même manière.

Les signatures de ces événements dans les chromosomes représentent donc un nouvel ensemble de caractéristiques dérivées que les biologistes peuvent utiliser pour tester des hypothèses sur la façon dont les espèces sont liées. Si deux lignées partagent un mélange de deux blocs de gènes, le mélange s'est très probablement produit chez leur ancêtre commun. Si des lignées ont deux ensembles de mêmes blocs de gènes, une duplication du génome a probablement eu lieu chez leur ancêtre commun. Cela fait des syntéries un "outil très, très puissant", a déclaré Oleg Simakov, génomiste à l'université de Vienne et premier auteur des articles. 

Empreintes digitales d'événements évolutifs

"L'un des aspects que je préfère dans notre étude est que nous faisons des prédictions sur ce à quoi il faut s'attendre au sein des génomes qui n'ont pas encore été séquencés", a écrit Rokhsar dans un courriel adressé à Quanta. Par exemple, son équipe a découvert que divers invertébrés classés comme spiraliens partagent tous quatre schémas spécifiques de fusion avec mélange, ce qui implique que les événements de fusion se sont produits chez leur ancêtre commun. "Il s'ensuit que tous les spiraliens devraient présenter ces schémas de fusion avec mélange de modèles", écrit Rokhsar. "Si l'on trouve ne serait-ce qu'un seul spiralien dépourvu de ces motifs, alors l'hypothèse peut être rejetée !".

Et d'ajouter : "On n'a pas souvent l'occasion de faire ce genre de grandes déclarations sur l'histoire de l'évolution."

Dans leur nouvel article Science Advances, Simakov, Rokhsar et leurs collègues ont utilisé l'approche tectonique pour en savoir plus sur l'émergence de certains des premiers groupes d'animaux il y a environ 800 millions d'années. En examinant le large éventail de vie animale représenté par les éponges, les cnidaires (tels que les hydres, les méduses et les coraux) et les bilatériens (animaux à symétrie bilatérale), les chercheurs ont trouvé 27 blocs de gènes hautement conservés parmi leurs chromosomes.

Ensuite, en utilisant les règles de fusion chromosomique et génétique qu'ils avaient identifiées, les chercheurs ont reconstitué les événements de mélange au niveau des chromosomes qui ont accompagné l'évolution de ces trois lignées à partir d'un ancêtre commun. Ils ont montré que les chromosomes des éponges, des cnidaires et des bilatériens représentent tous des manières distinctes de combiner des éléments du génome ancestral.

(Pour expliquer les 2 paragraphes précédents une image avec 3 schémas montre la fusion des chromosomes au début de l'évolution pou arriver au 27 blocs de gènes)

Une découverte stimulante qui a été faite est que certains des blocs de gènes liés semblent également présents dans les génomes de certaines créatures unicellulaires comme les choanoflagellés, les plus proches parents des animaux multicellulaires. Chez les animaux multicellulaires, l'un de ces blocs contient un ensemble diversifié de gènes homéobox qui guident le développement de la structure générale de leur corps. Cela suggère que l'un des tout premiers événements de l'émergence des animaux multicellulaires a été l'expansion et la diversification de ces gènes importants. "Ces anciennes unités de liaison fournissent un cadre pour comprendre l'évolution des gènes et des génomes chez les animaux", notent les scientifiques dans leur article.

Leur approche permet de distinguer de subtiles et importantes différences au niveau des événements chromosomiques. Par exemple, dans leur article de 2020, les chercheurs ont déduit que le génome des vertébrés avait subi une duplication au cours de la période cambrienne, avant que l'évolution ne sépare les poissons sans mâchoire des poissons avec mâchoire. Ils ont ensuite trouvé des preuves que deux poissons à mâchoires se sont hybridés plus tard et ont subi une deuxième duplication de leur génome ; cet hybride est devenu l'ancêtre de tous les poissons osseux.

John Postlethwait, génomicien à l'université de l'Oregon, souligne l'importance de la méthode d'analyse de l'équipe. "Ils ont adopté une approche statistique, et ne se sont pas contentés de dire : "Eh bien, il me semble que telle et telle chose s'est produite", a-t-il déclaré. "C'est une partie vraiment importante de leur méthodologie, non seulement parce qu'ils avaient accès à des génomes de meilleure qualité, mais aussi parce qu'ils ont adopté cette approche quantitative et qu'ils ont réellement testé ces hypothèses."

Ces études ne marquent que le début de ce que la tectonique des génomes et  ce que les syntagmes génétiques peuvent nous apprendre. Dans des prépublications récentes partagées sur biorxiv.org, l'équipe de Rokhsar a reconstitué l'évolution des chromosomes de grenouilles, et une équipe européenne s'est penchée sur l'évolution des chromosomes des poissons téléostéens. Une étude parue dans Current Biology a révélé une "inversion massive du génome" à l'origine de la coexistence de formes divergentes chez la caille commune, ce qui laisse entrevoir certaines des conséquences fonctionnelles du réarrangement des chromosomes.

L'hypothèse selon laquelle le mélange de ces groupes de liaisons génétiques pourrait être lié à la diversification des lignées et à l'innovation évolutive au cours des 500 derniers millions d'années est alléchante. Les réarrangements chromosomiques peuvent conduire à des incompatibilités d'accouplement qui pourraient provoquer la scission en deux d'une lignée. Il est également possible qu'un gène atterrissant dans un nouveau voisinage ait conduit à des innovations dans la régulation des gènes. "Peut-être que ce fut l'une des forces motrices de la diversification des animaux", a déclaré Simakov.

"C'est la grande question", a déclaré Lewin. "Il s'agit de véritables bouleversements tectoniques dans le génome, et il est peu probable qu'ils soient sans conséquence".

Auteur: Internet

Info: https://www.quantamagazine.org/secrets-of-early-animal-evolution-revealed-by-chromosome-tectonics-20220202.Viviane Callier 2 février 2022

[ méta-moteurs ] [ néo-phylogénie ]

 

Commentaires: 0

Ajouté à la BD par miguel

épistémologie

Opinion: Pourquoi la science a besoin de la philosophe

Malgré les liens historiques étroits entre la science et la philosophie, les scientifiques d'aujourd'hui perçoivent souvent la philosophie comme complètement différente, voire antagoniste, de la science. Nous soutenons ici que, au contraire, la philosophie peut avoir un impact important et productif sur la science.

Nous illustrons notre propos par trois exemples tirés de divers domaines des sciences de la vie contemporaines. Chacun d'entre eux concerne la recherche scientifique de pointe, et chacun ayant été explicitement reconnu par les chercheurs en exercice comme une contribution utile à la science. Ces exemples, et d'autres, montrent que la contribution de la philosophie peut prendre au moins quatre formes : la clarification des concepts scientifiques, l'évaluation critique des hypothèses ou des méthodes scientifiques, la formulation de nouveaux concepts et de nouvelles théories, et la promotion du dialogue entre les différentes sciences, ainsi qu'entre la science et la société.

Clarification conceptuelle et cellules souches.

Tout d'abord, la philosophie offre une clarification conceptuelle. Les clarifications conceptuelles améliorent non seulement la précision et l'utilité des termes scientifiques, mais conduisent également à de nouvelles recherches expérimentales, car le choix d'un cadre conceptuel donné contraint fortement la façon dont les expériences sont conçues.

La définition des cellules souches (stem cells) en est un excellent exemple. La philosophie a une longue tradition d'étude des propriétés, et les outils utilisés dans cette tradition ont récemment été appliqués pour décrire la "souche", propriété qui définit les cellules souches. L'un d'entre nous a montré que quatre types de propriétés différentes existent sous cette dénomination de souche (stemness) au vu des connaissances scientifiques actuelles. Selon le type de tissu, la stemness peut être une propriété catégorielle (propriété intrinsèque de la cellule souche, indépendante de son environnement), une propriété dispositionnelle (propriété intrinsèque de la cellule souche qui est contrôlée par le micro-environnement), une propriété relationnelle (propriété extrinsèque qui peut être conférée aux cellules non souches par le microenvironnement), ou une propriété systémique (propriété qui est maintenue et contrôlée au niveau de la population cellulaire entière).

Hans Clevers, chercheur en biologie des cellules souches et du cancer, note que cette analyse philosophique met en lumière d'importants problèmes sémantiques et conceptuels en oncologie et en biologie des cellules souches ; il suggère également que cette analyse soit facilement applicable à l'expérimentation. En effet, au-delà de la clarification conceptuelle, ce travail philosophique a des applications dans le monde réel, comme l'illustre le cas des cellules souches cancéreuses en oncologie.

Les recherches visant à développer des médicaments ciblant soit les cellules souches cancéreuses, soit leur microenvironnement, reposent en fait sur différents types de souches et sont donc susceptibles d'avoir des taux de réussite différents selon le type de cancer. En outre, elles pourraient ne pas couvrir tous les types de cancer, car les stratégies thérapeutiques actuelles ne tiennent pas compte de la définition systémique de la souche. Déterminer le type de souche présent dans chaque tissu et chaque cancer est donc utile pour orienter le développement et le choix des thérapies anticancéreuses. Dans la pratique, ce cadre a conduit à la recherche de thérapies anticancéreuses qui combinent le ciblage des propriétés intrinsèques des cellules souches cancéreuses, de leur microenvironnement et des points de contrôle immunitaires afin de couvrir tous les types possibles de souches.

En outre, ce cadre philosophique a récemment été appliqué à un autre domaine, l'étude des organoïdes (tissus en 3D dérivés de cellules souches, sont capables de s'auto-organiser et de reproduire certaines fonctions d'un organe.). Dans une revue systémique des données expérimentales sur les organoïdes provenant de diverses sources, Picollet-D'hahan et al. ont caractérisé la capacité à former des organoïdes comme une propriété dispositionnelle. Ils ont pu alors affirmer que pour accroître l'efficacité et la reproductibilité de la production d'organoïdes, actuellement un défi majeur dans le domaine, les chercheurs doivent mieux comprendre la partie intrinsèque de la propriété dispositionnelle qui est influencée par le microenvironnement. Pour distinguer les caractéristiques intrinsèques des cellules qui ont une telle disposition, ce groupe développe actuellement des méthodes de génomique fonctionnelle à haut débit, permettant d'étudier le rôle de pratiquement tous les gènes humains dans la formation des organoïdes.

Immunogénicité et microbiome.

En complément de son rôle dans la clarification conceptuelle, la philosophie peut contribuer à la critique des hypothèses scientifiques et peut même être proactive dans la formulation de théories nouvelles, testables et prédictives qui aident à définir de nouvelles voies pour la recherche empirique.

Par exemple, une critique philosophique du cadre du cadre immunitaire du soi et du non-soi a conduit à deux contributions scientifiques importantes. Tout d'abord, elle a servi de base à la formulation d'un nouveau cadre théorique, la théorie de la discontinuité de l'immunité, qui complète les modèles antérieurs du non-soi et du danger en proposant que le système immunitaire réagisse aux modifications soudaines des motifs antigéniques. Cette théorie éclaire de nombreux phénomènes immunologiques importants, notamment les maladies auto-immunes, les réponses immunitaires aux tumeurs et la tolérance immunologique à des ligands exprimés de façon chronique. La théorie de la discontinuité a été appliquée à une multitude de questions, aidant à explorer les effets des agents chimiothérapeutiques sur l'immunomodulation dans le cancer et expliquant comment les cellules tueuses naturelles modifient constamment leur phénotype et leurs fonctions grâce à leurs interactions avec leurs ligands** d'une manière qui assure la tolérance aux constituants corporels. La théorie permet également d'expliquer les conséquences des vaccinations répétées chez les personnes immunodéprimées et propose des modèles mathématiques dynamiques de l'activation immunitaire. Collectivement, ces diverses évaluations empiriques illustrent comment des propositions d'inspiration philosophique peuvent conduire à des expériences inédites, ouvrant ainsi de nouvelles voies de recherche.

Deuxièmement, la critique philosophique a contribué, avec d'autres approches philosophiques, à la notion selon laquelle tout organisme, loin d'être un soi génétiquement homogène, est une communauté symbiotique abritant et tolérant de multiples éléments étrangers (notamment des bactéries et des virus), qui sont reconnus mais non éliminés par son système immunitaire. La recherche sur l'intégration symbiotique et la tolérance immunitaire a des conséquences considérables sur notre conception de ce qui constitue un organisme individuel, qui est de plus en plus conceptualisé comme un écosystème complexe dont les fonctions clés, du développement à la défense, la réparation et la cognition, sont affectées par les interactions avec les microbes.

Influence sur les sciences cognitives.

L'étude de la cognition et des neurosciences cognitives offre une illustration frappante de l'influence profonde et durable de la philosophie sur la science. Comme pour l'immunologie, les philosophes ont formulé des théories et des expériences influentes, aidé à lancer des programmes de recherche spécifiques et contribué à des changements de paradigme. Mais l'ampleur de cette influence est bien plus importante que dans le cas de l'immunologie. La philosophie a joué un rôle dans le passage du behaviorisme au cognitivisme et au computationnalisme dans les années 1960. La théorie de la modularité de l'esprit, proposée par le philosophe Jerry Fodor, a peut-être été la plus visible. Son influence sur les théories de l'architecture cognitive peut difficilement être dépassée. Dans un hommage rendu après le décès de Fodor en 2017, l'éminent psychologue cognitif James Russell a parlé dans le magazine de la British Psychological Society de "psychologie cognitive du développement BF (avant Fodor) et AF (après Fodor) ".

La modularité renvoie à l'idée que les phénomènes mentaux résultent du fonctionnement de multiples processus distincts, et non d'un seul processus indifférencié. Inspiré par les résultats de la psychologie expérimentale, par la linguistique chomskienne et par les nouvelles théories computationnelles de la philosophie de l'esprit, Fodor a théorisé que la cognition humaine est structurée en un ensemble de modules spécialisés de bas niveau, spécifiques à un domaine et encapsulés sur le plan informationnel, et en un système central de plus haut niveau, général à un domaine, pour le raisonnement abductif, l'information ne circulant que verticalement vers le haut, et non vers le bas ou horizontalement (c'est-à-dire entre les modules). Il a également formulé des critères stricts de modularité. Aujourd'hui encore, la proposition de Fodor définit les termes d'une grande partie de la recherche empirique et de la théorie dans de nombreux domaines des sciences cognitives et des neurosciences, y compris le développement cognitif, la psychologie de l'évolution, l'intelligence artificielle et l'anthropologie cognitive. Bien que sa théorie ait été révisée et remise en question, les chercheurs continuent d'utiliser, de peaufiner et de débattre de son approche et de sa boîte à outils conceptuelle de base.

La philosophie et la science partagent les outils de la logique, de l'analyse conceptuelle et de l'argumentation rigoureuse. Cependant, les philosophes peuvent utiliser ces outils avec des degrés de rigueur, de liberté et d'abstraction théorique que les chercheurs praticiens ne peuvent souvent pas se permettre dans leurs activités quotidiennes.

La tâche des fausses croyances constitue un autre exemple clé de l'impact de la philosophie sur les sciences cognitives. Le philosophe Daniel Dennett a été le premier à concevoir la logique de base de cette expérience comme une révision d'un test utilisé pour évaluer la théorie de l'esprit, la capacité d'attribuer des états mentaux à soi-même et aux autres. Cette tâche teste la capacité d'attribuer à autrui des croyances que l'on considère comme fausses, l'idée clé étant que le raisonnement sur les croyances fausses d'autrui, par opposition aux croyances vraies, exige de concevoir les autres personnes comme ayant des représentations mentales qui divergent des siennes et de la façon dont le monde est réellement. Sa première application empirique remonte à 1983 , dans un article dont le titre, "Beliefs About Beliefs : Representation and Constraining Function of Wrong Beliefs in Young Children's Understanding of Deception", est en soi un hommage direct à la contribution de Dennett.

La tâche des fausses croyances représente une expérience marquante dans divers domaines des sciences cognitives et des neurosciences, avec de vastes applications et implications. Il s'agit notamment de tester les stades du développement cognitif chez les enfants, de débattre de l'architecture de la cognition humaine et de ses capacités distinctes, d'évaluer les capacités de la théorie de l'esprit chez les grands singes, de développer des théories de l'autisme en tant que cécité de l'esprit (selon lesquelles les difficultés à réussir la tâche des fausses croyances sont associées à cette maladie), et de déterminer quelles régions particulières du cerveau sont associées à la capacité de raisonner sur le contenu de l'esprit d'une autre personne .

La philosophie a également aidé le domaine des sciences cognitives à éliminer les hypothèses problématiques ou dépassées, contribuant ainsi à l'évolution de la science. Les concepts de l'esprit, de l'intelligence, de la conscience et de l'émotion sont utilisés de manière omniprésente dans différents domaines, avec souvent peu d'accord sur leur signification. L'ingénierie de l'intelligence artificielle, la construction de théories psychologiques des variables de l'état mental et l'utilisation d'outils neuroscientifiques pour étudier la conscience et l'émotion nécessitent des outils conceptuels pour l'autocritique et le dialogue interdisciplinaire - précisément les outils que la philosophie peut fournir.

La philosophie - parfois représentée par la lettre grecque phi - peut contribuer à faire progresser tous les niveaux de l'entreprise scientifique, de la théorie à l'expérience. Parmi les exemples récents, citons les contributions à la biologie des cellules souches, à l'immunologie, à la symbiose et aux sciences cognitives.  

La philosophie et la connaissance scientifique.

Les exemples ci-dessus sont loin d'être les seuls : dans les sciences de la vie, la réflexion philosophique a joué un rôle important dans des questions aussi diverses que l'altruisme évolutif , le débat sur les unités de sélection, la construction d'un "arbre de vie", la prédominance des microbes dans la biosphère, la définition du gène et l'examen critique du concept d'innéité. De même, en physique, des questions fondamentales comme la définition du temps ont été enrichies par les travaux des philosophes. Par exemple, l'analyse de l'irréversibilité temporelle par Huw Price et les courbes temporelles fermées par David Lewis ont contribué à dissiper la confusion conceptuelle en physique.

Inspirés par ces exemples et bien d'autres, nous considérons que la philosophie et la science se situent sur un continuum. La philosophie et la science partagent les outils de la logique, de l'analyse conceptuelle et de l'argumentation rigoureuse. Cependant, les philosophes peuvent utiliser ces outils avec des degrés de minutie, de liberté et d'abstraction théorique que les chercheurs praticiens ne peuvent souvent pas se permettre dans leurs activités quotidiennes. Les philosophes possédant les connaissances scientifiques pertinentes peuvent alors contribuer de manière significative à l'avancement de la science à tous les niveaux de l'entreprise scientifique, de la théorie à l'expérimentation, comme le montrent les exemples ci-dessus.

Mais comment, en pratique, faciliter la coopération entre chercheurs et philosophes ? À première vue, la solution pourrait sembler évidente : chaque communauté devrait faire un pas vers l'autre. Pourtant, ce serait une erreur de considérer cette tâche comme facile. Les obstacles sont nombreux. Actuellement, un nombre important de philosophes dédaignent la science ou ne voient pas la pertinence de la science pour leur travail. Même parmi les philosophes qui privilégient le dialogue avec les chercheurs, rares sont ceux qui ont une bonne connaissance de la science la plus récente. À l'inverse, peu de chercheurs perçoivent les avantages que peuvent leur apporter les idées philosophiques. Dans le contexte scientifique actuel, dominé par une spécialisation croissante et des demandes de financement et de résultats de plus en plus importantes, seul un nombre très limité de chercheurs a le temps et l'opportunité d'être au courant des travaux produits par les philosophes sur la science, et encore moins de les lire.

 Pour surmonter ces difficultés, nous pensons qu'une série de recommandations simples, assez facile à mettre en œuvre, peuvent aider à combler le fossé entre la science et la philosophie. La reconnexion entre la philosophie et la science est à la fois hautement souhaitable et plus réalisable en pratique que ne le suggèrent les décennies d'éloignement qui les séparent.

1) Laisser plus de place à la philosophie dans les conférences scientifiques. Il s'agit d'un mécanisme très simple permettant aux chercheurs d'évaluer l'utilité potentielle des idées des philosophes pour leurs propres recherches. Réciproquement, davantage de chercheurs pourraient participer à des conférences de philosophie, en développant les efforts d'organisations telles que l'International Society for the History, Philosophy, and Social Studies of Biology, la Philosophy of Science Association et la Society for Philosophy of Science in Practice.

2) Accueillir des philosophes dans des laboratoires et des départements scientifiques. Il s'agit d'un moyen efficace (déjà exploré par certains des auteurs et d'autres) pour les philosophes d'apprendre la science et de fournir des analyses plus appropriées et bien fondées, et pour les chercheurs de bénéficier d'apports philosophiques et de s'acclimater à la philosophie en général. C'est peut-être le moyen le plus efficace d'aider la philosophie à avoir un impact rapide et concret sur la science.

3) Co-superviser des doctorants. La co-supervision de doctorants par un chercheur et un philosophe est une excellente occasion de rendre possible l'enrichissement mutuel des deux domaines. Elle facilite la production de thèses qui sont à la fois riches sur le plan expérimental et rigoureuses sur le plan conceptuel et, ce faisant, elle forme la prochaine génération de philosophes-scientifiques.

4) Créer des programmes d'études équilibrés en science et en philosophie qui favorisent un véritable dialogue entre elles. De tels programmes existent déjà dans certains pays, mais leur développement devrait être une priorité absolue. Ils peuvent offrir aux étudiants en sciences une perspective qui les rend plus aptes à relever les défis conceptuels de la science moderne et fournir aux philosophes une base solide de connaissances scientifiques qui maximisera leur impact sur la science. Les programmes d'enseignement des sciences peuvent inclure un cours d'histoire des sciences et de philosophie des sciences. Les programmes de philosophie pourraient inclure un module de sciences.

5) Lire science et philosophie. La lecture des sciences est indispensable à la pratique de la philosophie des sciences, mais la lecture de la philosophie peut également constituer une grande source d'inspiration pour les chercheurs, comme l'illustrent certains des exemples ci-dessus. Par exemple, les clubs de lecture où les contributions scientifiques et philosophiques sont discutées constituent un moyen efficace d'intégrer la philosophie et la science.

6) Ouvrir de nouvelles sections consacrées aux questions philosophiques et conceptuelles dans les revues scientifiques. Cette stratégie serait un moyen approprié et convaincant de suggérer que le travail philosophique et conceptuel est continu avec le travail expérimental, dans la mesure où il est inspiré par celui-ci, et peut l'inspirer en retour. Cela rendrait également les réflexions philosophiques sur un domaine scientifique particulier beaucoup plus visibles pour la communauté scientifique concernée que lorsqu'elles sont publiées dans des revues de philosophie, qui sont rarement lues par les scientifiques.

Nous espérons que les mesures pratiques exposées ci-dessus encourageront une renaissance de l'intégration de la science et de la philosophie. En outre, nous soutenons que le maintien d'une allégeance étroite à la philosophie renforcera la vitalité de la science. La science moderne sans la philosophie se heurtera à un mur : le déluge de données dans chaque domaine rendra l'interprétation de plus en plus difficile, négligence et ampleur ampleur de l'histoire risquent de séparer davantage les sous-disciplines scientifiques, et l'accent mis sur les méthodes et les résultats empiriques entraînera une formation de moins en moins approfondie des étudiants. Comme l'a écrit Carl Woese : "une société qui permet à la biologie de devenir une discipline d'ingénierie, qui permet à la science de se glisser dans le rôle de modifier le monde vivant sans essayer de le comprendre, est un danger pour elle-même." Nous avons besoin d'une revigoration de la science à tous les niveaux, une revigoration qui nous rende les bénéfices de liens étroits avec la philosophie.

Auteur: Internet

Info: https://hal.archives-ouvertes.fr/hal-02269657/document. " janvier 2020. Publication collective de Lucie Laplane, Paolo Mantovani, Ralph Adolphs, Hasok Chang, Alberto Mantovani, Margaret McFall-Ngai, Carlo Rovelli, Elliott Sober, et Thomas Pradeua. Trad Mg

[ mécanisme ] [ état des lieux ] [ corps-esprit ] [ tétravalences ] [ tour d'horizon ]

 

Commentaires: 0

Ajouté à la BD par miguel