Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 80
Temps de recherche: 0.0575s

onirologie

Les rêves sont des portes d'accès au monde invisible pour de nombreuses civilisations, cette porte ouvre sur le royaume des morts, des entités célestes et chthoniennes. Ces êtres interagissent avec nous grâce aux rêves, et certains d'entres eux peuvent nous apporter des messages célestes, et d'autres des messages plutôt sombres et funestes. Dans la mystique juive, il est admis que le dormeur à la capacité d'entrer en contact avec différents êtres durant le sommeil, Moshé Idel nous dévoile certaines techniques onirologiques utilisées par des Maîtres Kabbalistes.

Dans la technique dite du she’elot halom, particulièrement présente chez les Kabbalistes, technique qui consiste à formuler des questions avant d’aller dormir, le praticien entre en dialogue avec le monde invisible. Le grand Besht, plus connu sous le nom de Ba'al Shem Tov, est dit avoir utilisé cette technique et que tout ce que savait le Besht provenait des réponses qu'il recevait en rêve. Dans certains cas, ces réponses prennent la forme d’un verset de la Bible comme une révélation personnelle, dans lequel la réponse était contenu. Par conséquent, on devait interpréter le verset comme la Thora est interprétée par les Maîtres.

R. Isaac ben Samuel d’Acre, un Kabbaliste du début du XIVème siècle, rapporte ce qui suit : "Moi, le jeune Isaac d’Acre, étais endormi dans mon lit, et à la fin de la troisième garde, une merveilleuse réponse par le rêve m’a été révélée, dans une véritable vision, comme si j’étais pleinement éveillé, et la voici [le verset] : - Sois entièrement avec l’Éternel ton Dieu…" Deutéronome, chapitre 18, verset 13

R. Isaac voit toutes sortes de combinaisons de mots et leurs équivalences numériques qui font allusion au nom divin YBQ, et "pense aux lettres du Tétragramme telles qu’elles sont prononcées (...). En une cogitation conceptuelle, méditative et intellectuelle… non pas d’une façon qui arrive du cœur à la gorge…".

Cette technique de permutation des lettres associée à une médiation est l'oeuvre d'Abraham Aboulafia (1240-1291), George Lahy définit cette permutation des lettres, le Tserouf, comme suit :

"La pratique du Tserouf, l’art combinatoire, ouvre les portes de la Kabbale extatique. Cette extase provoquée par le Kabbaliste est un ravissement de l’esprit fusionné par la méditation et détaché du monde sensible."

Dans son livre H’aye haOlam haBa, Abraham Aboulafia nous explique de quelle manière procéder :

"Il te faut t’apprêter pour l’union du coeur et la purification du corps. Un lieu particulier et préservé doit être choisi, d’où ta voix ne sera entendue de personne. Installe-toi complètement seul et retire-toi dans l’HITBODED (esseulement). Tu dois être assis en ce lieu préservé, qui peut être une pièce ou une cellule ; mais surtout ne révèle ce secret à personne. Si tu peux, applique la méthode le jour dans une maison, mais le moment le plus favorable est la nuit. Éloigne de ton esprit les vanités de ce monde, car c’est l’instant où tu vas parler avec ton Créateur, de qui tu souhaites connaître la Grandeur.

Enveloppe-toi dans ton châle de prière et place ta tête et ton bras tes tefillim car tu dois être rempli de révérence envers la Shekhinah qui t’enrobe maintenant. Vérifie que tes vêtements soient purs et de préférence blancs ; cette précaution invite avec force au recueillement…"

Un autre exemple de la pratique onirologique du she’elat halom découle de l’un des plus célèbres Kabbalistes, Rabbi Hayyim Vital, qui recommande ceci :

"Tu iras au lit pour dormir, prie : - Que Ta Volonté soit faite, et utilise l’une des prononciations des noms [divins] écrits devant toi, et dirige ta pensée vers les sphères mystiques qui y sont liées. Puis évoque ta question soit pour découvrir les problèmes liés à un rêve et les choses futures, soit pour obtenir quelque chose que tu désires, ensuite pose [la question]."

Ailleurs, ce Kabbaliste a recours à une technique de visualisation de la couleur pour obtenir une réponse à sa question, qu’il atteint dans un état similaire au rêve :

"Visualise qu’au-dessus du firmament des Aravot (des cieux), il y a un très grand rideau blanc, blanc comme la neige, sur lequel le Tétragramme est inscrit, en écriture assyrienne (il ne s’agit pas de l’écriture cunéiforme assyrienne, Hayyim Vital fait référence à une forme calligraphique traditionnelle de l’alphabet hébraïque : l’écriture carrée, dite ashourite (ktav ashuri), qui vient du nom Ashur. Ashur en hébreu désigne l’Assyrie), dans une certaine couleur…. et chacune des grandes lettres inscrites là sont aussi grandes qu’une montagne ou une colline. Et tu devras imaginer, dans tes pensées, que tu poses ta question à ces combinaisons de lettres écrites là, et elles répondront à ta question, ou elles feront résider leur esprit dans ta bouche, ou bien tu seras somnolent et elles te répondront, comme dans un rêve."

Une autre technique d’induction des rêves a été élaborée à partir de textes mystiques juifs, elle s’appelle "les pleurs mystiques" : il s’agit d’un effort pour atteindre un résultat direct par le biais des pleurs provoqués sur soi-même. Ce résultat recherché peut aller de la connaissance paranormale aux visions porteuses d’informations à propos de quelque secret. Nous trouvons quelques exemples dans la littérature apocalyptique, où la prière, les pleurs et les jeûnes sont utilisés pour induire le Parole de Dieu dans un rêve.

Le lien entre les pleurs et les perceptions paranormales qui se forme dans les rêves est également évident dans une histoire midrashique :

"L’un des étudiants de R. Simeon bar Yohaï avait oublié ce qu’il avait appris. En larmes, il se rendit au cimetière. Du fait de ses grands pleurs, il [R. Simeon] vint à lui en rêve et lui dit : - lorsque tu te lamentes, lance trois brindilles, et je viendrai... L’étudiant se rendit auprès d’un interprète des rêves et lui raconta ce qui s’était produit. Ce dernier lui dit : - répète ton chapitre [ce que tu as appris] trois fois, et il te reviendra... L’étudiant suivit ses conseils et c’est effectivement ce qui se passa."

La corrélation entre les pleurs et la visite d’une tombe semble faire allusion à une pratique destinée à induire des visions. Ceci, bien sûr, faisait partie d’un contexte plus étendu dans lequel les cimetières étaient des sites où il était possible de recevoir une vision. Tomber de sommeil en larmes, ce dont il est question ici, semble également être une part de l’enchaînement : la visite au cimetière, les pleurs, tomber de sommeil en larmes, le rêve révélateur.

La technique des pleurs pour atteindre la "Sagesse" est puissamment expliquée par R. Abraham ha-Levi Berukhim, l’un des disciples d’Isaac Louria. Dans l’un de ses programmes, après avoir spécifié le "silence" comme première condition, il nomme "la seconde condition : dans toutes tes prières, et dans toutes tes heures d’étude, en un lieu que l’on trouve difficile (le lieu où l’on étudie), dans lequel tu ne peux pas comprendre et appréhender les sciences propédeutiques ou certains secrets, provoque en toi d’amères lamentations, jusqu’à ce que des larmes mouillent tes yeux, et pleure autant que tu pourras. Et fais redoubler tes pleurs, car les portails des larmes n’étaient pas fermés et les portails célestes s’ouvriront à toi."

Pour Louria et Berukhim, pleurer est une aide pour surmonter les difficultés intellectuelles et recevoir des secrets. Ceci s’apparente à l’histoire de R. Abraham Berukhim qui est la confession autobiographique de son ami, R. Hayyim Vital :

"En 1566, la veille de Chabbath, le 8 du mois de Tevet, j’ai récité le Kiddush et me suis assis pour manger ; et mes yeux s’emplirent de larmes, j’avais signé et j’étais triste dès lors… J’étais lié par la sorcellerie… Et je pleurais également pour avoir négligé la Torah au cours des deux dernières années… Et à cause de mon inquiétude, je n’ai pas mangé du tout, et je me suis étendu, le visage contre mon lit, en pleurs, et je me suis endormi d’avoir trop pleuré, et j’ai fais un rêve extraordinaire."

Ces she’elot halom (les questions posées par le biais des rêves, la visualisation de couleur, les pleurs mystiques), comme d’autres techniques mystiques appartiennent à la littérature juive, mais également au quotidien des Kabbalistes. Moshé Idel affirme que cette technique suppose que le mystique peut prendre l’initiative et établir un contact avec d’autres royaumes, et qu’il peut induire certaines expériences en ayant recours à ces techniques.

Auteur: Shoushi Daniel

Info: Le she’elot halom, ou le processus d'induction spirituelle par les rêves chez les mystiques juifs, par Moshé Idel, 11 Avril 2018. Sources : Kabbale extatique et Tsérouf, Georges Lahy. Editions : Lahy. Astral Dreams in Judaism Twelfth to Fourteenth Centuries, Moshé Idel. Editions : Dream Cultures; Explorations in the Comparative History of Dreaming. Ed. by David Shulman and Guy G. Stroumsa. New York : Oxford University Press, 1999. Les kabbalistes de la nuit, Moshé Idel. Editions Allia

[ songes ] [ astralogie ] [ psychanalyse ]

 
Commentaires: 1
Ajouté à la BD par miguel

femmes-hommes

L'esprit pourrait affecter les machines selon les sexes
Pendant 26 ans, des conversations étranges ont eu lieu dans un laboratoire du sous-sol de l'université de Princeton. On utilise des ordinateurs au rendement aléatoire et les expériences font se concentrer des participants sur le contrôle d'une ou de plusieurs machines. Après plusieurs million d'épreuves on peut détecter de petits signes "statistiquement significatifs" comme quoi les esprits semblent pouvoir agir sur les machines. Cependant les chercheurs font attention à ne pas annoncer que les esprits ont cet effet ou qu'ils connaissent la nature de cette communication.
Les services secrets, la défense et les agences de l'espace ont également montré de l'intérêt pour cette recherche. Le premier support que les chercheurs ont employé était un bruit aléatoire à haute fréquence. Les chercheurs ont branché des circuits au dispositif pour traduire ce bruit en code binaire. Chaque participant, après un protocole pré-enregistré, devait développer une intention dans son esprit pour faire que le générateur ait plus ou moins de zéros. Les effets furent faibles mais mesurables. Depuis les mêmes résultats se sont reproduits avec d'autres expériences, telles qu'en impliquant un pendule relié à un mécanisme commandé par ordinateur. Quand la machine libère le pendule pour qu'il se balance, les participants se concentrent sur modifier le taux avec lequel le pendule ralentit. D'autres expériences impliquent une machine à tambour que les participants essayent de commander et une machine de cascade mécanique dans laquelle un dispositif laisse tomber des milliers de petites boules noires de polystyrène, le but est que ces boules tombent dans une rangée de fentes. Les participants essayent alors de les diriger pour les faire tomber d'un côté de ou de l'autre. Au final les participants ont pu "diriger " un bit sur 10.000 issus des données mesurées dans tous les essais. Ce qui pourrait sembler petit, mais le doyen Radin, scientifique à l'institut des sciences de Noetic et ancien chercheur aux laboratoires Bell et de AT&T, dit que c'était prévisible. Radin compare l'état actuel de cette recherche avec celui où les scientifiques commencèrent à étudier l'électricité statique et ne surent pas, au début, que les niveaux d'humidité pouvaient affecter la quantité de l'électricité statique produite.
Les chercheurs ne comprennent pas grand-chose sur ce phénomène, mais ils savent que les résultats ne sont pas affectés par la distance ou le temps. Les participants, par exemple, peuvent avoir le même impact sur une machine de l'extérieur de la salle ou d'ailleurs dans le pays. Ils peuvent également avoir le même effet s'ils ont une intention avant qu'elle soit allumée ou même s'ils lisent un livre ou écoutent la musique tandis alors que la machine fonctionne. Les conditions environnementales - telles que la température ambiante - n'importent pas, mais l'humeur et l'attitude des gens qui contrôlent l'appareil oui. Cela aide, si par exemple le participant croit qu'il peut affecter la machine. Jahn dit que la résonance avec la machine est un autre facteur important. Il la compare à ce qui se produit quand un grand musicien semble faire un avec son violon. Le sexe importe aussi. Les hommes tendent à obtenir des résultats assortis à leurs intentions, bien que le degré de l'effet soit souvent petit. Les femmes tendent à obtenir un plus grand effet, mais pas nécessairement celui qu'elles prévoient. Par exemple, elles voudraient diriger des boules dans la machine aléatoire de cascade pour une chute vers la gauche, mais elles tombent plutôt vers la droite. Les résultats qui sont également plus grands si un mâle et une femelle travaillent ensemble, les couple de même sexe ne produisent aucun résultat significatif. Les couple de sexe opposé qui sont impliqué de manière romantique donnent de bien meilleurs résultats - souvent sept fois plus grands que quand les mêmes individus sont examinés seuls.
Brenda Dunne, psychologue développementaliste et directrice du laboratoire dit que dans ces cas les résultats reflètent souvent le styles des deux modèles de sexes. Les effets sont plus grands, en accord avec ce que seule la femelle tendrait à produire, et plus ciblés, en accord avec ce que seul le mâle produirait.
"C'est presque comme si il y avait deux modèles ou deux variables et qu'elles étaient complémentaires" dit Dunne." le modèle masculin est associé à l'intention, le modèle féminin est plus associé à la résonance."
Que signifie tout ceci ? Personne ne le sait. Radin et Jahn indiquent que ce n'est pas parce qu'il y a une corrélation entre l'intention du participant et les actions de la machine que cela signifie qu'un cause l'autre. " Il y a une inférence (qui les deux sont connexes) mais aucune évidence directe" dit Radin qui indique que le phénomène pourrait être semblable à l'indétermination d'Heisenberg dans lequel deux particules séparées l'une de l'autre semblent être reliées sans qu'on sache comment... sous quelle forme de communication.
"la différence est nous ne parlons pas en envoyant des signaux du cerveau à la machine par un circuit" dit Jahn au sujet de ces essais. "quoi qu'il se passe, se passe par un itinéraire que nous ne connaissons pas. Nous savons seulement quelque chose au sujet des conditions qui la favorisent.." Bien que les effets produits dans ces expériences soient faibles, ils ont toujours été répétés, cependant pas toujours de façon prévisible. Un participant peut avoir un effet un jour et répéter l'expérience le jour suivant sans résultats.
Le laboratoire a beaucoup de détracteurs qui pointent sur des défauts de la méthode et écartent ce travail le traitant de divertissement, comparant ses résultats aux automobilistes qui souhaitent qu'une lumière rouge passe au vert et pensent que le changement de lumière est causé par eux.
Stanley Jeffers, professeur de physique à l'université d'York à Toronto, a tenté des expériences semblables, mais il ne put pas répliquer les résultats. Les chercheurs de deux laboratoires allemands, fonctionnant en coopération avec Pegg, ne purent également pas répliquer ces résultats à l'aide du même équipement utilisé par Pegg.
"Si leurs annonces veulent être prises au sérieux par la science elles doivent être répliquées" dit Jeffers. "Si elles ne peuvent pas être répliquées, cela ne signifie pas qu'elles sont fausses, mais la science y perdra rapidement son intérêt."
Dunne, psychologue développementaliste dit que Pegg a répété ses propres expériences et a obtenu des résultats significatifs. Et ces méta-analyses - une douzaine - faites depuis les années 80 ont donné une base pour les résultats de Pegg dans les expériences faites par d'autres chercheurs. La Méta-analyse utilise de grands stocks de données à travers de beaucoup d'expériences et les combine statistiquement pour voir si les effets répètent la même combinaison. "Nous analysons les déviations statistiques par rapport à la chance au travers de cette batterie d'expériences" dit Jahn... "quand on fait assez de ces expériences, les effets analysés ont un poids statistique. Il n'y a aucun doute sur la validité de ces effets."
Radin, qui n'est pas affilié au Pegg, écarte les critiques qui disent que ce groupe ne pratique pas de science solide. "Ce domaine a reçu bien plus d'examen minutieux et critique que beaucoup d'autres, ordinaires... les personnes qui font ce genre de recherche sont bien conscientes du fait que leur recherche doit être faite au mieux. Le laboratoire de Pegg a pris les meilleurs principes de science rigoureuse et s'est appliqué a des questions extrêmement difficiles et a proposé quelques jolies réponses intéressantes."
Jahn pense que les critiques s'attendent à ce que les phénomènes suivent les règles habituelles de la cause et de l'effet. Au lieu de cela, il pense qu'ils appartiennent à la catégorie de ce que Karl Jung a appelé "des phénomènes acausal," qui incluent des choses comme la synchronicité. "Cela se joue par des règles plus compliquées, plus lunatiques, évasives... ... mais cela joue." dit Jahn
Jeffers est sceptique " cela ne peut se passer de deux manières - dire qu'on est des scientifiques honorables et avoir des affirmations pour un effet particulier dans des conditions contrôlées, et ensuite quand les résultats ne marchent pas, dire que les méthodes scientifiques rigoureuses ne s'appliquent pas." Mais Jahn dit que justement que puisque que les scientifiques ne peuvent pas expliquer ces phénomènes cela ne signifie pas qu'ils ne sont pas vrais. "si ces choses existent... je pense que notre société a le droit de demander à la science d'y faire attention et de fournir un certain outillage pour avoir affaire avec de manière constructive.

Auteur: Zetter Kim

Info: Juillet 2005, Fortean Times

[ mâles-femelles ] [ vus-scientifiquement ] [ parapsychologie ] [ femmes-hommes ]

 

Commentaires: 0

théorie du tout

De l'observateur à l'acteur

Les découvertes de la physique quantique ont initié une réflexion importante sur la place de l'observateur et son lien avec la conscience. Jusqu'alors, ce que nous savions de la physique n'avait jamais conduit à ce questionnement. En effet, à notre échelle, les objets classiques se comportent de manière régulière et prédictive, nous donnant par exemple le droit de penser que si nous quittons une pièce, les objets qu'elle contient seront toujours là à notre retour. C'est comme si les choses continuaient, que nous les observions ou non. L'influence de l'observation est donc susceptible du nous échapper.

Par contre, au niveau quantique, on ne peut rien dire de tel. Quand on n'observe pas, il y a méconnaissance ; alors, plusieurs réalités sont possibles. C'est ce qu'on appelle la superposition quantique. À partir du moment où l'on observe, la superposition s'effondre, ne laissant qu'une seule réalité.

Quel est le point commun entre les deux échelles ? La conscience.

L'observateur, au sens métaphysique du terme - le seul qui soit ici valide puisque la conscience est première - a une influence sur l'avancement de la complexité et de la conscience dans l'univers. En retour, l'univers a une influence sur lui.  Dès que la conscience de l'observateur change, il n'observe plus son environnement de la même manière, ce qui influence la conscience avec laquelle il perçoit. Ainsi, son interprétation est directement liée à sa conscience au moment où il observe.

Chaque observateur étant ainsi complètement impliqué dans la construction de la réalité, il serait sans doute plus juste de parler d'acteurs. Les joueurs sont finalement la condition même d'existence de l'aire de jeu, grâce à leur conscience.

Le joueur et ce qui se passe dans l'univers ne font qu'un

Selon la théorie des champs unifiés, la conscience est une rétroaction entre notre monde intérieur et notre monde extérieur.

C'est à partir de la structure du double tore que j'ai commencé à comprendre pourquoi et comment la conscience émerge par rétroaction.

"Pour être conscient de soi, il faut savoir que l'on existe. Cela nécessite une rétroaction. La structure du double tore permet cette rétroaction entre ce qui vient de l'extérieur et ce qui retourne à l'intérieur, informant le vide, puis retournant à l'extérieur. Et lorsqu'il retourne à l'extérieur, le vide nous informe du résultat de l'information qui y est présente. Il s'agit d'un échange entre notre compréhension interne et l'expérience de l'univers, et la relation entre toutes les compréhensions rassemblées dans le vide affecte la nôtre. Nous ne créons donc pas notre réalité, nous la co-créons avec tous les autres." 

L'univers utilise une boucle de rétroaction pour s'observer à toutes les échelles. Il s'observe en fait à travers tous les êtres conscients qui évoluent en son sein. Plus précisément, c'est le niveau fondamental de ce que nous sommes qui rayonne et s'effondre perpétuellement sur lui-même, dans une boucle de rétroaction infinie.

Ainsi, nos observations ne sont pas les nôtres, car nous n'observons pas l'univers d'un point de vue extérieur. Nous faisons partie de son propre processus de prise de conscience. Et nous pouvons utiliser ce processus consciemment pour diriger la création et tracer le chemin que nous souhaitons emprunter, en co-création avec d'autres.

Pour cela, nous utilisons l'énergie.

L'énergie suit la conscience.

" Nous baignons dans une énergie fondamentale qui est à la source de la création du monde physique. Cette énergie est le vide, c'est-à-dire l'espace qui nous entoure. Cet espace n'est cependant pas vide au sens habituel du terme mais plein d'énergie, une énergie qui relie absolument tout. " [10]

Je présente ici la relation entre le vide, l'espace et l'énergie. Du point de vue de la physique, le vide n'existe pas.

Du point de vue de la métaphysique, seules la conscience et l'énergie existent. Ce que l'on appelle " espace " est simplement de l'énergie et des potentiels inexplorés (bien que du point de vue mental, l'espace existe et est perçu comme vide).

L'espace n'est rien d'autre que de l'énergie

Je m'intéresse au vide et surtout à l'énergie qu'il contient car c'est pour moi la source de la matière. Et je découvre que le vide a une structure géométrique, celle de la fleur de vie en 3D.

Cette structure est infinie et couvre ce que l'on appelle communément "l'espace". L'espace relie toutes les échelles, du niveau quantique - où les équations prédisent qu'il y a une énergie infinie en tout point - au niveau cosmologique. Toute l'énergie est déjà là, même si nous n'en sommes pas conscients.

La physique standard laisse volontairement de côté la grande majorité de cette énergie en utilisant un processus de renormalisation, qui attribue une valeur finie à l'énergie du vide quantique.

"(...) Des infinités absurdes à première vue apparaissent dans les autres théories partielles, mais dans tous les cas ces infinités peuvent être annulées par un processus appelé " renormalisation ". Bien que cette technique soit relativement douteuse sur le plan mathématique, elle semble fonctionner dans la pratique et a été appliquée à ces théories pour faire des prédictions qui correspondent aux observations avec un degré de précision extraordinaire. La renormalisation présente toutefois un sérieux inconvénient du point de vue de la recherche d'une théorie complète, car elle signifie que les valeurs réelles des masses et des intensités des forces ne peuvent pas être prédites par la théorie, mais doivent être choisies pour s'adapter aux observations. ""

Stephen Hawking énonce ici ce qui m'a permis de trouver une théorie complète, prenant en compte l'infini sans avoir recours à la renormalisation. J'ai ainsi réussi à prédire la valeur réelle de la masse du proton et des trous noirs en général...

L'énergie est partout équivalente

" Les objets physiques ne sont pas dans l'espace, mais ces objets sont une extension de l'espace. De ce point de vue, le concept d'espace perd toute signification.**

L'espace - ou l'énergie - est une fluctuation à la source de notre réalité. Ainsi, au lieu de nous voir comme un corps, par exemple, nous pouvons nous voir comme étant constitués de billions de cellules. Chacune de ces cellules est composée de milliards d'atomes. À l'intérieur de chacun de ces atomes, des protons circulent les uns autour des autres à la vitesse de la lumière. Ils sont chacun constitués de 1055 minuscules paquets d'énergie, appelés unités sphériques de Planck (PSU) ou voxels par moi-même. Ces voxels constituent l'unité fondamentale de la fabrique de l'espace-temps, assemblés géométriquement selon la structure infinie de la fleur de vie en 3D.

Il n'y a pas d'espace entre les particules, il n'y a que de l'énergie. D'ailleurs si l'on prend en compte l'énergie contenue dans le proton, on peut enfin expliquer la différence de densité d'énergie entre le niveau quantique et le niveau cosmologique. En bref l'énergie est égale, équivalente partout.

Mais si on considère que l'espace n'existe pas, que deviennent les concepts de temps et de dimension ?

Sans espace, qu'est-ce que le temps ?

Depuis la théorie de la relativité restreinte (Einstein, 1905), le concept d'espace est étroitement associé à celui de temps. Ces notions sont devenues inséparables et s'influencent réciproquement. Cependant le temps est simplement un concept humain. Il vaut mieux parler d'espace-mémoire. Ici c'est la mémoire qui est encodée sur le cadre de l'espace, nous donnant la notion du temps qui passe.

Mais qu'il s'agisse de mémoire ou de temps, sans espace, il n'y a pas d'espace, pourrait-on dire à juste titre.  Alors que la mémoire est simplement comme des paquets d'énergie et de conscience qui deviennent disponibles de notre point de vue humain.

Cela correspond à la perspective métaphysique selon laquelle toute manifestation d'énergie est un événement, sans corrélation avec le temps et l'espace, mais en aucun cas sans corrélation avec la conscience. Le temps, comme l'espace, n'existe nulle part ailleurs que dans le mental. Celui-ci peut en percevoir la linéarité et la séparation, là où tout n'est que résonance dans l'instant présent.

Sans espace, qu'est-ce qu'une dimension ?

Une dimension est relative à une mesure. Cependant je considère qu'une dimension se réfère à l'échelle ou à la taille d'une structure plutôt qu'à une orientation dans l'espace. Ainsi il existe un nombre infini de dimensions scalaires, la plus petite et la plus pertinente pour définir notre relation à l'univers étant le voxel (sphère de Planck). 1055 voxels - la masse de l'univers - tiennent dans un seul proton. Comment est-ce possible ? Parce qu'il s'agit de la masse holographique, fondée sur l'information. L'univers est fractal. La nature holo-fractographique de l'univers signifie que tous les protons communiquent entre eux.

Ainsi l'énergie est communication, uniquement.

En pratique l'échelle à laquelle nous observons les objets en physique détermine réellement le niveau d'énergie qu'on peut observer

Ainsi si nous étirons une PSU (voxel) à l'échelle d'un proton, le proton lui-même s'étirera jusqu'à atteindre la taille d'une sphère dont le diamètre correspondrait à la distance entre notre soleil et Alpha du Centaure.

Ou encore :  depuis la Station spatiale internationale, on peut observer l'océan et voir une surface bleue et lisse. Mais si on s'approche suffisamment, on verra des vagues de 15 mètres d'une énergie folle. C'est ce qui se passe avec les fluctuations électromagnétiques à l'échelle quantique. Mais nous ne pouvons pas le voir

Auteur: Haramein Nassim

Info: *Hawking Stephen, A Brief History of Time, Ed.Flammarion, 2018, p.191, free translation **EINSTEIN Albert, The Connected Universe [vidéo], 2015

[ science spéculative ] [ mondes consensuels ] [ solipsismes grégaires ] [ vacuité apparente ] [ programme de langlands ]

 

Commentaires: 0

Ajouté à la BD par miguel

philosophie

AP : Il y a une métaphore qui revient de manière récurrente dans votre ouvrage, qui est celle de l’ampoule et de la lumière. Cette métaphore rappelle vraiment celle de Bergson que je me permets de citer : "Un vêtement est solidaire du clou auquel il est accroché ; il tombe si l’on arrache le clou ; il oscille si le clou remue ; il se troue, il se déchire si la tête du clou est trop pointue ; il ne s’ensuit pas que chaque détail du clou corresponde à un détail du vêtement, ni que le clou soit l’équivalent du vêtement ; encore moins s’ensuit-il que le clou et le vêtement soient la même chose. Ainsi la conscience est incontestablement accrochée à un cerveau mais il ne résulte nullement de là que le cerveau dessine tout le détail de la conscience, ni que la conscience soit une fonction du cerveau."*

ER : Oui, je pense que j’ai cité exactement ceci dans mon livre, ou alors, en réduisant le livre, il est possible que cette référence à Bergson ait sauté. Plusieurs métaphores sont envisageables, mais le cœur du problème est celui du cerveau conscient. Les neuroscientifiques posent (je crois) mal le problème, aussi bien du côté des athées que des spiritualistes puisque, pour faire simple, on est dans la seule alternative suivante. Soit la conscience cérébrale est matérielle et immanente : c’est le point de vue matérialiste. Soit la conscience est un phénomène transcendant et immatériel : c’est le point de vue spiritualiste. Je suis intermédiaire entre les deux. En effet, je prends d’un côté l’immanence (qui implique la possibilité d’une approche scientifique du fait mental), et de l’autre je prends le côté immatériel. J’appelais d’ailleurs à un moment ma théorie "im-im", "immatériel-immanent". Je fais de la conscience un phénomène à la fois immatériel – en un sens précis que j’indiquerai – mais néanmoins immanent. Je ne fais appel à aucune instance surnaturelle pour la conscience. Mon hypothèse "im-im" me place en position intermédiaire entre les deux extrêmes du matérialisme et du spiritualisme.

Sur le fond, l’histoire de la lampe est avant tout une manière de dénoncer certaines "bêtises" que l’on entend dans les neurosciences. Par exemple, on entend souvent que la conscience est le cerveau en marche, qu’elle est au sens de l’identité le cerveau. Changeux dit des choses de ce genre-là, et il n’est pas le seul. Je dis que c’est aussi stupide que si l’on disait que la lumière est la lampe qui la crée. Certes, je pourrais m’exprimer plus diplomatiquement…

AP : Vous développez donc le même argument que Bergson.

ER : Absolument ; mais jusqu’à un certain point seulement. C’est le même argument, à ceci près que la lampe me permet d’aller un peu plus loin. Voyons cela. La matière de la lampe n’est pas différente de la matière qu’on trouve ailleurs. Son secret ne réside pas dans une matière particulière qui serait la sienne, et qui expliquerait sa capacité à émettre de la lumière. Cette capacité est vient au contraire du fait que la lampe réalise les conditions d’émission d’actualisation d’un potentiel inhérent à toute matière, celui d’émettre de la lumière. Je comprends de même que le cerveau conscient est une structure qui réalise les conditions d’émission ou d’actualisation d’une potentialité qui (dans mon hypothèse) est latente dans la matière normale. Latente et universelle. Cette potentialité est celle de l’apparition de la conscience ou, plus généralement, du psychisme (qui englobe l’inconscient et le pré-conscient). Donc, ma métaphore suggère une certaine façon de comprendre le mystère du cerveau conscient.

AP : Oui, mais au risque d’insister sur cette métaphore, je dois dire que je ne l’ai jamais comprise, elle m’a toujours paru fonctionner à vide.

ER : Elle revient à dire qu’une corrélation n’est pas une identité.

AP : Cela, je le comprends très bien. Mais ce que je ne comprends pas, c’est la pertinence de la métaphore : Bergson et vous-même voulez montrer qu’il y a deux ordres de réalité différents : un ordre matériel et un ordre de l’esprit, sachant que l’ordre matériel donne naissance à l’ordre de l’esprit sans que ce dernier ne soit identique à l’ordre matériel. Cela, je le comprends fort bien. Chez vous, l’ampoule donne naissance à la possibilité énergétique de la lumière, mais l’ampoule n’est pas la lumière. Mais ce qui ne me convainc pas, c’est le fait que le clou et le marteau, ou l’ampoule et la lumière, appartiennent au même domaine de réalité : ils sont tous absolument matériels, si bien que cette métaphore me semble inapte à maintenir une différence quant aux ordres de réalité : la métaphore ne fonctionne que parce qu’on abolit dans les objets retenus ce qui justement pose problème, à savoir les différents ordres de réalité.

ER : Non, cette métaphore n’implique rien, dans mon esprit en tout cas, quant à l’identié – ou au contraire l’hétérogénéité – entre les ordres de réalité. D’ailleurs, je crois qu’ils dépendent en partie de nos catégories mentales, qui comportent de l’arbitraire. Si par exemple vous décrétez que la matière est la seule matière pesante, alors la lumière, qui n’est pas pesante, n’est donc pas matérielle en ce sens-là. Tout cela est arbitraire, c’est une question de définition. Vous pouvez à présent dire que la lumière est qualitativement différente de la matière, et vous avez donc une structure matérielle capable d’engendrer quelque chose de différent. Mais j’en profite pour rappeler qu’une métaphore n’est jamais exacte à 100 %. La carte, métaphore graphique du territoire, n’est pas le territoire. C’est juste une voie d’accès, une approximation de la vérité, qui permet à certains d’accéder à l’essentiel d’un message. Sans entrer dans ses détails plus ou moins subtils.

AP : Oui, je suis d’accord, mais il n’en demeure pas moins que la validité de la métaphore repose tout entière sur une pétition de principe : on prend pour acquis ce qui est très problématique, on évacue le problème, que ce soit chez Bergson ou chez vous puisqu’on crée une métaphore qui évite de penser ce problème : comment deux ordres de réalité différents peuvent être corrélés ? Le problème de Bergson est précisément de penser à la fois la solidarité de deux éléments et leur différence ontologique : mais au lieu de cela, il pose d’emblée une communauté ontologique (le clou et le manteau), et je crains que la métaphore que vous prenez pour illustrer la même idée fonctionne de la même manière ; je vous cite (p 52) : "Le cerveau sera alors conçu comme une machine à produire de la conscience, sans que cela implique la nature matérielle de cette dernière. Exactement à la manière dont une lampe, faite de matière solide et pesante, est néanmoins capable de produire de la lumière, qui est énergie pure et sans masse." On a le même problème : l’ampoule et la lumière ne sont pas strictement identiques, bien sûr, mais dans les deux cas on est dans ordre matériel, l’énergie pure est quantifiable, elle est objectivable, elle est matérielle, tout comme l’est l’ampoule. Par conséquent, on ne se demande plus comment ce qui est de deux ordres de réalité différents peut entrer en contact ou peut être corrélé, on prend au contraire la possibilité du contact comme acquise, parce qu’on écrase en fait la différence ontologique des deux éléments, alors même qu’elle devrait poser problème. Le clou et le manteau sont en contact parce qu’ils appartiennent tous les deux à la matière ; or, si la conscience est immatérielle, et le cerveau matériel, la question du contact se pose de manière très différente que dans le cas du clou et du manteau ou de l’ampoule et de la lumière.

ER : Cette métaphore est simplement une réaction par rapport à ceux qui identifient purement et simplement conscience et cerveau ; alors je leur dis que c’est comme si vous disiez que la lampe et la lumière sont la même chose. Or une telle identification est stupide, on le sait instinctivement.

AP : Oui, tout cela je le comprends ; mais je considère juste que cette métaphore n’est pas valide, précisément en raison de l’oubli de la différenciation ontologique des éléments qu’elle utilise (la lumière et l’ampoule ne sont pas ontologiquement différentes), alors même qu’elle est censée prouver la non-identité des deux termes, leur différence ontologique (la conscience est immatérielle, le cerveau est matériel). Bref, je ne vois pas bien en quoi ça réfute réellement la thèse matérialiste puisque la métaphore est obligée pour fonctionner, c’est-à-dire pour penser la corrélation, de prendre deux éléments qui appartiennent nécessairement au même ordre de réalité. Et le matérialisme ne dit rien d’autre.

ER : Ecoutez, je me permettrai modestement de dire que ça ne vaut pas la peine qu’on en fasse une telle histoire. Je rapelle deux choses cependant. D’une part, ma métaphore, contrairement je crois à celle de Bergson, invite à comprendre le cerveau (ou la "lampe à conscience") comme un outil de production d’autre chose – la conscience – SANS préjuger de l’identité ontologique, ou non, entre les deux. D’autre part, je suis un peu perplexe sur ce que vous dites sur la possibilité du contact entre matière (cérébrale, ou autre) et la conscience. Car ce contact est au coeur de mon livre, dont le but premier est précisément de proposer une solution à cette énigme. Ce n’est rien de moins que son sujet central ! Je crois pouvoir la résoudre, en m’appuyant sur la physique quantique (dépouillée des confusions et contresens qui l’entourent) et la notion de psychomatière. Tout mon livre est là… et je suppose que cela ne vous a pas échappé. En fait, je commence à douter : ai-je été suffisamment clair pour le lecteur ?

Auteur: Ransford Emmanuel

Info: Sur actu-philosophia, interview de Thibaut Gress, 7.1 2010 à propos de son livre "Les racines physiques de l’esprit ". *Henri Bergson, L’énergie spirituelle, Edition du centenaire, PUF, 1959, p. 842

[ dualité prison ] [ rationalisme impuissant ] [ limitation sémantique ]

 

Commentaires: 0

Ajouté à la BD par miguel

tour d'horizon de l'IA

Intelligence artificielle symbolique et machine learning, l’essor des technologies disruptives

Définie par le parlement Européen comme la " reproduction des comportements liés aux humains, tels que le raisonnement, la planification et la créativité ", l’intelligence artificielle s’initie de façon spectaculaire dans nos vies. Théorisée au milieu des années 50, plusieurs approches technologiques coexistent telles que l’approche machine learning dite statistique basée sur l’apprentissage automatique, ou l’approche symbolique basée sur l’interprétation et la manipulation des symboles. Mais comment se différencient ces approches ? Et pour quels usages ?

L’intelligence artificielle, une histoire ancienne

Entre les années 1948 et 1966, l’Intelligence Artificielle a connu un essor rapide, stimulé par des financements importants du gouvernement américain pour des projets de recherche sur l’IA, notamment en linguistique. Des progrès significatifs ont été réalisés dans la résolution de problèmes de logique symbolique, mais la capacité de l’IA à traiter des données complexes et imprécises était encore limitée.

A la fin des années 70, plus précisément lors du deuxième “été de l’IA” entre 1978 et 1987,  l’IA connaît un regain d’intérêt. Les chercheurs ont commencé à explorer de nouvelles approches, notamment l’utilisation de réseaux neuronaux et de systèmes experts. Les réseaux neuronaux sont des modèles de traitement de l’information inspirés par le fonctionnement du cerveau humain, tandis que les systèmes experts sont des programmes informatiques qui simulent l’expertise humaine dans un domaine spécifique.

Il faudra attendre la fin des années 90 pour voir un renouveau de ces domaines scientifiques, stimulé par des avancées majeures dans le traitement des données et les progrès de l’apprentissage automatique. C’est d’ailleurs dans cette période qu’une IA, Deepblue, gagne contre le champion mondial Garry Kasparov aux échecs.$

Au cours des dernières années, cette technologie a connu une croissance exponentielle, stimulée par des progrès majeurs dans le deep learning, la robotique ou la compréhension du langage naturel (NLU). L’IA est maintenant utilisée dans un large éventail de domaines, notamment la médecine, l’agriculture, l’industrie et les services. C’est aujourd’hui un moteur clé de l’innovation et de la transformation de notre monde, accentué par l’essor des generative AIs. 

Parmi ces innovations, deux grandes approches en intelligence artificielle sont aujourd’hui utilisées : 

1 - Le Machine Learning : qui est un système d’apprentissage automatique basé sur l’exploitation de données, imitant un réseau neuronal

2 - L’IA Symbolique : qui se base sur un système d’exploitation de " symboles ”, ce qui inspire des technologies comme le “système expert” basé sur une suite de règles par exemple.

Mais comment fonctionnent ces deux approches et quels sont leurs avantages et leurs inconvénients ? Quels sont leurs champs d’application ? Peuvent-ils être complémentaires ?

Le machine learning

Le Machine Learning est le courant le plus populaire ces dernières années, il est notamment à l’origine de ChatGPT ou bien MidJourney, qui font beaucoup parler d’eux ces derniers temps. Le Machine Learning (ML) est une famille de méthodes d’apprentissage automatique qui permet aux ordinateurs d’apprendre à partir de données, sans être explicitement programmés. En utilisant des algorithmes, le ML permet aux ordinateurs de comprendre les structures et les relations dans les données et de les utiliser pour prendre des décisions.

Le ML consiste à entraîner des modèles informatiques sur de vastes ensembles de données. Ces modèles sont des algorithmes auto apprenant se basant sur des échantillons de données, tout en déterminant des schémas et des relations/corrélations entre elles. Le processus d’entraînement consiste à fournir à l’algorithme des données étiquetées, c’est-à-dire des données qui ont déjà été classifiées ou étiquetées pour leur attribuer une signification. L’algorithme apprend ensuite à associer les caractéristiques des données étiquetées aux catégories définies en amont. Il existe cependant une approche non-supervisée qui consiste à découvrir ce que sont les étiquettes elles-mêmes (ex: tâche de clustering).

Traditionnellement, le machine learning se divise en 4 sous-catégories : 

Apprentissage supervisé : 

Les ensembles de données sont étiquetés, ce qui permet à l’algorithme de trouver des corrélations et des relations entre les caractéristiques des données et les étiquettes correspondantes. 

Apprentissage non supervisé : 

Les ensembles de données ne sont pas étiquetés et l’algorithme doit découvrir les étiquettes par lui-même. 

Apprentissage semi-supervisé : 

L’algorithme utilise un mélange de données étiquetées et non étiquetées pour l’entraînement.

Apprentissage par renforcement : 

L’algorithme apprend à prendre des décisions en interagissant avec son environnement. Il reçoit des récompenses ou des pénalités pour chaque action, ce qui lui permet d’ajuster sa stratégie pour maximiser sa récompense globale.

Un exemple d’application du Machine Learning est la reconnaissance d’images. Des modèles d’apprentissages profonds sont entraînés sur des millions d’images pour apprendre à reconnaître des objets, des personnes, des animaux, etc. Un autre exemple est la prédiction de la demande dans le commerce de détail, où des modèles sont entraînés sur des données de ventes passées pour prédire les ventes futures.

Quels sont les avantages ? 

Étant entraîné sur un vaste corpus de données, le ML permet de prédire des tendances en fonction de données.  

- Le machine learning offre la capacité de détecter des tendances and des modèles dans les données qui peuvent échapper à l’observation humaine.

- Une fois configuré, le machine learning peut fonctionner de manière autonome, sans l’intervention humaine. Par exemple, dans le domaine de la cybersécurité, il peut surveiller en permanence le trafic réseau pour identifier les anomalies.

- Les résultats obtenus par le machine learning peuvent s’affiner et s’améliorer avec le temps, car l’algorithme peut apprendre de nouvelles informations et ajuster ses prédictions en conséquence.

- Le machine learning est capable de traiter des volumes massifs et variés de données, même dans des environnements dynamiques et complexes.

L’intelligence artificielle symbolique

L’IA symbolique est une autre approche de l’intelligence artificielle. Elle utilise des symboles and des règles de traitement de l’information pour effectuer des tâches. Les symboles peuvent être des concepts, des objets, des relations, etc. Les règles peuvent être des règles de déduction, des règles de production, des règles d’inférence…etc.

Un exemple d’application de l’IA symbolique est le système expert. Un système expert est un programme informatique qui utilise des règles de déduction pour résoudre des problèmes dans un domaine spécifique, comme le diagnostic médical ou l’aide à la décision en entreprise. Un autre exemple est la traduction automatique basée sur des règles, les règles de grammaire et de syntaxe sont utilisées pour traduire un texte d’une langue à une autre.

Quelques exemples d’usages de l’IA symbolique :

La traduction

L’IA symbolique a été utilisée pour développer des systèmes de traduction automatique basés sur des règles. Ces systèmes utilisent des règles de grammaire et de syntaxe pour convertir un texte d’une langue à une autre. Par exemple, le système SYSTRAN, développé dans les années 1960, est un des premiers systèmes de traduction automatique basé sur des règles. Ce type de système se distingue des approches basées sur le Machine Learning, comme Google Translate, qui utilisent des modèles statistiques pour apprendre à traduire des textes à partir de corpus bilingues.

Le raisonnement logique

L’IA symbolique est également utilisée pour développer des systèmes capables de raisonnement logique, en exploitant des règles et des connaissances déclaratives pour résoudre des problèmes complexes. Par exemple, les systèmes d’aide à la décision basés sur des règles peuvent être utilisés dans des domaines tels que la finance, l’assurance ou la logistique, pour aider les entreprises à prendre des décisions éclairées. Un exemple concret est le système MYCIN, développé dans les années 1970 pour aider les médecins à diagnostiquer des infections bactériennes et à prescrire des antibiotiques adaptés.

L’analyse de textes

L’IA symbolique peut être utilisée pour l’analyse de textes, en exploitant des règles et des connaissances linguistiques pour extraire des informations pertinentes à partir de documents. Par exemple, les systèmes d’extraction d’information basés sur des règles peuvent être utilisés pour identifier des entités nommées (noms de personnes, d’organisations, de lieux, etc.) et des relations entre ces entités dans des textes. Un exemple d’application est l’analyse et la catégorisation des messages entrants pour les entreprises, cœur de métier de Golem.ai avec la solution InboxCare.

Les avantages de l’IA symbolique 

L’IA symbolique est une approche qui utilise des symboles, et parfois des " règles” basées sur des connaissances, qui comporte plusieurs avantages :

- Explicablilité : Les décisions prises par les systèmes d’IA symbolique sont explicites et peuvent être expliquées en fonction des règles logiques et des connaissances déclaratives utilisées par le système. Cette transparence peut être essentielle dans des applications critiques, comme la médecine ou la défense.

- Frugalité : Contrairement au Machine Learning, l’IA symbolique ne nécessite pas d’entraînement, ce qui la rend moins gourmande en énergie à la fois lors de la conception et de l’utilisation.

- Adaptabilité : Les systèmes d’IA symbolique peuvent être facilement adaptés à de nouveaux domaines en ajoutant de nouvelles règles logiques et connaissances déclaratives à leurs bases de connaissances existantes, leurs permettant de s’adapter rapidement à de nouvelles situations.

L’intelligence artificielle hybride ou le neuro-symbolique 

Les systèmes hybrides combinent les avantages de l’IA symbolique et du Machine Learning en utilisant une approche mixte. Dans ce type de système, l’IA symbolique est utilisée pour représenter les connaissances et les règles logiques dans un domaine spécifique. Les techniques de Machine Learning sont ensuite utilisées pour améliorer les performances de l’IA symbolique en utilisant des ensembles de données pour apprendre des modèles de décision plus précis et plus flexibles. Mais nous pouvons également voir d’autres articulations comme la taxonomie de Kautz par exemple.

L’IA symbolique est souvent utilisée dans des domaines où il est important de comprendre et de contrôler la façon dont les décisions sont prises, comme la médecine, la finance ou la sécurité. En revanche, le Machine Learning est souvent utilisé pour des tâches de classification ou de prédiction à grande échelle, telles que la reconnaissance de voix ou d’image, ou pour détecter des modèles dans des données massives.

En combinant les deux approches, les systèmes hybrides peuvent bénéficier de la compréhensibilité et de la fiabilité de l’IA symbolique, tout en utilisant la flexibilité et la capacité de traitement massif de données du Machine Learning pour améliorer la performance des décisions. Ces systèmes hybrides peuvent également offrir une plus grande précision et un temps de réponse plus rapide que l’une ou l’autre approche utilisée seule.

Que retenir de ces deux approches ?

L’Intelligence Artificielle est en constante évolution et transforme de nombreux secteurs d’activité. Les deux approches principales de l’IA ont leurs avantages et inconvénients et peuvent être complémentaires. Il est donc crucial pour les entreprises de comprendre ces technologies pour rester compétitives. 

Cependant, les implications éthiques et sociales de l’IA doivent également être prises en compte. Les décisions des algorithmes peuvent avoir un impact sur la vie des personnes, leur travail, leurs droits et leurs libertés. Il est donc essentiel de mettre en place des normes éthiques et des réglementations pour garantir que l’IA soit au service de l’humanité. Les entreprises et les gouvernements doivent travailler ensemble pour développer des IA responsables, transparentes et équitables qui servent les intérêts de tous. En travaillant ensemble, nous pouvons assurer que l’IA soit une force positive pour l’humanité dans les années à venir. 



 

Auteur: Merindol Hector

Info: https://golem.ai/en/blog/technologie/ia-symbolique-machinelearning-nlp - 4 avril 2023

[ dualité ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

bio-évolution

La "tectonique" des chromosomes révèle les secrets de l'évolution des premiers animaux

De grands blocs de gènes conservés au cours de centaines de millions d'années d'évolution permettent de comprendre comment les premiers chromosomes animaux sont apparus.

De nouvelles recherches ont montré que des blocs de gènes liés peuvent conserver leur intégrité et être suivis au cours de l'évolution. Cette découverte est à la base de ce que l'on appelle la tectonique des génomes (photo).

Les chromosomes, ces faisceaux d'ADN qui se mettent en scène dans le ballet mitotique de la division cellulaire, jouent un rôle de premier plan dans la vie complexe. Mais la question de savoir comment les chromosomes sont apparus et ont évolué a longtemps été d'une difficulté décourageante. C'est dû en partie au manque d'informations génomiques au niveau des chromosomes et en partie au fait que l'on soupçonne que des siècles de changements évolutifs ont fait disparaître tout indice sur cette histoire ancienne.

Dans un article paru dans Science Advances, une équipe internationale de chercheurs dirigée par Daniel Rokhsar, professeur de sciences biologiques à l'université de Californie à Berkeley, a suivi les changements survenus dans les chromosomes il y a 800 millions d'années.  Ils ont identifié 29 grands blocs de gènes qui sont restés identifiables lors de leur passage dans trois des plus anciennes subdivisions de la vie animale multicellulaire. En utilisant ces blocs comme marqueurs, les scientifiques ont pu déterminer comment les chromosomes se sont fusionnés et recombinés au fur et à mesure que ces premiers groupes d'animaux devenaient distincts.

Les chercheurs appellent cette approche "tectonique du génome". De la même manière que les géologues utilisent leur compréhension de la tectonique des plaques pour comprendre l'apparition et le mouvement des continents, ces biologistes reconstituent comment diverses duplications, fusions et translocations génomiques ont créé les chromosomes que nous voyons aujourd'hui.

Ces travaux annoncent une nouvelle ère de la génomique comparative : Auparavant, les chercheurs étudiaient des collections de gènes de différentes lignées et décrivaient les changements une paire de bases à la fois. Aujourd'hui, grâce à la multiplication des assemblages de chromosomes, les chercheurs peuvent retracer l'évolution de chromosomes entiers jusqu'à leur origine. Ils peuvent ensuite utiliser ces informations pour faire des prédictions statistiques et tester rigoureusement des hypothèses sur la façon dont les groupes d'organismes sont liés.

Il y a deux ans, à l'aide de méthodes novatrices similaires, M. Rokhsar et ses collègues ont résolu un mystère de longue date concernant la chronologie des duplications du génome qui ont accompagné l'apparition des vertébrés à mâchoires. Mais l'importance de cette approche n'est pas purement rétrospective. En faisant ces découvertes, les chercheurs apprennent les règles algébriques simples qui régissent ce qui se passe lorsque les chromosomes échangent des parties d'eux-mêmes. Ces informations peuvent orienter les futures études génomiques et aider les biologistes à prédire ce qu'ils trouveront dans les génomes des espèces qui n'ont pas encore été séquencées.

"Nous commençons à avoir une vision plus large de l'évolution des chromosomes dans l'arbre de la vie", a déclaré Paulyn Cartwright, professeur d'écologie et de biologie évolutive à l'université du Kansas. Selon elle, les scientifiques peuvent désormais tirer des conclusions sur le contenu des chromosomes des tout premiers animaux. Ils peuvent également examiner comment les différents contenus des chromosomes ont changé ou sont restés les mêmes - et pourquoi - à mesure que les animaux se sont diversifiés. "Nous ne pouvions vraiment pas faire cela avant de disposer de ces génomes de haute qualité". 

Ce que partagent les anciens génomes

Dans l'étude publiée aujourd'hui, Rokhsar et une grande équipe internationale de collaborateurs ont produit le premier assemblage de haute qualité, au niveau des chromosomes, du génome de l'hydre, qu'ils décrivent comme un modèle de "vénérable cnidaire". En le comparant à d'autres génomes animaux disponibles, ils ont découvert des groupes de gènes liés hautement conservés. Bien que l'ordre des gènes au sein d'un bloc soit souvent modifié, les blocs eux-mêmes sont restés stables sur de longues périodes d'évolution.

Lorsque les scientifiques ont commencé à séquencer les génomes animaux il y a une vingtaine d'années, beaucoup d'entre eux n'étaient pas convaincus que des groupes de gènes liés entre eux sur les chromosomes pouvaient rester stables et reconnaissables au cours des éons, et encore moins qu'il serait possible de suivre le passage de ces blocs de gènes à travers pratiquement toutes les lignées animales.

Les animaux ont divergé de leurs parents unicellulaires il y a 600 ou 700 millions d'années, et "être capable de reconnaître les morceaux de chromosomes qui sont encore conservés après cette période de temps est étonnant", a déclaré Jordi Paps, un biologiste de l'évolution à l'Université de Bristol au Royaume-Uni.

"Avant de disposer de ces données sur les chromosomes entiers, nous examinions de petits fragments de chromosomes et nous observions de nombreux réarrangements", a déclaré M. Cartwright. "Nous supposions donc qu'il n'y avait pas de conservation, car les gènes eux-mêmes dans une région du chromosome changent de position assez fréquemment."

Pourtant, bien que l'ordre des gènes soit fréquemment remanié le long des chromosomes, Rokhsar a eu l'intuition, grâce à ses études antérieures sur les génomes animaux, qu'il y avait une relative stabilité dans les gènes apparaissant ensemble. "Si vous comparez une anémone de mer ou une éponge à un être humain, le fait que les gènes se trouvent sur le même morceau d'ADN semble être conservé", explique Rokhsar. "Et le modèle suggérait que des chromosomes entiers étaient également conservés". Mais cette notion n'a pu être testée que récemment, lorsque suffisamment d'informations génomiques à l'échelle du chromosome sur divers groupes d'animaux sont devenues disponibles.

Inertie génomique

Mais pourquoi des blocs de gènes restent-ils liés entre eux ? Selon Harris Lewin, professeur d'évolution et d'écologie à l'université de Californie à Davis, qui étudie l'évolution des génomes de mammifères, une des explications de ce phénomène, appelé synténie, est liée à la fonction des gènes. Il peut être plus efficace pour les gènes qui fonctionnent ensemble d'être physiquement situés ensemble ; ainsi, lorsqu'une cellule a besoin de transcrire des gènes, elle n'a pas à coordonner la transcription à partir de plusieurs endroits sur différents chromosomes. 

Ceci explique probablement la conservation de certains ensembles de gènes dont l'agencement est crucial : les gènes Hox qui établissent les plans corporels des animaux, par exemple, doivent être placés dans un ordre spécifique pour établir correctement le schéma corporel. Mais ces gènes étroitement liés se trouvent dans un morceau d'ADN relativement court. M. Rokhsar dit qu'il ne connaît aucune corrélation fonctionnelle s'étendant sur un chromosome entier qui pourrait expliquer leurs résultats.

(Ici une image décrit les différents types de fusion de chromosomes et l'effet de chacun sur l'ordre des gènes qu'ils contiennent.)

C'est pourquoi Rokhsar est sceptique quant à une explication fonctionnelle. Elle est séduisante ("Ce serait le résultat le plus cool, d'une certaine manière", dit-il) mais peut-être aussi inutile car, à moins qu'un réarrangement chromosomique ne présente un avantage fonctionnel important, il est intrinsèquement difficile pour ce réarrangement de se propager. Et les réarrangements ne sont généralement pas avantageux : Au cours de la méiose et de la formation des gamètes, tous les chromosomes doivent s'apparier avec un partenaire correspondant. Sans partenaire, un chromosome de taille inhabituelle ne pourra pas faire partie d'un gamète viable, et il a donc peu de chances de se retrouver dans la génération suivante. De petites mutations qui remanient l'ordre des gènes à l'intérieur des chromosomes peuvent encore se produire ("Il y a probablement une petite marge d'erreur en termes de réarrangements mineurs, de sorte qu'ils peuvent encore se reconnaître", a déclaré Cartwright). Mais les chromosomes brisés ou fusionnés ont tendance à être des impasses.

Peut-être que dans des groupes comme les mammifères, qui ont des populations de petite taille, un réarrangement pourrait se propager de façon aléatoire par ce qu'on appelle la dérive génétique, suggère Rokhsar. Mais dans les grandes populations qui se mélangent librement, comme celles des invertébrés marins qui pondent des centaines ou des milliers d'œufs, "il est vraiment difficile pour l'un des nouveaux réarrangements de s'imposer", a-t-il déclaré. "Ce n'est pas qu'ils ne sont pas tentés. C'est juste qu'ils ne parviennent jamais à s'imposer dans l'évolution."

Par conséquent, les gènes ont tendance à rester bloqués sur un seul chromosome. "Les processus par lesquels ils se déplacent sont tout simplement lents, sur une échelle de 500 millions d'années", déclare Rokhsar. "Même s'il s'est écoulé énormément de temps, ce n'est toujours pas assez long pour qu'ils puissent se développer".

( une image avec affichage de données montre comment des blocs de gènes ont eu tendance à rester ensemble même lorsqu'ils se déplaçaient vers différents chromosomes dans l'évolution de cinq premières espèces animales.)

L'équipe de Rokhsar a toutefois constaté que lorsque ces rares fusions de chromosomes se produisaient, elles laissaient une signature claire : Après une fusion, les gènes des deux blocs s'entremêlent et sont réorganisés car des "mutations d'inversion" s'y sont accumulées au fil du temps. En conséquence, les gènes des deux blocs se sont mélangés comme du lait versé dans une tasse de thé, pour ne plus jamais être séparés. "Il y a un mouvement entropique vers le mélange qui ne peut être annulé", affirme Rokhsar.

Et parce que les processus de fusion, de mélange et de duplication de blocs génétiques sont si rares, irréversibles et spécifiques, ils sont traçables : Il est très improbable qu'un chromosome se fracture deux fois au même endroit, puis fusionne et se mélange avec un autre bloc génétique de la même manière.

Les signatures de ces événements dans les chromosomes représentent donc un nouvel ensemble de caractéristiques dérivées que les biologistes peuvent utiliser pour tester des hypothèses sur la façon dont les espèces sont liées. Si deux lignées partagent un mélange de deux blocs de gènes, le mélange s'est très probablement produit chez leur ancêtre commun. Si des lignées ont deux ensembles de mêmes blocs de gènes, une duplication du génome a probablement eu lieu chez leur ancêtre commun. Cela fait des syntéries un "outil très, très puissant", a déclaré Oleg Simakov, génomiste à l'université de Vienne et premier auteur des articles. 

Empreintes digitales d'événements évolutifs

"L'un des aspects que je préfère dans notre étude est que nous faisons des prédictions sur ce à quoi il faut s'attendre au sein des génomes qui n'ont pas encore été séquencés", a écrit Rokhsar dans un courriel adressé à Quanta. Par exemple, son équipe a découvert que divers invertébrés classés comme spiraliens partagent tous quatre schémas spécifiques de fusion avec mélange, ce qui implique que les événements de fusion se sont produits chez leur ancêtre commun. "Il s'ensuit que tous les spiraliens devraient présenter ces schémas de fusion avec mélange de modèles", écrit Rokhsar. "Si l'on trouve ne serait-ce qu'un seul spiralien dépourvu de ces motifs, alors l'hypothèse peut être rejetée !".

Et d'ajouter : "On n'a pas souvent l'occasion de faire ce genre de grandes déclarations sur l'histoire de l'évolution."

Dans leur nouvel article Science Advances, Simakov, Rokhsar et leurs collègues ont utilisé l'approche tectonique pour en savoir plus sur l'émergence de certains des premiers groupes d'animaux il y a environ 800 millions d'années. En examinant le large éventail de vie animale représenté par les éponges, les cnidaires (tels que les hydres, les méduses et les coraux) et les bilatériens (animaux à symétrie bilatérale), les chercheurs ont trouvé 27 blocs de gènes hautement conservés parmi leurs chromosomes.

Ensuite, en utilisant les règles de fusion chromosomique et génétique qu'ils avaient identifiées, les chercheurs ont reconstitué les événements de mélange au niveau des chromosomes qui ont accompagné l'évolution de ces trois lignées à partir d'un ancêtre commun. Ils ont montré que les chromosomes des éponges, des cnidaires et des bilatériens représentent tous des manières distinctes de combiner des éléments du génome ancestral.

(Pour expliquer les 2 paragraphes précédents une image avec 3 schémas montre la fusion des chromosomes au début de l'évolution pou arriver au 27 blocs de gènes)

Une découverte stimulante qui a été faite est que certains des blocs de gènes liés semblent également présents dans les génomes de certaines créatures unicellulaires comme les choanoflagellés, les plus proches parents des animaux multicellulaires. Chez les animaux multicellulaires, l'un de ces blocs contient un ensemble diversifié de gènes homéobox qui guident le développement de la structure générale de leur corps. Cela suggère que l'un des tout premiers événements de l'émergence des animaux multicellulaires a été l'expansion et la diversification de ces gènes importants. "Ces anciennes unités de liaison fournissent un cadre pour comprendre l'évolution des gènes et des génomes chez les animaux", notent les scientifiques dans leur article.

Leur approche permet de distinguer de subtiles et importantes différences au niveau des événements chromosomiques. Par exemple, dans leur article de 2020, les chercheurs ont déduit que le génome des vertébrés avait subi une duplication au cours de la période cambrienne, avant que l'évolution ne sépare les poissons sans mâchoire des poissons avec mâchoire. Ils ont ensuite trouvé des preuves que deux poissons à mâchoires se sont hybridés plus tard et ont subi une deuxième duplication de leur génome ; cet hybride est devenu l'ancêtre de tous les poissons osseux.

John Postlethwait, génomicien à l'université de l'Oregon, souligne l'importance de la méthode d'analyse de l'équipe. "Ils ont adopté une approche statistique, et ne se sont pas contentés de dire : "Eh bien, il me semble que telle et telle chose s'est produite", a-t-il déclaré. "C'est une partie vraiment importante de leur méthodologie, non seulement parce qu'ils avaient accès à des génomes de meilleure qualité, mais aussi parce qu'ils ont adopté cette approche quantitative et qu'ils ont réellement testé ces hypothèses."

Ces études ne marquent que le début de ce que la tectonique des génomes et  ce que les syntagmes génétiques peuvent nous apprendre. Dans des prépublications récentes partagées sur biorxiv.org, l'équipe de Rokhsar a reconstitué l'évolution des chromosomes de grenouilles, et une équipe européenne s'est penchée sur l'évolution des chromosomes des poissons téléostéens. Une étude parue dans Current Biology a révélé une "inversion massive du génome" à l'origine de la coexistence de formes divergentes chez la caille commune, ce qui laisse entrevoir certaines des conséquences fonctionnelles du réarrangement des chromosomes.

L'hypothèse selon laquelle le mélange de ces groupes de liaisons génétiques pourrait être lié à la diversification des lignées et à l'innovation évolutive au cours des 500 derniers millions d'années est alléchante. Les réarrangements chromosomiques peuvent conduire à des incompatibilités d'accouplement qui pourraient provoquer la scission en deux d'une lignée. Il est également possible qu'un gène atterrissant dans un nouveau voisinage ait conduit à des innovations dans la régulation des gènes. "Peut-être que ce fut l'une des forces motrices de la diversification des animaux", a déclaré Simakov.

"C'est la grande question", a déclaré Lewin. "Il s'agit de véritables bouleversements tectoniques dans le génome, et il est peu probable qu'ils soient sans conséquence".

Auteur: Internet

Info: https://www.quantamagazine.org/secrets-of-early-animal-evolution-revealed-by-chromosome-tectonics-20220202.Viviane Callier 2 février 2022

[ méta-moteurs ] [ néo-phylogénie ]

 

Commentaires: 0

Ajouté à la BD par miguel

physique fondamentale

La "problèmatique de la mesure" en théorie quantique pourrait être une pilule empoisonnée pour la réalité objective

La résolution d'un problème quantique notoire pourrait nécessiter l'abandon de certaines des hypothèses les plus chères à la science concernant le monde physique.

Imaginez qu'un physicien observe un système quantique dont le comportement s'apparente à celui d'une pièce de monnaie : qui peut tomber sur pile ou face. Il effectue le jeu de pile ou face quantique et obtient pile. Pourrait-il être certain que son résultat est un fait objectif, absolu et indiscutable sur le monde ? Si la pièce était simplement du type de celles que nous voyons dans notre expérience quotidienne, le résultat du lancer serait le même pour tout le monde : pile ou face ! Mais comme pour la plupart des choses en physique quantique, le résultat d'un jeu de pile ou face quantique serait un "ça dépend" beaucoup plus compliqué. Il existe des scénarios théoriquement plausibles dans lesquels un autre observateur pourrait trouver que le résultat de la pièce de notre physicien est pile ou face.

Au cœur de cette bizarrerie se trouve ce que l'on appelle le problème de la mesure. La mécanique quantique standard rend compte de ce qui se passe lorsque l'on mesure un système quantique : en substance, la mesure provoque l'"effondrement" aléatoire des multiples états possibles du système en un seul état défini. Mais cette comptabilité ne définit pas ce qui constitue une mesure, d'où le problème de la mesure.

Les tentatives visant à éviter le problème de la mesure, par exemple en envisageant une réalité dans laquelle les états quantiques ne s'effondrent pas du tout, ont conduit les physiciens sur un terrain étrange où les résultats des mesures peuvent être subjectifs. "L'un des principaux aspects du problème de la mesure est l'idée que les événements observés ne sont pas absolus", explique Nicholas Ormrod, de l'université d'Oxford. En bref, c'est la raison pour laquelle notre pile ou face quantique imaginaire pourrait être pile d'un point de vue et face d'un autre.

Mais ce scénario apparemment problématique est-il physiquement plausible ou s'agit-il simplement d'un artefact de notre compréhension incomplète du monde quantique ? Pour répondre à ces questions, il faut mieux comprendre les théories dans lesquelles le problème de la mesure peut se poser. C'est exactement ce qu'Ormrod, Vilasini Venkatesh de l'École polytechnique fédérale de Zurich et Jonathan Barrett d'Oxford ont réussi à faire. Dans une prépublication récente, le trio a prouvé un théorème qui montre pourquoi certaines théories, comme la mécanique quantique, ont un problème de mesure en premier lieu et comment on pourrait développer des théories alternatives pour l'éviter, préservant ainsi l'"absoluité" de tout événement observé. De telles théories banniraient, par exemple, la possibilité qu'une pièce de monnaie soit tirée à pile ou face par un observateur et qu'elle soit tirée à pile ou face par un autre.

Mais leurs travaux montrent également que la préservation d'un tel caractère absolu a un coût que de nombreux physiciens jugeraient prohibitif. "C'est la démonstration qu'il n'existe pas de solution indolore à ce problème", explique M. Ormrod. "Si nous parvenons un jour à retrouver l'absoluité, nous devrons alors renoncer à certains principes physiques qui nous tiennent vraiment à cœur".

 L'article d'Ormrod, Venkatesh et Barrett "aborde la question de savoir quelles catégories de théories sont incompatibles avec l'absoluité des événements observés et si l'absoluité peut être maintenue dans certaines théories, en même temps que d'autres propriétés souhaitables", explique Eric Cavalcanti, de l'université Griffith, en Australie. (M. Cavalcanti, le physicien Howard Wiseman et leurs collègues ont défini le terme "absoluité des événements observés" dans des travaux antérieurs qui ont jeté les bases de l'étude d'Ormrod, Venkatesh et Barrett).

S'en tenir à l'absoluité des événements observés pourrait signifier que le monde quantique est encore plus étrange que ce que nous savons.

LE CŒUR DU PROBLÈME

Pour comprendre ce qu'Ormrod, Venkatesh et Barrett ont réalisé, il faut suivre un cours accéléré sur les arcanes des fondations quantiques. Commençons par considérer notre système quantique hypothétique qui, lorsqu'il est observé, peut donner soit pile, soit face.

Dans les manuels de théorie quantique, avant l'effondrement, on dit que le système se trouve dans une superposition de deux états, et cet état quantique est décrit par une construction mathématique appelée fonction d'onde, qui évolue dans le temps et l'espace. Cette évolution est à la fois déterministe et réversible : étant donné une fonction d'onde initiale, on peut prédire ce qu'elle sera à un moment donné, et on peut en principe remonter l'évolution pour retrouver l'état antérieur. La mesure de la fonction d'onde entraîne cependant son effondrement, mathématiquement parlant, de sorte que le système de notre exemple apparaît comme étant soit pile, soit face.

Ce processus d'effondrement est la source obscure du problème de la mesure : il s'agit d'une affaire irréversible et unique, et personne ne sait même ce qui définit le processus ou les limites de la mesure. Qu'est-ce qu'une "mesure" ou, d'ailleurs, un "observateur" ? Ces deux éléments ont-ils des contraintes physiques, telles que des tailles minimales ou maximales ? Doivent-ils également être soumis à divers effets quantiques difficiles à saisir, ou peuvent-ils être considérés comme immunisés contre de telles complications ? Aucune de ces questions n'a de réponse facile et acceptée, mais les théoriciens ne manquent pas de solutions.

Étant donné le système de l'exemple, un modèle qui préserve l'absoluité de l'événement observé - c'est-à-dire que c'est soit pile, soit face pour tous les observateurs - est la théorie de Ghirardi-Rimini-Weber (GRW). Selon cette théorie, les systèmes quantiques peuvent exister dans une superposition d'états jusqu'à ce qu'ils atteignent une taille encore indéterminée, à partir de laquelle la superposition s'effondre spontanément et aléatoirement, indépendamment de l'observateur. Quel que soit le résultat - pile ou face dans notre exemple - il sera valable pour tous les observateurs.

Mais la théorie GRW, qui appartient à une catégorie plus large de théories de "l'effondrement spontané", semble aller à l'encontre d'un principe physique chéri depuis longtemps : la préservation de l'information. Tout comme un livre brûlé pourrait, en principe, être lu en réassemblant ses pages à partir de ses cendres (en ignorant l'émission initiale de rayonnement thermique du livre brûlé, pour des raisons de simplicité), la préservation de l'information implique que l'évolution d'un système quantique dans le temps permette de connaître ses états antérieurs. En postulant un effondrement aléatoire, la théorie GRW détruit la possibilité de savoir ce qui a conduit à l'état d'effondrement, ce qui, selon la plupart des témoignages, signifie que l'information sur le système avant sa transformation est irrémédiablement perdue. "La théorie GRW serait un modèle qui renonce à la préservation de l'information, préservant ainsi l'absoluité des événements", explique M. Venkatesh.

Un contre-exemple qui autorise la non-absoluité des événements observés est l'interprétation de la mécanique quantique selon le principe des "mondes multiples". Selon cette interprétation, la fonction d'onde de notre exemple se ramifiera en de multiples réalités contemporaines, de sorte que dans un "monde", le système sortira pile, tandis que dans un autre, il sortira face. Dans cette conception, il n'y a pas d'effondrement. "La question de savoir ce qui se passe n'est donc pas absolue ; elle est relative à un monde", explique M. Ormrod. Bien entendu, en essayant d'éviter le problème de mesure induit par l'effondrement, l'interprétation des mondes multiples introduit la ramification abrutissante des fonctions d'onde et la prolifération galopante des mondes à chaque bifurcation de la route quantique - un scénario désagréable pour beaucoup.

Néanmoins, l'interprétation des mondes multiples est un exemple de ce que l'on appelle les théories perspectivistes, dans lesquelles le résultat d'une mesure dépend du point de vue de l'observateur.

ASPECTS CRUCIAUX DE LA RÉALITÉ

Pour prouver leur théorème sans s'embourber dans une théorie ou une interprétation particulière, mécanique quantique ou autre, Ormrod, Venkatesh et Barrett se sont concentrés sur les théories perspectivistes qui obéissent à trois propriétés importantes. Une fois encore, il nous faut un peu de courage pour saisir l'importance de ces propriétés et pour apprécier le résultat plutôt profond de la preuve des chercheurs.

La première propriété est appelée nonlocalité de Bell (B). Elle fut identifiée pour la première fois en 1964 par le physicien John Bell dans un théorème éponyme et s'est avérée être un fait empirique incontesté de notre réalité physique. Supposons qu'Alice et Bob aient chacun accès à l'une des deux particules décrites par un état unique. Alice et Bob effectuent des mesures individuelles de leurs particules respectives et le font pour un certain nombre de paires de particules préparées de manière similaire. Alice choisit son type de mesure librement et indépendamment de Bob, et vice versa. Le fait qu'Alice et Bob choisissent leurs paramètres de mesure de leur plein gré est une hypothèse importante. Ensuite, lorsqu'ils compareront leurs résultats, le duo constatera que les résultats de leurs mesures sont corrélés d'une manière qui implique que les états des deux particules sont inséparables : connaître l'état de l'une permet de connaître l'état de l'autre. Les théories capables d'expliquer de telles corrélations sont dites non locales de Bell.

La deuxième propriété est la préservation de l'information (I). Les systèmes quantiques qui présentent une évolution déterministe et réversible satisfont à cette condition. Mais la condition est plus générale. Imaginez que vous portiez aujourd'hui un pull-over vert. Dans une théorie préservant l'information, il devrait toujours être possible, en principe, de retrouver la couleur de votre pull dans dix ans, même si personne ne vous a vu le porter. Mais "si le monde ne préserve pas l'information, il se peut que dans 10 ans, il n'y ait tout simplement aucun moyen de savoir de quelle couleur était le pull que je portais", explique M. Ormrod.

La troisième est une propriété appelée dynamique locale (L). Considérons deux événements dans deux régions de l'espace-temps. S'il existe un cadre de référence dans lequel les deux événements semblent simultanés, on dit que les régions de l'espace sont "séparées comme dans l'espace". La dynamique locale implique que la transformation d'un système dans l'une de ces régions ne peut affecter causalement la transformation d'un système dans l'autre région à une vitesse supérieure à celle de la lumière, et vice versa, une transformation étant toute opération qui prend un ensemble d'états d'entrée et produit un ensemble d'états de sortie. Chaque sous-système subit sa propre transformation, de même que le système dans son ensemble. Si la dynamique est locale, la transformation du système complet peut être décomposée en transformations de ses parties individuelles : la dynamique est dite séparable. "La [contrainte] de la dynamique locale permet de s'assurer que l'on ne simule pas Bell [la non-localité]", explique M. Venkatesh.

Dans la théorie quantique, les transformations peuvent être décomposées en leurs éléments constitutifs. "La théorie quantique est donc dynamiquement séparable", explique M. Ormrod. En revanche, lorsque deux particules partagent un état non local de Bell (c'est-à-dire lorsque deux particules sont intriquées, selon la théorie quantique), on dit que l'état est inséparable des états individuels des deux particules. Si les transformations se comportaient de la même manière, c'est-à-dire si la transformation globale ne pouvait pas être décrite en termes de transformations de sous-systèmes individuels, alors le système entier serait dynamiquement inséparable.

Tous les éléments sont réunis pour comprendre le résultat du trio. Le travail d'Ormrod, Venkatesh et Barrett se résume à une analyse sophistiquée de la manière dont les théories "BIL" (celles qui satisfont aux trois propriétés susmentionnées) traitent une expérience de pensée faussement simple. Imaginons qu'Alice et Bob, chacun dans son propre laboratoire, effectuent une mesure sur l'une des deux particules. Alice et Bob effectuent chacun une mesure, et tous deux effectuent exactement la même mesure. Par exemple, ils peuvent tous deux mesurer le spin de leur particule dans le sens haut-bas.

Charlie et Daniela observent Alice et Bob et leurs laboratoires de l'extérieur. En principe, Charlie et Daniela devraient pouvoir mesurer le spin des mêmes particules, par exemple dans le sens gauche-droite. Dans une théorie préservant l'information, cela devrait être possible.

Prenons l'exemple spécifique de ce qui pourrait se produire dans la théorie quantique standard. Charlie, par exemple, considère Alice, son laboratoire et la mesure qu'elle effectue comme un système soumis à une évolution déterministe et réversible. En supposant qu'il contrôle totalement le système dans son ensemble, Charlie peut inverser le processus de manière à ce que la particule revienne à son état d'origine (comme un livre brûlé qui serait reconstitué à partir de ses cendres). Daniela fait de même avec Bob et son laboratoire. Charlie et Daniela effectuent maintenant chacun une mesure différente sur leurs particules respectives dans le sens gauche-droite.

En utilisant ce scénario, l'équipe a prouvé que les prédictions de toute théorie de la BIL pour les résultats des mesures des quatre observateurs contredisent le caractère absolu des événements observés. En d'autres termes, "toutes les théories de la BIL ont un problème de mesure", explique M. Ormrod.

CHOISISSEZ VOTRE POISON

Les physiciens se trouvent donc dans une impasse désagréable : soit ils acceptent le caractère non absolu des événements observés, soit ils renoncent à l'une des hypothèses de la théorie de la BIL.

Venkatesh pense qu'il y a quelque chose de convaincant dans le fait de renoncer à l'absoluité des événements observés. Après tout, dit-elle, la physique a réussi à passer d'un cadre newtonien rigide à une description einsteinienne de la réalité, plus nuancée et plus fluide. "Nous avons dû ajuster certaines notions de ce que nous pensions être absolu. Pour Newton, l'espace et le temps étaient absolus", explique M. Venkatesh. Mais dans la conception de l'univers d'Albert Einstein, l'espace et le temps ne font qu'un, et cet espace-temps unique n'est pas quelque chose d'absolu mais peut se déformer d'une manière qui ne correspond pas au mode de pensée newtonien.

D'autre part, une théorie perspectiviste qui dépend des observateurs crée ses propres problèmes. En particulier, comment peut-on faire de la science dans les limites d'une théorie où deux observateurs ne peuvent pas se mettre d'accord sur les résultats des mesures ? "Il n'est pas évident que la science puisse fonctionner comme elle est censée le faire si nous ne parvenons pas à des prédictions pour des événements observés que nous considérons comme absolus", explique M. Ormrod.

Donc, si l'on insiste sur le caractère absolu des événements observés, il faut faire un compromis. Ce ne sera pas la non-localité de Bell ou la préservation de l'information : la première repose sur des bases empiriques solides, et la seconde est considérée comme un aspect important de toute théorie de la réalité. L'accent est mis sur la dynamique locale, en particulier sur la séparabilité dynamique.

La séparabilité dynamique est "une sorte d'hypothèse du réductionnisme", explique M. Ormrod. "On peut expliquer les grandes choses en termes de petits morceaux.

Le fait de préserver le caractère absolu des événements observés pourrait signifier que ce réductionnisme ne tient pas : tout comme un état non local de Bell ne peut être réduit à certains états constitutifs, il se peut que la dynamique d'un système soit également holistique, ce qui ajoute un autre type de nonlocalité à l'univers. Il est important de noter que le fait d'y renoncer ne met pas une théorie en porte-à-faux avec les théories de la relativité d'Einstein, tout comme les physiciens ont soutenu que la non-localité de Bell ne nécessite pas d'influences causales superluminales ou non locales, mais simplement des états non séparables.

"Peut-être que la leçon de Bell est que les états des particules distantes sont inextricablement liés, et que la leçon des nouveaux théorèmes est que leur dynamique l'est aussi", ont écrit Ormrod, Venkatesh et Barrett dans leur article.

"J'aime beaucoup l'idée de rejeter la séparabilité dynamique, car si cela fonctionne, alors ... nous aurons le beurre et l'argent du beurre", déclare Ormrod. "Nous pouvons continuer à croire ce que nous considérons comme les choses les plus fondamentales du monde : le fait que la théorie de la relativité est vraie, que l'information est préservée, et ce genre de choses. Mais nous pouvons aussi croire à l'absoluité des événements observés".

Jeffrey Bub, philosophe de la physique et professeur émérite à l'université du Maryland, College Park, est prêt à avaler quelques pilules amères si cela signifie vivre dans un univers objectif. "Je voudrais m'accrocher à l'absoluité des événements observés", déclare-t-il. "Il me semble absurde d'y renoncer simplement à cause du problème de la mesure en mécanique quantique. À cette fin, Bub pense qu'un univers dans lequel les dynamiques ne sont pas séparables n'est pas une si mauvaise idée. "Je pense que je serais provisoirement d'accord avec les auteurs pour dire que la non-séparabilité [dynamique] est l'option la moins désagréable", déclare-t-il.

Le problème est que personne ne sait encore comment construire une théorie qui rejette la séparabilité dynamique - à supposer qu'elle soit possible à construire - tout en conservant les autres propriétés telles que la préservation de l'information et la non-localité de Bell.

UNE NON LOCALITÉ PLUS PROFONDE

Howard Wiseman, de l'université Griffith, qui est considéré comme une figure fondatrice de ces réflexions théoriques, apprécie l'effort d'Ormrod, Venkatesh et Barrett pour prouver un théorème qui s'applique à la mécanique quantique sans lui être spécifique. "C'est bien qu'ils poussent dans cette direction", déclare-t-il. "Nous pouvons dire des choses plus générales sans faire référence à la mécanique quantique.

 Il souligne que l'expérience de pensée utilisée dans l'analyse ne demande pas à Alice, Bob, Charlie et Daniela de faire des choix - ils font toujours les mêmes mesures. Par conséquent, les hypothèses utilisées pour prouver le théorème n'incluent pas explicitement une hypothèse sur la liberté de choix, car personne n'exerce un tel choix. Normalement, moins il y a d'hypothèses, plus la preuve est solide, mais ce n'est peut-être pas le cas ici, explique Wiseman. En effet, la première hypothèse, selon laquelle la théorie doit tenir compte de la non-localité de Bell, exige que les agents soient dotés d'un libre arbitre. Tout test empirique de la non-localité de Bell implique qu'Alice et Bob choisissent de leur plein gré les types de mesures qu'ils effectuent. Par conséquent, si une théorie est nonlocale au sens de Bell, elle reconnaît implicitement le libre arbitre des expérimentateurs. "Ce que je soupçonne, c'est qu'ils introduisent subrepticement une hypothèse de libre arbitre", déclare Wiseman.

Cela ne veut pas dire que la preuve est plus faible. Au contraire, elle aurait été plus forte si elle n'avait pas exigé une hypothèse de libre arbitre. En l'occurrence, le libre arbitre reste une exigence. Dans ces conditions, la portée la plus profonde de ce théorème pourrait être que l'univers est non local d'une manière entièrement nouvelle. Si tel est le cas, cette nonlocalité serait égale ou supérieure à la nonlocalité de Bell, dont la compréhension a ouvert la voie aux communications quantiques et à la cryptographie quantique. Personne ne sait ce qu'un nouveau type de nonlocalité - suggéré par la non-séparabilité dynamique - signifierait pour notre compréhension de l'univers.

En fin de compte, seules les expériences permettront de trouver la bonne théorie, et les physiciens quantiques ne peuvent que se préparer à toute éventualité. "Indépendamment de l'opinion personnelle de chacun sur la meilleure [théorie], toutes doivent être explorées", déclare M. Venkatesh. "En fin de compte, nous devrons examiner les expériences que nous pouvons réaliser. Cela pourrait être dans un sens ou dans l'autre, et il est bon de s'y préparer."

Auteur: Internet

Info: https://www.scientificamerican.com, Par Anil Ananthaswamy le 22 mai 2023

[ enchevêtrement quantique ] [ régions de l'espace-temps ] [ monde subatomique ]

 

Commentaires: 0

Ajouté à la BD par miguel

trickster

Les mondes multiples d'Hugh Everett

Il y a cinquante ans, Hugh Everett a conçu l'interprétation de la mécanique quantique en l'expliquant par des mondes multiples, théorie dans laquelle les effets quantiques engendrent d'innombrables branches de l'univers avec des événements différents dans chacune. La théorie semble être une hypothèse bizarre, mais Everett l'a déduite des mathématiques fondamentales de la mécanique quantique. Néanmoins, la plupart des physiciens de l'époque la rejetèrent, et il dût abréger sa thèse de doctorat sur le sujet pour éviter la controverse. Découragé, Everett quitta la physique et travailla sur les mathématiques et l'informatique militaires et industrielles. C'était un être émotionnellement renfermé et un grand buveur. Il est mort alors qu'il n'avait que 51 ans, et ne put donc pas voir le récent respect accordé à ses idées par les physiciens.

Hugh Everett III était un mathématicien brillant, théoricien quantique iconoclaste, puis ensuite entrepreneur prospère dans la défense militaire ayant accès aux secrets militaires les plus sensibles du pays. Il a introduit une nouvelle conception de la réalité dans la physique et a influencé le cours de l'histoire du monde à une époque où l'Armageddon nucléaire semblait imminent. Pour les amateurs de science-fiction, il reste un héros populaire : l'homme qui a inventé une théorie quantique des univers multiples. Pour ses enfants, il était quelqu'un d'autre : un père indisponible, "morceau de mobilier assis à la table de la salle à manger", cigarette à la main. Alcoolique aussi, et fumeur à la chaîne, qui mourut prématurément.

L'analyse révolutionnaire d'Everett a brisé une impasse théorique dans l'interprétation du "comment" de la mécanique quantique. Bien que l'idée des mondes multiples ne soit pas encore universellement acceptée aujourd'hui, ses méthodes de conception de la théorie présagèrent le concept de décohérence quantique - explication moderne du pourquoi et comment la bizarrerie probabiliste de la mécanique quantique peut se résoudre dans le monde concret de notre expérience. Le travail d'Everett est bien connu dans les milieux de la physique et de la philosophie, mais l'histoire de sa découverte et du reste de sa vie l'est relativement moins. Les recherches archivistiques de l'historien russe Eugène Shikhovtsev, de moi-même et d'autres, ainsi que les entretiens que j'ai menés avec les collègues et amis du scientifique décédé, ainsi qu'avec son fils musicien de rock, révèlent l'histoire d'une intelligence radieuse éteinte trop tôt par des démons personnels.

Le voyage scientifique d'Everett commença une nuit de 1954, raconte-t-il deux décennies plus tard, "après une gorgée ou deux de sherry". Lui et son camarade de classe de Princeton Charles Misner et un visiteur nommé Aage Petersen (alors assistant de Niels Bohr) pensaient "des choses ridicules sur les implications de la mécanique quantique". Au cours de cette session Everett eut l'idée de base fondant la théorie des mondes multiples, et dans les semaines qui suivirent, il commença à la développer dans un mémoire. L'idée centrale était d'interpréter ce que les équations de la mécanique quantique représentent dans le monde réel en faisant en sorte que les mathématiques de la théorie elle-même montrent le chemin plutôt qu'en ajoutant des hypothèses d'interprétation aux mathématiques existantes sur le sujet. De cette façon, le jeune homme a mis au défi l'establishment physique de l'époque en reconsidérant sa notion fondamentale de ce qui constitue la réalité physique. En poursuivant cette entreprise, Everett s'attaqua avec audace au problème notoire de la mesure en mécanique quantique, qui accablait les physiciens depuis les années 1920.

En résumé, le problème vient d'une contradiction entre la façon dont les particules élémentaires (comme les électrons et les photons) interagissent au niveau microscopique quantique de la réalité et ce qui se passe lorsque les particules sont mesurées à partir du niveau macroscopique classique. Dans le monde quantique, une particule élémentaire, ou une collection de telles particules, peut exister dans une superposition de deux ou plusieurs états possibles. Un électron, par exemple, peut se trouver dans une superposition d'emplacements, de vitesses et d'orientations différentes de sa rotation. Pourtant, chaque fois que les scientifiques mesurent l'une de ces propriétés avec précision, ils obtiennent un résultat précis - juste un des éléments de la superposition, et non une combinaison des deux. Nous ne voyons jamais non plus d'objets macroscopiques en superposition. Le problème de la mesure se résume à cette question : Comment et pourquoi le monde unique de notre expérience émerge-t-il des multiples alternatives disponibles dans le monde quantique superposé ? Les physiciens utilisent des entités mathématiques appelées fonctions d'onde pour représenter les états quantiques. Une fonction d'onde peut être considérée comme une liste de toutes les configurations possibles d'un système quantique superposé, avec des nombres qui donnent la probabilité que chaque configuration soit celle, apparemment choisie au hasard, que nous allons détecter si nous mesurons le système. La fonction d'onde traite chaque élément de la superposition comme étant également réel, sinon nécessairement également probable de notre point de vue. L'équation de Schrödinger décrit comment la fonction ondulatoire d'un système quantique changera au fil du temps, une évolution qu'elle prédit comme lisse et déterministe (c'est-à-dire sans caractère aléatoire).

Mais cette élégante mathématique semble contredire ce qui se passe lorsque les humains observent un système quantique, tel qu'un électron, avec un instrument scientifique (qui lui-même peut être considéré comme un système quantique). Car au moment de la mesure, la fonction d'onde décrivant la superposition d'alternatives semble s'effondrer en un unique membre de la superposition, interrompant ainsi l'évolution en douceur de la fonction d'onde et introduisant la discontinuité. Un seul résultat de mesure émerge, bannissant toutes les autres possibilités de la réalité décrite de manière classique. Le choix de l'alternative produite au moment de la mesure semble arbitraire ; sa sélection n'évolue pas logiquement à partir de la fonction d'onde chargée d'informations de l'électron avant la mesure. Les mathématiques de l'effondrement n'émergent pas non plus du flux continu de l'équation de Schrödinger. En fait, l'effondrement (discontinuité) doit être ajouté comme un postulat, comme un processus supplémentaire qui semble violer l'équation.

De nombreux fondateurs de la mécanique quantique, notamment Bohr, Werner Heisenberg et John von Neumann, se sont mis d'accord sur une interprétation de la mécanique quantique - connue sous le nom d'interprétation de Copenhague - pour traiter le problème des mesures. Ce modèle de réalité postule que la mécanique du monde quantique se réduit à des phénomènes observables de façon classique et ne trouve son sens qu'en termes de phénomènes observables, et non l'inverse. Cette approche privilégie l'observateur externe, le plaçant dans un domaine classique distinct du domaine quantique de l'objet observé. Bien qu'incapables d'expliquer la nature de la frontière entre le domaine quantique et le domaine classique, les Copenhagueistes ont néanmoins utilisé la mécanique quantique avec un grand succès technique. Des générations entières de physiciens ont appris que les équations de la mécanique quantique ne fonctionnent que dans une partie de la réalité, la microscopique, et cessent d'être pertinentes dans une autre, la macroscopique. C'est tout ce dont la plupart des physiciens ont besoin.

Fonction d'onde universelle. Par fort effet contraire, Everett s'attaqua au problème de la mesure en fusionnant les mondes microscopique et macroscopique. Il fit de l'observateur une partie intégrante du système observé, introduisant une fonction d'onde universelle qui relie les observateurs et les objets dans un système quantique unique. Il décrivit le monde macroscopique en mécanique quantique imaginant que les grands objets existent également en superpositions quantiques. Rompant avec Bohr et Heisenberg, il n'avait pas besoin de la discontinuité d'un effondrement de la fonction ondulatoire. L'idée radicalement nouvelle d'Everett était de se demander : Et si l'évolution continue d'une fonction d'onde n'était pas interrompue par des actes de mesure ? Et si l'équation de Schrödinger s'appliquait toujours et s'appliquait aussi bien à tous les objets qu'aux observateurs ? Et si aucun élément de superposition n'est jamais banni de la réalité ? A quoi ressemblerait un tel monde pour nous ? Everett constata, selon ces hypothèses, que la fonction d'onde d'un observateur devrait, en fait, bifurquer à chaque interaction de l'observateur avec un objet superposé. La fonction d'onde universelle contiendrait des branches pour chaque alternative constituant la superposition de l'objet. Chaque branche ayant sa propre copie de l'observateur, copie qui percevait une de ces alternatives comme le résultat. Selon une propriété mathématique fondamentale de l'équation de Schrödinger, une fois formées, les branches ne s'influencent pas mutuellement. Ainsi, chaque branche se lance dans un avenir différent, indépendamment des autres. Prenons l'exemple d'une personne qui mesure une particule qui se trouve dans une superposition de deux états, comme un électron dans une superposition de l'emplacement A et de l'emplacement B. Dans une branche, la personne perçoit que l'électron est à A. Dans une branche presque identique, une copie de la personne perçoit que le même électron est à B. Chaque copie de la personne se perçoit comme unique et considère que la chance lui a donné une réalité dans un menu des possibilités physiques, même si, en pleine réalité, chaque alternative sur le menu se réalise.

Expliquer comment nous percevons un tel univers exige de mettre un observateur dans l'image. Mais le processus de ramification se produit indépendamment de la présence ou non d'un être humain. En général, à chaque interaction entre systèmes physiques, la fonction d'onde totale des systèmes combinés aurait tendance à bifurquer de cette façon. Aujourd'hui, la compréhension de la façon dont les branches deviennent indépendantes et ressemblent à la réalité classique à laquelle nous sommes habitués est connue sous le nom de théorie de la décohérence. C'est une partie acceptée de la théorie quantique moderne standard, bien que tout le monde ne soit pas d'accord avec l'interprétation d'Everett comme quoi toutes les branches représentent des réalités qui existent. Everett n'a pas été le premier physicien à critiquer le postulat de l'effondrement de Copenhague comme inadéquat. Mais il a innové en élaborant une théorie mathématiquement cohérente d'une fonction d'onde universelle à partir des équations de la mécanique quantique elle-même. L'existence d'univers multiples a émergé comme une conséquence de sa théorie, pas par un prédicat. Dans une note de bas de page de sa thèse, Everett écrit : "Du point de vue de la théorie, tous les éléments d'une superposition (toutes les "branches") sont "réels", aucun n'est plus "réel" que les autres. Le projet contenant toutes ces idées provoqua de remarquables conflits dans les coulisses, mis au jour il y a environ cinq ans par Olival Freire Jr, historien des sciences à l'Université fédérale de Bahia au Brésil, dans le cadre de recherches archivistiques.

Au printemps de 1956 le conseiller académique à Princeton d'Everett, John Archibald Wheeler, prit avec lui le projet de thèse à Copenhague pour convaincre l'Académie royale danoise des sciences et lettres de le publier. Il écrivit à Everett qu'il avait eu "trois longues et fortes discussions à ce sujet" avec Bohr et Petersen. Wheeler partagea également le travail de son élève avec plusieurs autres physiciens de l'Institut de physique théorique de Bohr, dont Alexander W. Stern. Scindages La lettre de Wheeler à Everett disait en autre : "Votre beau formalisme de la fonction ondulatoire reste bien sûr inébranlable ; mais nous sentons tous que la vraie question est celle des mots qui doivent être attachés aux quantités de ce formalisme". D'une part, Wheeler était troublé par l'utilisation par Everett d'humains et de boulets de canon "scindés" comme métaphores scientifiques. Sa lettre révélait l'inconfort des Copenhagueistes quant à la signification de l'œuvre d'Everett. Stern rejeta la théorie d'Everett comme "théologique", et Wheeler lui-même était réticent à contester Bohr. Dans une longue lettre politique adressée à Stern, il explique et défend la théorie d'Everett comme une extension, non comme une réfutation, de l'interprétation dominante de la mécanique quantique : "Je pense que je peux dire que ce jeune homme très fin, capable et indépendant d'esprit en est venu progressivement à accepter l'approche actuelle du problème de la mesure comme correcte et cohérente avec elle-même, malgré quelques traces qui subsistent dans le présent projet de thèse d'une attitude douteuse envers le passé. Donc, pour éviter tout malentendu possible, permettez-moi de dire que la thèse d'Everett ne vise pas à remettre en question l'approche actuelle du problème de la mesure, mais à l'accepter et à la généraliser."

Everett aurait été en total désaccord avec la description que Wheeler a faite de son opinion sur l'interprétation de Copenhague. Par exemple, un an plus tard, en réponse aux critiques de Bryce S. DeWitt, rédacteur en chef de la revue Reviews of Modern Physics, il écrivit : "L'Interprétation de Copenhague est désespérément incomplète en raison de son recours a priori à la physique classique... ainsi que d'une monstruosité philosophique avec un concept de "réalité" pour le monde macroscopique qui ne marche pas avec le microcosme." Pendant que Wheeler était en Europe pour plaider sa cause, Everett risquait alors de perdre son permis de séjour étudiant qui avait été suspendu. Pour éviter d'aller vers des mesures disciplinaires, il décida d'accepter un poste de chercheur au Pentagone. Il déménagea dans la région de Washington, D.C., et ne revint jamais à la physique théorique. Au cours de l'année suivante, cependant, il communiqua à distance avec Wheeler alors qu'il avait réduit à contrecœur sa thèse au quart de sa longueur d'origine. En avril 1957, le comité de thèse d'Everett accepta la version abrégée - sans les "scindages". Trois mois plus tard, Reviews of Modern Physics publiait la version abrégée, intitulée "Relative State' Formulation of Quantum Mechanics".("Formulation d'état relatif de la mécanique quantique.") Dans le même numéro, un document d'accompagnement de Wheeler loue la découverte de son élève. Quand le papier parut sous forme imprimée, il passa instantanément dans l'obscurité.

Wheeler s'éloigna progressivement de son association avec la théorie d'Everett, mais il resta en contact avec le théoricien, l'encourageant, en vain, à faire plus de travail en mécanique quantique. Dans une entrevue accordée l'an dernier, Wheeler, alors âgé de 95 ans, a déclaré qu' "Everett était déçu, peut-être amer, devant les non réactions à sa théorie. Combien j'aurais aimé continuer les séances avec lui. Les questions qu'il a soulevées étaient importantes." Stratégies militaires nucléaires Princeton décerna son doctorat à Everett près d'un an après qu'il ait commencé son premier projet pour le Pentagone : le calcul des taux de mortalité potentiels des retombées radioactives d'une guerre nucléaire. Rapidement il dirigea la division des mathématiques du Groupe d'évaluation des systèmes d'armes (WSEG) du Pentagone, un groupe presque invisible mais extrêmement influent. Everett conseillait de hauts responsables des administrations Eisenhower et Kennedy sur les meilleures méthodes de sélection des cibles de bombes à hydrogène et de structuration de la triade nucléaire de bombardiers, de sous-marins et de missiles pour un impact optimal dans une frappe nucléaire. En 1960, participa à la rédaction du WSEG n° 50, un rapport qui reste classé à ce jour. Selon l'ami d'Everett et collègue du WSEG, George E. Pugh, ainsi que des historiens, le WSEG no 50 a rationalisé et promu des stratégies militaires qui ont fonctionné pendant des décennies, notamment le concept de destruction mutuelle assurée. Le WSEG a fourni aux responsables politiques de la guerre nucléaire suffisamment d'informations effrayantes sur les effets mondiaux des retombées radioactives pour que beaucoup soient convaincus du bien-fondé d'une impasse perpétuelle, au lieu de lancer, comme le préconisaient certains puissants, des premières attaques préventives contre l'Union soviétique, la Chine et d'autres pays communistes.

Un dernier chapitre de la lutte pour la théorie d'Everett se joua également dans cette période. Au printemps 1959, Bohr accorda à Everett une interview à Copenhague. Ils se réunirent plusieurs fois au cours d'une période de six semaines, mais avec peu d'effet : Bohr ne changea pas sa position, et Everett n'est pas revenu à la recherche en physique quantique. L'excursion n'avait pas été un échec complet, cependant. Un après-midi, alors qu'il buvait une bière à l'hôtel Østerport, Everett écrivit sur un papier à l'en-tête de l'hôtel un raffinement important de cet autre tour de force mathématique qui a fait sa renommée, la méthode généralisée du multiplicateur de Lagrange, aussi connue sous le nom d'algorithme Everett. Cette méthode simplifie la recherche de solutions optimales à des problèmes logistiques complexes, allant du déploiement d'armes nucléaires aux horaires de production industrielle juste à temps en passant par l'acheminement des autobus pour maximiser la déségrégation des districts scolaires. En 1964, Everett, Pugh et plusieurs autres collègues du WSEG ont fondé une société de défense privée, Lambda Corporation. Entre autres activités, il a conçu des modèles mathématiques de systèmes de missiles anti-missiles balistiques et de jeux de guerre nucléaire informatisés qui, selon Pugh, ont été utilisés par l'armée pendant des années. Everett s'est épris de l'invention d'applications pour le théorème de Bayes, une méthode mathématique de corrélation des probabilités des événements futurs avec l'expérience passée. En 1971, Everett a construit un prototype de machine bayésienne, un programme informatique qui apprend de l'expérience et simplifie la prise de décision en déduisant les résultats probables, un peu comme la faculté humaine du bon sens. Sous contrat avec le Pentagone, le Lambda a utilisé la méthode bayésienne pour inventer des techniques de suivi des trajectoires des missiles balistiques entrants. En 1973, Everett quitte Lambda et fonde une société de traitement de données, DBS, avec son collègue Lambda Donald Reisler. Le DBS a fait des recherches sur les applications des armes, mais s'est spécialisée dans l'analyse des effets socio-économiques des programmes d'action sociale du gouvernement. Lorsqu'ils se sont rencontrés pour la première fois, se souvient M. Reisler, Everett lui a demandé timidement s'il avait déjà lu son journal de 1957. J'ai réfléchi un instant et j'ai répondu : "Oh, mon Dieu, tu es cet Everett, le fou qui a écrit ce papier dingue", dit Reisler. "Je l'avais lu à l'université et avais gloussé, le rejetant d'emblée." Les deux sont devenus des amis proches mais convinrent de ne plus parler d'univers multiples.

Malgré tous ces succès, la vie d'Everett fut gâchée de bien des façons. Il avait une réputation de buveur, et ses amis disent que le problème semblait s'aggraver avec le temps. Selon Reisler, son partenaire aimait habituellement déjeuner avec trois martinis, dormant dans son bureau, même s'il réussissait quand même à être productif. Pourtant, son hédonisme ne reflétait pas une attitude détendue et enjouée envers la vie. "Ce n'était pas quelqu'un de sympathique", dit Reisler. "Il apportait une logique froide et brutale à l'étude des choses... Les droits civils n'avaient aucun sens pour lui." John Y. Barry, ancien collègue d'Everett au WSEG, a également remis en question son éthique. Au milieu des années 1970, Barry avait convaincu ses employeurs chez J. P. Morgan d'embaucher Everett pour mettre au point une méthode bayésienne de prévision de l'évolution du marché boursier. Selon plusieurs témoignages, Everett avait réussi, puis il refusa de remettre le produit à J. P. Morgan. "Il s'est servi de nous", se souvient Barry. "C'était un individu brillant, innovateur, insaisissable, indigne de confiance, probablement alcoolique." Everett était égocentrique. "Hugh aimait épouser une forme de solipsisme extrême", dit Elaine Tsiang, ancienne employée de DBS. "Bien qu'il eut peine à éloigner sa théorie [des monde multiples] de toute théorie de l'esprit ou de la conscience, il est évident que nous devions tous notre existence par rapport au monde qu'il avait fait naître." Et il connaissait à peine ses enfants, Elizabeth et Mark. Alors qu'Everett poursuivait sa carrière d'entrepreneur, le monde de la physique commençait à jeter un regard critique sur sa théorie autrefois ignorée. DeWitt pivota d'environ 180 degrés et devint son défenseur le plus dévoué. En 1967, il écrivit un article présentant l'équation de Wheeler-DeWitt : une fonction d'onde universelle qu'une théorie de la gravité quantique devrait satisfaire. Il attribue à Everett le mérite d'avoir démontré la nécessité d'une telle approche. DeWitt et son étudiant diplômé Neill Graham ont ensuite publié un livre de physique, The Many-Worlds Interpretation of Quantum Mechanics, qui contenait la version non informatisée de la thèse d'Everett. L'épigramme "mondes multiples" se répandit rapidement, popularisée dans le magazine de science-fiction Analog en 1976. Toutefois, tout le monde n'est pas d'accord sur le fait que l'interprétation de Copenhague doive céder le pas. N. David Mermin, physicien de l'Université Cornell, soutient que l'interprétation d'Everett traite la fonction des ondes comme faisant partie du monde objectivement réel, alors qu'il la considère simplement comme un outil mathématique. "Une fonction d'onde est une construction humaine", dit Mermin. "Son but est de nous permettre de donner un sens à nos observations macroscopiques. Mon point de vue est exactement le contraire de l'interprétation des mondes multiples. La mécanique quantique est un dispositif qui nous permet de rendre nos observations cohérentes et de dire que nous sommes à l'intérieur de la mécanique quantique et que la mécanique quantique doive s'appliquer à nos perceptions est incohérent." Mais de nombreux physiciens avancent que la théorie d'Everett devrait être prise au sérieux. "Quand j'ai entendu parler de l'interprétation d'Everett à la fin des années 1970, dit Stephen Shenker, physicien théoricien à l'Université Stanford, j'ai trouvé cela un peu fou. Maintenant, la plupart des gens que je connais qui pensent à la théorie des cordes et à la cosmologie quantique pensent à quelque chose qui ressemble à une interprétation à la Everett. Et à cause des récents développements en informatique quantique, ces questions ne sont plus académiques."

Un des pionniers de la décohérence, Wojciech H. Zurek, chercheur au Los Alamos National Laboratory, a commente que "l'accomplissement d'Everett fut d'insister pour que la théorie quantique soit universelle, qu'il n'y ait pas de division de l'univers entre ce qui est a priori classique et ce qui est a priori du quantum. Il nous a tous donné un ticket pour utiliser la théorie quantique comme nous l'utilisons maintenant pour décrire la mesure dans son ensemble." Le théoricien des cordes Juan Maldacena de l'Institute for Advanced Study de Princeton, N.J., reflète une attitude commune parmi ses collègues : "Quand je pense à la théorie d'Everett en mécanique quantique, c'est la chose la plus raisonnable à croire. Dans la vie de tous les jours, je n'y crois pas."

En 1977, DeWitt et Wheeler invitèrent Everett, qui détestait parler en public, à faire une présentation sur son interprétation à l'Université du Texas à Austin. Il portait un costume noir froissé et fuma à la chaîne pendant tout le séminaire. David Deutsch, maintenant à l'Université d'Oxford et l'un des fondateurs du domaine de l'informatique quantique (lui-même inspiré par la théorie d'Everett), était là. "Everett était en avance sur son temps", dit Deutsch en résumant la contribution d'Everett. "Il représente le refus de renoncer à une explication objective. L'abdication de la finalité originelle de ces domaines, à savoir expliquer le monde, a fait beaucoup de tort au progrès de la physique et de la philosophie. Nous nous sommes irrémédiablement enlisés dans les formalismes, et les choses ont été considérées comme des progrès qui ne sont pas explicatifs, et le vide a été comblé par le mysticisme, la religion et toutes sortes de détritus. Everett est important parce qu'il s'y est opposé." Après la visite au Texas, Wheeler essaya de mettre Everett en contact avec l'Institute for Theoretical Physics à Santa Barbara, Californie. Everett aurait été intéressé, mais le plan n'a rien donné. Totalité de l'expérience Everett est mort dans son lit le 19 juillet 1982. Il n'avait que 51 ans.

Son fils, Mark, alors adolescent, se souvient avoir trouvé le corps sans vie de son père ce matin-là. Sentant le corps froid, Mark s'est rendu compte qu'il n'avait aucun souvenir d'avoir jamais touché son père auparavant. "Je ne savais pas quoi penser du fait que mon père venait de mourir, m'a-t-il dit. "Je n'avais pas vraiment de relation avec lui." Peu de temps après, Mark a déménagé à Los Angeles. Il est devenu un auteur-compositeur à succès et chanteur principal d'un groupe de rock populaire, Eels. Beaucoup de ses chansons expriment la tristesse qu'il a vécue en tant que fils d'un homme déprimé, alcoolique et détaché émotionnellement. Ce n'est que des années après la mort de son père que Mark a appris l'existence de la carrière et des réalisations de son père. La sœur de Mark, Elizabeth, fit la première d'une série de tentatives de suicide en juin 1982, un mois seulement avant la mort d'Everett. Mark la trouva inconsciente sur le sol de la salle de bain et l'amena à l'hôpital juste à temps. Quand il rentra chez lui plus tard dans la soirée, se souvient-il, son père "leva les yeux de son journal et dit : Je ne savais pas qu'elle était si triste."" En 1996, Elizabeth se suicida avec une overdose de somnifères, laissant une note dans son sac à main disant qu'elle allait rejoindre son père dans un autre univers. Dans une chanson de 2005, "Things the Grandchildren Should Know", Mark a écrit : "Je n'ai jamais vraiment compris ce que cela devait être pour lui de vivre dans sa tête". Son père solipsistiquement incliné aurait compris ce dilemme. "Une fois que nous avons admis que toute théorie physique n'est essentiellement qu'un modèle pour le monde de l'expérience, conclut Everett dans la version inédite de sa thèse, nous devons renoncer à tout espoir de trouver quelque chose comme la théorie correcte... simplement parce que la totalité de l'expérience ne nous est jamais accessible."

Auteur: Byrne Peter

Info: 21 octobre 2008, https://www.scientificamerican.com/article/hugh-everett-biography/. Publié à l'origine dans le numéro de décembre 2007 de Scientific American

[ légende de la physique théorique ] [ multivers ]

 

Commentaires: 0

Ajouté à la BD par miguel

parapsychologie

Le pays des aveugles de Koestler (II) (première partie ici)

La section précédente a peut-être donné au lecteur un sentiment de déjà-vu, parce que tout à l'heure j'ai mentionné un autre type de "théorie du filtre" liée à l'évolution. Je me réfère à la théorie néo-darwinienne selon laquelle la substance héréditaire dans les cellules germinales est protégée par une barrière quasi inviolable contre les influences en provenance de l'extérieur. Le "presque" se réfère à l'exception des rayons cosmiques, de la chaleur et des produits chimiques nocifs, qui pourraient pénétrer la barrière et causer des mutations dans les gènes. La plupart d'entre elles sont nuisibles, mais de temps en temps il y a des coups de chance, et cela, grâce à la sélection naturelle, permet à la roue de l'évolution de continuer sa marche. Hors cela, toute possibilité qu'une caractéristique acquise devienne héréditaire est empêchée par cette barrière. Le lamarckisme qui postulait que des améliorations bénéfiques pour les corps ou les compétences acquises par les parents pourraient être transmises à la descendance, doit être écarté comme superstition scientifique. Telle est la doctrine néo-darwinienne. Et pourtant, certains phénomènes évolutifs, cités à maintes reprises dans la littérature, semblent indiquer obstinément un facteur d'évolution lamarckienne.

Un exemple simple en est la peau sur la plante de nos pieds, qui est beaucoup plus épaisse que partout ailleurs. Si l'épaississement s'était produit pendant que le bébé a appris à marcher, il n'y aurait pas de problème. Mais l'épaississement est hérité, le bébé est né avec. Également curieuses sont les callosités innées sur le genou du chameau, et les épaississements bulbeux sur le cul de l'autruche, un à l'avant et un à l'arrière. Ils sont aussi, comme la peau de nos semelles, déjà présents dans l'embryon et sont incontestablement des caractéristiques héritées. Pourtant, en conformité avec le dogme dominant, on nous demande de croire que l'avènement de ces callosités à l'endroit exact où l'animal en a besoin est dû au hasard pur - comme le scarabée apparaissant à la fenêtre de Jung. On pourrait presque remplacer l'ESP par l'IAC (hérédité des caractères acquis) et voir émerger le même schéma d'arguments, et les mêmes passions quasi théologiques qui les accompagnent. Les lamarckiens se sont retrouvés dans une situation similaire à celle des parapsychologues : ils ont été incapables de produire une expérience reproductible. Les cas de IAC apparents dans le règne animal étaient rares, les phénomènes étaient capricieux, chaque cas apparemment net permettait des interprétations différentes et en dernier recours, à des accusations de fraude. En outre, bien que les lamarckiens étaient convaincus que IAC avait lieu, ils furent incapables d'en fournir une explication physiologique - comme les parapsychologues sont incapables de fournir une explication physique de l'ESP.

Ce curieux parallèle semble avoir échappé à l'attention des lamarckiens et des parapsychologues - Je n'ai pas vu mentionné dans la littérature. Peut-être qu'une hérésie c'est assez pour un seul homme. Paul Kammerer partageait les deux à la fois, et pourtant, lui aussi, semble n'avoir pas été au courant de la connexion entre eux. Portons l'analogie un peu plus loin. Dans "The Ghost in the Machine" et "The Case of the Midwife Toad", j'ai examiné les raisons d'un mécontentement croissant avec la théorie néo-darwinienne chez les biologistes contemporains, qui croient que la théorie reflète une partie de l'image, mais pas l'ensemble du tableau, et qui maintiennent que l'évolution des espèces est le résultat combiné d'un éventail de facteurs étiologiques connus, la plupart d'entre eux restant inconnus.

L'héritage de Darwin, et une forme modifiée de l'héritage de Lamarck, peuvent-être deux de ces facteurs à des extrémités opposées du spectre, avec un champ limité d'application à la fois. La IAC Lamarckienne serait un évènement relativement rare - pour la même raison que les phénomènes ESP sont rares: le fonctionnement des filtres de protection. Ceux-ci ne constitueraient pas la barrière absolue prévue par la théorie orthodoxe, mais un des mécanismes sélectifs, pour protéger le matériel héréditaire contre la "floraison et la confusion bourdonnante" des incursions biochimiques qui, autrement, feraient des ravages mettant en cause la continuité et la stabilité de l'espèce. Car si toutes les expériences des ancêtres laissaient des traces héréditaires à leur descendance, le résultat serait inévitablement un chaos de formes et un bordel des instincts. Mais cela ne signifie pas que nous devions exclure la possibilité que certaines modifications bien définies, adaptations intentionnelles - comme les callosités de l'autruche - qui ont été acquises génération après génération, finissent par passer à travers le filtre pour conduire à des changements dans la chimie des gènes en les rendant héréditaires. Il semble très peu probable que le filogenia ne doive posséder aucun souvenir.

La biochimie n'exclut pas la possibilité ci-dessus, et l'insistance presque fanatique de son rejet n'est qu'un exemple de plus de l'intolérance dogmatique de l'orthodoxie scientifique. (Mais : un membre éminent de l'établissement, le professeur Waddington, a effectivement proposé il y a quelques années un modèle provisoire pour l'IAC, ce qui indique que, au stade actuel de la biochimie un tel processus est envisageable.) Il nous faut faire ici une dernière excursion en physique - mais cette fois d'un genre très élémentaire.

Sur l'ombre du bureau en face de moi il y a l'ombre d'un cendrier. De manière ordinaire, il est tout à fait un objet sensible, solide, un tout en soi, sans "non-sens quantique" à son sujet. Mais quand je le soulève, je sens son poids, ce qui signifie qu'il est soumis à une influence assez mystérieuse que nous appelons le champ gravitationnel de la Terre. Et quand je le pousse, il résiste. Ceci est en partie dû au frottement contre le bureau, mais en partie aussi à l'inertie du cendrier massif. Maintenant, l'inertie est définie, selon la première loi du mouvement de Newton, comme la tendance d'un corps à préserver son état de repos ou de mouvement uniforme dans une direction donnée. Mais, si je devais suspendre ce cendrier par un fil au plafond, et en faire une réplique du pendule de Foucault aux Invalides à Paris, le plan de ses oscillations ne resterait pas figé dans la direction donnée, selon le principe que l'inertie nécessite, mais il tournerait lentement, complétant un tour en vingt-quatre heures.

Nous expliquons que c'est causé par la rotation de la terre, et que le pendule cendrier ne fait que préserver sa direction par rapport aux étoiles fixes, donc tout va bien. Toutefois, étant donné que tout mouvement est relatif, nous sommes en droit de considérer la terre comme au repos, avec des étoiles fixes tournant autour d'elle - comme l'imaginaient les anciens, et si c'est le cas, pourquoi les mouvements de mon cendrier doivent-ils être régis par les étoiles, et pas par la terre au-dessous ?

Le même argument s'applique à l'aplatissement des pôles de la terre, ainsi qu'à la force de Coriolis qui soi-disant dévie les missiles, les avions à réaction et les alizés de leur droite inertielle. Tous ces exemples semblent démontrer que la rotation de la terre est absolue et non relative. Ce paradoxe fut souligné par Bishop Berkeley, puis par le physicien allemand Ernst Mach (qui donna nom aux unités de vitesse supersonique). La réponse de Mach c'est que nous sommes en effet en droit de considérer la terre comme au repos, et d'expliquer les phénomènes que nous attribuons à sa rotation, comme causés en quelque sorte par les étoiles fixes et les galaxies - donc, par la masse de l'univers qui nous entoure.

Selon cette théorie, connue comme principe de Mach, c'est l'univers qui nous entoure qui détermine la direction du pendule de Foucault, et régit ainsi les forces d'inertie de la planète responsables de l'aplatissement des pôles. Einstein a repris le principe de Mach et a postulé que l'inertie des corps terrestres n'est qu'une autre manifestation de la gravité, non causé par les étoiles en tant que telles, mais plutôt de leur rotations. C'est la théorie qui prévaut aujourd'hui.

Donc comment la rotation des étoiles donne de l'inertie à mon cendrier reste une pure conjecture. L'inertie est le plus tangible, terre-à-terre, des phénomènes de notre vie quotidienne: vous l'éprouvez chaque fois que vous poussez un meuble. Et pourtant, il a maintenant été démontré que sa résistance aux déplacements est due au fait que nous sommes entouré par la masse en rotation de l'univers.

En 1927, Bertrand Russell, qui souscrivait néanmoins à la relativité einsteinienne, s'est senti poussé à protester ainsi : - On fait valoir que "rotation absolue" peut être remplacée par une "rotation par rapport aux étoiles fixes". Ce qui est formellement correct, mais dire que cette influence vient des étoiles de l'astronomie est scientifiquement incroyable. Whitehead écrit dans la même veine: Il est difficile de prendre au sérieux l'idée que ces phénomènes internes sur terre soient dus à l'influence d'étoiles dans le ciel. Je ne puis me résoudre à croire qu'une petite étoile scintillant dans sa tournée dirige le pendule de Foucault lors de l'exposition de Paris de 1851.

Ainsi, même mon cendrier est un holon, après tout. Ce n'est pas seulement un cendrier ombre sur un bureau ombre Eddington, mais d'une certaine façon, à laquelle ni Einstein ni Mach ne se hasardèrent à donner une explication causale, ses propriétés d'inertie sont reliées à la masse entière de l'univers qui l'entoure. On pourrait aussi bien l'appeler cendrier Mirandole, en se rappelant le passage cité plus tôt: premièrement, il y a l'unité dans les choses où chaque objet est en harmonie avec lui-même, se compose de lui-même, et est cohérent avec lui-même. Deuxièmement, il y a l'unité selon lequel une créature est unie avec les autres, et toutes les parties du monde constituent un tout. C'est le principe même du holon.

Nous avons entendu un choeur entier de lauréats du Nobel de physique nous informer que la matière était morte, de même pour la causalité et le déterminisme. Si c'est le cas, laissez-nous leur donner une sépulture décente, avec un requiem de musique électronique. Il est temps pour nous de tirer les leçons d'un XXe siècle de sciences post-mécanistes et de sortir du carcan que le XIXe siècle matérialiste a imposé à notre perspective philosophique. Paradoxalement, si cette perspective était restée aux côtés de la science moderne elle-même, au lieu de trainer avec un siècle de retard, nous aurions été libérés de cette camisole de force il y a bien longtemps. Il a été dit que la science sait de plus en plus sur de moins en moins. Mais cela s'applique uniquement au processus de spécialisation. On serait tout aussi fondés à dire que nous savons de moins en moins sur de plus en plus.

Cela vaut tout autant pour la procédure de l'unification de la matière et de l'énergie que pour les particules et les ondes, tout ceci dans le delta conceptuel d'une rivière qui se déplace majestueusement dans un océan d'abstractions. Plus la science acquiert des connaissances précises, plus les symboles qu'elle utilise deviennent insaisissables. La chasse au quark commence à ressembler à une quête mystique dans un nuage d'inconnaissance. La science se révèle être la réalisation la plus glorieuse de l'esprit humain - et sa défaite la plus alléchante. Nous sommes devenus bien plus malins depuis Pic de la Mirandole, mais pas beaucoup plus sages quand il s'agit de savoir ce que tout cela signifie. Une fois ceci reconnu, nous pourrions devenir plus réceptifs aux phénomènes qui nous entourent et que de manière unilatérale la science physique nous fait ignorer, pour sentir le courant qui souffle au travers des fentes de l'édifice de la causalité; et accorder plus d'attention aux évènements confluentiels, comprendre les phénomènes paranormaux dans notre concept de normalité, et se rendre compte que nous vivons dans le "royaume des aveugles".

Les conséquences d'un tel changement de conscience ne sont pas prévisibles, et on ne peut s'empêcher de sympathiser avec la déclaration du professeur H. H. Price comme quoi la "recherche psychique est l'une des branches les plus importantes d'enquête que l'esprit humain ait entrepris"; il semble important "de mettre en lumière toute nouvelle sur la nature de la personnalité humaine et sa position dans l'univers", et en même le temps "cela transformera les perspectives et fondations intellectuelles dont dépend toute notre civilisation actuelle".

Ce sont des mots forts d'un professeur d'Oxford en philosophie, mais je ne pense pas qu'il exagère. Ce qu'ils impliquent c'est un plaidoyer pour faire de la parapsychologie, et plus généralement de l'étude de ce que j'ai appelé les "évènements confluentiels" avec un substrat académique respectable et attrayant pour les étudiants, tant professionnels qu'en matières facultatives. Une fois qu'il y aura autant de chercheurs brillants engagés dans ce domaine comme cela existe maintenant pour l'étude de comportements de rats, une percée pourra être en vue. Dans la science-fiction, il est tenu pour acquis que la communication télépathique et la manipulation de la matière psychokinétique seront monnaie courante dans un avenir pas trop lointain, et la science-fiction s'est avéré être une prophétesse étonnamment fiable. Une autre de ses hypothèses courantes est que des êtres intelligents d'autres planètes de l'univers ont une maîtrise avancée de ces méthodes. Il est également possible, cependant, que dans ce domaine particulier, nous soyons une espèce sous-privilégiée - avec nos handicaps propres.

Le grand dessein de l'évolution vers des formes supérieures de l'unité dans la diversité n'exclut pas monstres et autres ratés biologiques, ni leurs évolutions pathologiques. Je ne pense pas que l'univers soit une institution charitable, mais nous devons vivre en lui et en tirer le meilleur parti. Les limites de notre matériel biologique nous condamnent peut-être au simple rôle de spectateurs devant la serrure de l'éternité. Mais au moins, retirons ce qui, devant ou dans la serrure, limite encore notre point de vue. [Note : Dans la vaste littérature sur la parapsychologie contemporaine, j'ai été particulièrement impressionné par les écrits de deux femmes - Rosalind Heywood, à qui ce livre est dédié, et Renee Haynes, auteur de The Hidden Springs et le roi philosophe, et rédactrice en cheffe du Journal de la Society for Psychical Research.

En écrivant cet essai sur un champ où même les anges craignent de marcher, j'ai avancé avec grande prudence, essayant surtout m'en tenir aux résultats expérimentaux de recherche en laboratoire, omettant toutes les soi-disant "preuves anecdotiques" - c'est-à-dire les manifestations spontanées de phénomènes parapsychologiques de la vie courante qui ne constituent pas des preuves au sens strict. En relisant ces pages avant impression, je sentais que ces limites self-imposées donnent lieu à une certaine partialité, et j'ai demandé à Renee Haynes de rétablir l'équilibre sous la forme d'un post-scriptum. Je lui suis donc reconnaissant d'avoir ajouté ainsi une saveur Yin Yang à mon austère travail.

(Post-scriptum par Renee Haynes)

M. Koestler nous a donné un exposé lucide de données modernes comme l'espace, le temps, la matière, la causalité, la neurophysiologie et la recherche psychique. Une remarquable synthèse en émerge. Son concept de "Janus-faced holons" pourrait bien se révéler comme un vrai stimulant pour notre génération comme le fut l'Elan Vital de Bergson pour les penseurs de la première partie du 20ème siècle. Il est à la fois gratifiant et grandiose être mandé pour écrire l'épilogue d'un tel travail, surtout afin qu'il suscite une discussion ultérieure. Si cet épilogue touche parfois à l'argumentaire, j'espère qu'on me le pardonnera.

J'ai été impressionné par la description de M. Koestler de la physique contemporaine. Avec ses termes infiniment abstraits, ses interactions mathématiques vérifiables, son univers visible, la danse de l'énergie, les choses prévisible et les folies imprévisibles, tantôt ici, tantôt là, maintenant nulle part et ensuite de retour, explosant tout le réseau propre à la pensée de Newton. C'est par ailleurs un exemple fascinant de synchronicité que deux physiciens et parapsychologues en viennent à utiliser le terme psi pour indiquer ce qui est encore inconnu; un curieux flash verbal qui pourrait servir à indiquer un terrain d'entente entre les deux disciplines. Pour moi, cependant, comme pour beaucoup d'autres, l'imagerie mathématique qui vient naturellement au calculateur est beaucoup plus difficile à comprendre, à rapporter à l'expérience de vie, que celle donnée par l'impact immédiat des sens.

Il est plus facile pour des gens comme nous de penser dans l'idiome d'une perception "ordinaire", ce processus monnaie courante, que dans le langage de formules algébriques, quelle que soit leur vérité et leur élégance. C'est par l'imagerie de la vue, l'ouïe, le toucher, l'odorat, la température, que la connaissance paranormale, comme la mémoire, apparait souvent dans l'esprit conscient (souvent, mais pas toujours. Ce peut être une impression soudaine que quelque chose s'est passé, ou pas plus qu'une impulsion inexplicable pour agir, courir hors d'une maison qui sera bientôt bombardé, ou entreprendre une tâche fastidieuse de voyage en cross-country pour voir un enfant à l'école, qui se révèle être tout à coup, dangereusement malade. (Cf. Cf. Arm Bridge, Moments of Knowing. London, 1970)

Pour cette raison, je tiens à souligner la valeur des phénomènes spontanés à la recherche psychique. Aussi déroutants, irremplaçables, uniques et personnels que de tels évènements puissent être, fait est qu'ils ne se produisent, que des hallucinations, certaines impressions de veille ou des rêves d'apparence réelle peuvent être mis en corrélation avec des évènements objectifs inconnus à la personne concernée, très éloignée ou il y a longtemps ou pas encore adoptée, a été maintes fois dit clairement, à la fois avant et après l'enquête systématique qui a débuté dans les années 1880. Même maintenant, bien sûr, de tels évènements sont souvent rejetés au mieux comme "anecdotiques", ou comme racontars de vieilles femmes, voire comme absurdités superstitieuses. De même, ce rapport tout à fait exact que les habitants de St. Kilda attrapèrent un rhume que quand un navire vint, fait rapporté par le Dr Johnson comme étant contraire à tout bon sens, ne fut accepté comme un état de fait que quand la théorie des germes de la maladie furent mis en place. Beaucoup de cas spontanés du paranormal - prise de conscience télépathique, "apparitions" perçues alors que la personne "vue" se trouvait en danger ou en train de mourir, apparition soudaine d'une douleur inexplicable au moment où est vécue de façon inattendue par une personne aimée au loin - ont été vérifié et selon des normes de preuve acceptables par une cour de justice. Tout cela donne du poids à un nombre toujours plus grand d'autres cas qui, bien que le narrateur ne le sache pas, tombent dans le même schéma, comme le Dr Louisa Rhine et d'autres l'ont fait remarquer. (Cf. Louisa Rhine, Hidden Channels of the Mind. London, 1962, and G. W. Lambert's Foreword to Andrew MacKenzie, Ghosts and Apparitions. London, 1971.)

La perception extra-sensorielle Spontanée se produit très certainement non seulement chez les humains, qui ont des mots pour décrire leurs expériences, mais chez les animaux, dont les sentiments ne peuvent être évalués que par leur apparence et leur comportement. Ce n'est pas toujours facile à interpréter parce que beaucoup d'entre eux ont des pouvoirs sensoriels qui nous manquent. Des rats adultes, par exemple, peuvent "sentir" les rayons X. Des bébés rongeurs d'une autre race ont été montré comme pouvant communiquer par ultrasons avec leurs mères, comme les dauphins de tous âges le font parfois les uns avec les autres. Ainsi comme il aurait été facile et faux - de produire une explication paranormale à cet épisode observé dans "la maison de l'attaché militaire américain d'une capitale étrangère non identifié". Le chien de la famille, hurlant et gémissant et "de toute évidence en souffrance, semblait être dans un vrai combat contre un ennemi dans le coin de la pièce". Les planchers furent enlevés et on trouva "un dispositif de transmission radio pour toutes les conversations dans la chambre". Lorsqu'il était allumé, il produisait un son trop aigu pour que l'oreille humaine l'entende, mais qui tourmentait le chien.

Mais il y a tout de même, bien authentifiés, des cas de comportement animaux qui semblent seulement donner sens qu'en termes de paranormal. Comme le chien ou le chat domestique qui, pris dans un panier fermé en voiture ou en train sur de longues distances, revient par le plus direct des cross-countries à la maison. Il y a ce récent rapport de la presse française d'un chien appartenant à un ouvrier qui l'avait quitté avec sa famille alors qu'il avait été envoyé dans une autre partie du pays pour une affectation temporaire. Le chien disparut de la maison et plus tard, mince et épuisé, il retrouvait son maître dans un endroit où il n'avait jamais été auparavant. Il y a aussi ces épisodes fréquents dans lesquels chiens ou les chats semblent être au courant de ce qui se passe à distance et deviennent surexcités dans leurs chenils au moment précis où leurs propriétaires commencent leur voyage de retour de vacances. Quelle que soit la distance. Il y a encore cet autre parallèle à faire entre les humains et les autres êtres vivants.

Comme JD Carthy l'a dit: "les animaux ne réagissent pas automatiquement à un signal, mais seulement si leur motivation est grande. Un animal repu ne réagit pas à un appel alimentaire. "M. Koestler a noté un angle différent (p.128 et suivantes) Que cela s'applique à l'homme ainsi que les animaux, dans la vie ordinaire que dans des conditions expérimentales. Ainsi, dans une rue animée d'un petit garçon d'un tour mécanique remarquerez marques de voitures, spécialiste de l'urbanisme de la circulation, une femme anxieuse de se croiser avec un enfant fatigué le mépris collectif impersonnel des pilotes pour ceux pied sur. En est de même de la perception extrasensorielle. En cela aussi, les gens deviennent très conscients de ce qui concerne eux-mêmes et leurs sentiments personnels. Pour évoquer une réponse instantanée forte de toute créature vivante un signal, sensorielle ou extra-sensorielle, doit être pertinente, pertinents aux besoins biologiques, à un stress émotionnel, à ce que Gerard Manley Hopkins appelé paysage intérieur.

C'est bien sûr pourquoi les expériences reproductibles dans la recherche psychique sont si difficiles à atteindre. L'intérêt qui pousse les gens à y participer est érodé par la répétition mécanique ennuyeuse, et l'effet de déclin qui se manifeste, tôt ou tard, en conformité avec les tempéraments, les humeurs et les relations personnelles des personnes concernées. Mis à part l'ennui cumulatif qu'elles engendrent par ailleurs, les expériences avec les cartes, les dés, des lumières et ainsi de suite ne tiennent pas compte de l'ambiance au sein de laquelle fonctionne l'esprit humain. Comme on l'a fait remarquer, "la cognition Paranormale est symbolique d'une manière associative; ainsi, M. Jones pourrait être impliqué dans un rêve ou la cognition paranormale parle d'un lion parce qu'il vit près du zoo, a un tempérament de lion ou une relation appelée Leo.

Pour des cartes à deviner avec un pack ordinaire le percipient pour marquer un coup direct dois dire littéralement "le dix de pique". La remarque "Dix hommes honnêtes" [qui appellent un chat un chat] serait considérée comme totalement hors de propos. Le premier groupe d'expériences au Laboratoire de rêve du Centre Maimonides Medical, * 1 résumée aux pages 37-8, allait dans le sens en vue de corriger cette difficulté, mais leurs résultats, bien que suggestifs, étaient difficiles à évaluer. C'est en partie parce que le pouvoir de visualiser varie donc considérablement d'une personne à une autre. Certaines personnes ont une mémoire photographique, un certain sélective, certains peuvent se rappeler le nom, mais pas les apparences des choses. En plus de tout ça tout le monde perçoit et exprime ses sentiments à travers un réseau d'associations, d'images et de symboles uniques à sa propre personne, d'autres découlent de son modèle de culture, la plupart des événements de sa vie individuelle. Une série d'expériences plus tard * en utilisant des cibles moins spécifiques - et pas seulement des images mais des sujets généraux tels que les religions d'Extrême-Orient, les productions artistiques des schizophrènes, la naissance d'un bébé, toutes illustrées pour l'agent par des vues et des bruits - semble avoir contourné certains des problèmes précédents. Il semble que cette méthode ait vraiment été couronnée de succès dans la communication télépathique sur l'humeur et la qualité d'une expérience. 

Cette question de la qualité par opposition à la mesure dans la recherche psychique comme dans de nombreux autres sujets me semble émerger avec de plus en plus d'urgence. On ne peut pas l'ignorer simplement parce qu'il est mal à l'aise et que c'est difficile à traiter. C'est pertinent pour la science, la philosophie, et tout le concept de synchronicité. Mais (parce que c'est tellement plus facile d'accumuler et de quantifier des données que de réfléchir sur leur signification) les notions de qualité et de sens qui comptent le plus pour les hommes ont tendance à être balayés. C'est une des raisons pourquoi ce livre est si précieux. Il se bat avec sens, intègre des faits.

Pourtant, je tiens à souligner le thème encore plus. La mesurable et le calculable peuvent servir la qualité, mais en diffèrent en nature. "Le son du cor le soir au fond des bois", "L'écume des mers périlleuses dans les terres désolées féeriques", "une profonde et troublante noirceur" - ces phrases peuvent être comprises et expérimentées instantanément en ce sens, mais elles ne sont pas susceptibles d'une analyse scientifique ou de quantification.

De même, vous ne pouvez pas avoir une tonne d'amour (en dépit de la façon dont les filles l'utilisent pour signer leurs lettres), soit un mètre de haine ou un gallon de pétrole de crainte, mais l'amour, la haine et la crainte sont tout aussi réels qu'une tonne de farine, une aune de toile ou d'un gallon d'essence, plus réel en effet, parce qu'ils ont une signification immédiate, ce ne sont pas de simples actions comme faire du pain cas ou remplir un oreiller. C'est une qualité, signifiant, qui clignote comme une étoile filante via la synchronicité, de même que, curieusement, à l'autre bout du spectre psychophysique, ça s'enflamme à travers des phénomènes de poltergeist "maisons hantées" *** maintenant considérés comme un effet de chaos profond ou la misère humaine s'exprime via un mode psychokinétique pas encore compris. Ainsi, grotesque, effrayant maintenant, les bruits, les pluies de pierres, les bouteilles brisées, les ampoules qui explosent, la modification violente inexplicable d'un équipement électrique symbolisent et exprimer plus directement que les mots ou la musique ou la peinture le conflit intérieur et l'agitation de la personne autour de laquelle tout ceci se produit.

Jung interprète ces phénoménal - comme les détonations chez Freud - comme des cas extrêmes de liens "transpsychiques" de causalité. Dans la vie quotidienne, ils se manifestent bien sûr de façon moins spectaculaire. Je décide d'écrire une phrase et le fonctionnement électrique de mon cerveau, le fonctionnement moteur de mes muscles exécutent cette décision via une chaîne traçable de causes physiques, mais c'était ma décision qui a établi le processus en cours. Il est en outre possible que de telles décisions puissent avoir des effets directs sur des processus biologiques qui ne sont pas en contact physique avec le corps du décideur, comme suggéré dans un article récent de John L. Randall sur "les phénomènes psi et théorie biologique" ****, qui fait référence à des travaux expérimentaux testant les effets psychokinétiques sur l'activité enzymatique, sur les paramécies, sur la croissance des plantes, et sur la cicatrisation des lésions chez la souris. Il fournit par ailleurs la jolie définition suivante générale: "Un phénomène psi est dite avoir eu lieu lorsque des informations sont transmises vers un système physique sans utilisation d'aucune forme connue d'énergie physique."

n peut ainsi distinguer entre différents niveaux: conscience de décision; phénomènes de type poltergeist engendré dans les couches subconscientes de la psyché, et enfin la synchronicité et les coïncidences significatives produites par l'esprit opérant à un autre niveau, inconcevable. Dans ce contexte, je pense qu'il me faut exprimer mon désaccord avec M. Koestler sur ce "sentiment océanique" et son " concept dominant" que "tout est un et un est tout" qui "fait écho à travers des écrits des mystiques chrétiens" (p.108).

Je suis sûre que cela arrive, et que, comme il l'écrit, il s'agit d'un passage vers le haut de la spirale de la conscience symbiotique de l'enfant, l'époque dorée du "temps du rêve" du primitif. Mais je ne pense pas que tous les mystiques, chrétiens ou non, partagent cette conception dominante, et le sentiment d'unité avec l'anima mundi que cela sous tende. Ils sont enflammés par une joie presque intolérable, mais ne sont pas engloutis en elle. Il ne peut y avoir de perception sans percepteur, et le contemplatif se perçoit lui-même suffisamment bien pour savoir s'il se réjouit. C'est comme si le coucher du soleil, ou la chaine de montagnes ou la nuit des étoiles qui les avaient mis en admiration se manifestaient comme étant en vie et les regardaient en retour. Il y a cette mémoire d'une remarque sobre de Francis Bacon, avocat, homme politique, essayiste et chercheur, qui évoqua pour la première fois des méthodes expérimentales pour tester en Angleterre la cognition paranormale. "J'aimerai plutôt croire toutes les fables du Talmud et du Coran que penser toute cette trame universelle sans esprit", un esprit qui est plus qu'un ordinateur mathématique et plus qu'un vaste système nerveux automatique, qui animerait tout ce qui est, aussi efficace et aussi inconscient de lui-même qu'une saine digestion.

Auteur: Koestler Arthur

Info: Internet et Roots of coïncidence. *M. Ullman et S. Krippner, études de rêves et de télépathie. Parapsychology Foundation, New York, 1970. **Stanley Krippner et autres, "bombardement sensoriel à longue distance, une étude de l'ESP dans les rêves." JASPR, vol. 65, n ° 4, Octobre 1971. *** Cf. ARG Owen, peut-on expliquer le Poltergeist? New York, 1964. ** "L'affaire Poltergeist Rosenheim", une communication lue par le Dr Hans Bender, le 11e Congrès annuel de l'Association de parapsychologie de Freiburg, Septembre 1968. Voir aussi JSPR., Vol. 46, n ° 750, Décembre 1970. **** SPR, vol. 46, n ° 749, Septembre 1971.

[ Holon ] [ chair-esprit ] [ intégratif ] [ épigénétique ] [ pré-mémétique ] [ homme-animal ] [ curiosité moteur ] [ dépaysement nécessaire ] [ spiritualité ]

 
Commentaires: 1

homme-végétal

Il arrive parfois qu’une personne puisse nommer le moment exact où sa vie a changé de manière irrévocable. Pour Cleve Backster, ce fut tôt le matin du 2 février 1966, treize minutes et cinquante-cinq secondes après le début d'un test polygraphique qu'il administrait. Backster, un expert en polygraphie de premier plan dont le test de comparaison de zones Backster est la norme mondiale en matière de détection de mensonge, avait à ce moment-là menacé le bien-être de son sujet de test. Le sujet répondit électrochimiquement à sa menace. Le sujet était une plante.

Depuis lors, Backster a mené des centaines d’expériences démontrant non seulement que les plantes réagissent à nos émotions et à nos intentions, mais aussi les feuilles coupées, les œufs (fécondés ou non), les yaourts et les échantillons de cellules humaines. Il a découvert, par exemple, que les globules blancs prélevés dans la bouche d'une personne et placés dans un tube à essai réagissent toujours électrochimiquement aux états émotionnels du donneur, même lorsque celui-ci est hors de la pièce, du bâtiment ou de l'État.

J'ai entendu parler du travail de Backster pour la première fois quand j'étais enfant. Ses observations ont confirmé une compréhension que j’avais alors, une compréhension que même un diplôme en physique ne pourrait éradiquer plus tard : que le monde est vivant et sensible.

J'ai parlé avec Backster à San Diego, trente et un ans et vingt-deux jours après sa première observation, et à un continent entier du bureau de Times Square à New York où il avait autrefois travaillé et vécu. Avant de commencer, il a placé du yaourt dans un tube à essai stérilisé, a inséré deux électrodes en or et a allumé la mire d'enregistrement. J'étais excité, mais dubitatif. Nous avons commencé à parler et le stylo s'est tortillé de haut en bas. Puis, juste au moment où je reprenais mon souffle avant d'être en désaccord avec quelque chose qu'il avait dit, le stylo sembla vaciller. Mais est-ce que ça avait vraiment bougé, ou est-ce que je voyais seulement ce que je voulais voir ?

À un moment donné, alors que Backster était hors de la pièce, j'ai essayé d'exprimer ma colère en pensant aux forêts coupées à blanc et aux politiciens qui les sanctionnent, aux enfants maltraités et à leurs agresseurs. Mais la ligne représentant la réponse électrochimique du yaourt est restée parfaitement plate. Peut-être que le yaourt ne m'intéressait pas. Perdant moi-même tout intérêt, j'ai commencé à errer dans le laboratoire. Mes yeux sont tombés sur un calendrier qui, après une inspection plus approfondie, s'est avéré être une publicité pour une compagnie maritime. J’ai ressenti une soudaine montée de colère face à l’omniprésence de la publicité. Puis j'ai réalisé : une émotion spontanée ! Je me suis précipité vers le graphique et j'y ai vu un pic soudain correspondant apparemment au moment où j'avais vu l'annonce.

Au retour de Backster, j’ai continué l’entretien, toujours excité et peut-être un peu moins sceptique.

Jensen : Pouvez-vous nous raconter en détail comment vous avez remarqué pour la première fois une réaction électrochimique dans une plante ?

Backster : C'était une plante de canne à sucre dracaena que j'avais dans mon laboratoire à Manhattan. Les plantes ne m'intéressaient pas particulièrement, mais il y avait une vente suite à une cessation d'activité chez un fleuriste au rez-de-chaussée de l'immeuble, et la secrétaire avait acheté quelques plantes pour le bureau : une plante à caoutchouc et cette dracaena. J'avais arrosé ces plantes jusqu'à saturation – en les mettant sous le robinet jusqu'à ce que l'eau coule du fond des pots – et j'étais curieux de voir combien de temps il faudrait à l'humidité pour atteindre le sommet. J'étais particulièrement intéressé par le dracaena, car l'eau devait remonter le long d'un long tronc, puis ressortir jusqu'au bout des longues feuilles. Je pensais que si je plaçais le détecteur de réponse galvanique cutanée du polygraphe au bout de la feuille, une baisse de résistance serait enregistrée sur le papier à mesure que l'humidité arriverait entre les électrodes.

C’est du moins ma façon de voir les choses. Je ne sais pas s’il y avait une autre raison, plus profonde, à mon action. Il se pourrait que mon subconscient m'ait poussé à faire ça – je ne sais pas.

En tout cas, j’ai remarqué quelque chose sur le graphique qui ressemblait à une réponse humaine sur un polygraphe : ce n’est pas du tout ce à quoi j’aurais pu m’attendre si de l’eau pénétrait dans une feuille. Les détecteurs de mensonge fonctionnent sur le principe selon lequel lorsque les gens perçoivent une menace pour leur bien-être, ils réagissent physiologiquement de manière prévisible. Par exemple, si vous effectuez un test polygraphique dans le cadre d’une enquête pour meurtre, vous pourriez demander à un suspect : " Est-ce vous qui avez tiré le coup mortel ? " Si la vraie réponse était oui , le suspect craindrait de mentir et les électrodes placées sur sa peau détecteraient la réponse physiologique à cette peur. J’ai donc commencé à réfléchir à des moyens de menacer le bien-être de la plante. J’ai d’abord essayé de tremper une de ses feuilles dans une tasse de café chaud. La plante, au contraire, montrait de l’ennui – la ligne sur le graphique continuait de baisser.

Puis, à treize minutes et cinquante-cinq secondes de temps graphique, l'idée m'est venue à l'esprit de brûler la feuille. Je n'ai pas verbalisé l'idée ; Je n'ai pas touché à la plante ; Je n'ai pas touché au matériel. Pourtant, la plante s'est comme affolée. Le stylo a sauté du haut du graphique. La seule chose à laquelle il avait pu réagir était mon image mentale.

Ensuite, j'ai récupéré quelques allumettes sur le bureau de mon secrétaire et, en allumant une, j'ai fait quelques passages sur la feuille. Cependant, j'ai réalisé que je constatais déjà une réaction si extrême qu'aucune augmentation ne serait perceptible. J'ai donc essayé une approche différente : j'ai éloigné la menace en remettant les allumettes sur le bureau du secrétaire. La plante s'est immédiatement calmée.

J’ai tout de suite compris qu’il se passait quelque chose d’important. Je ne trouvais aucune explication scientifique conventionnelle. Il n'y avait personne d'autre dans le laboratoire et je ne faisais rien qui aurait pu déclencher un mécanisme de déclenchement. A partir de ce moment, ma conscience n'a plus été la même. Toute ma vie a été consacrée à étudier ce phénomène.

Après cette première observation, j’ai parlé à des scientifiques de différents domaines pour obtenir leurs explications sur ce qui se passait. Mais cela leur était totalement étranger. J’ai donc conçu une expérience pour explorer plus en profondeur ce que j’ai commencé à appeler la perception primaire.

Jensen : Pourquoi  " perception primaire " ?

Backster : Je ne puis nommer ce dont j'ai été témoin perception extrasensorielle, car les plantes ne possèdent pas la plupart des cinq sens. Cette perception de la part de la plante semblait se produire à un niveau beaucoup plus basique – ou primaire.

Quoi qu’il en soit, ce qui a émergé est une expérience dans laquelle j’ai fait tomber automatiquement les crevettes de saumure, à intervalles aléatoires, dans de l’eau frémissante, tandis que la réaction des plantes était enregistrée à l’autre bout du laboratoire.

Jensen : Comment pouviez-vous savoir si les plantes réagissaient à la mort de la crevette ou à vos émotions ?

Backster : Il est très difficile d'éliminer le lien entre l'expérimentateur et les plantes testées. Même une brève association avec les plantes – quelques heures seulement – ​​suffit pour qu’elles s’adaptent à vous. Ensuite, même si vous automatisez et randomisez l’expérience et quittez le laboratoire, ce qui garantit que vous ignorez totalement le moment où l’expérience commence, les plantes resteront à votre écoute, peu importe où vous irez. Au début, mon partenaire et moi allions dans un bar situé à un pâté de maisons, mais au bout d'un certain temps, nous avons commencé à soupçonner que les plantes réagissaient, non pas à la mort des crevettes saumâtres, mais à l'augmentation et à la diminution du niveau d'excitation dans nos conversations.

Finalement, quelqu'un d'autre a acheté les plantes et les a stockées dans une autre partie du bâtiment. Le jour de l’expérience, nous sommes allés chercher les plantes, les avons amenées, les avons branchées et sommes partis. Cela signifiait que les plantes étaient seules dans un environnement étrange, avec seulement la pression des électrodes et un petit filet d'électricité traversant leurs feuilles. Parce qu’il n’y avait pas d’humains avec lesquels s’harmoniser, elles ont commencé à " regarder autour " de leur environnement. Ce n’est qu’à ce moment-là que quelque chose d’aussi subtil que la mort des artémias a été capté par les plantes.

Jensen : Les plantes s'adaptent-elles uniquement aux humains, ou également aux autres créatures vivantes de leur environnement ?

Backster : Je vais répondre à cette question avec un exemple. Souvent, je branche une plante et je m'occupe de mes affaires, puis j'observe ce qui la fait réagir. Un jour, je faisais bouillir de l'eau dans une bouilloire pour faire du café. Puis j’ai réalisé que j’avais besoin de la bouilloire pour autre chose, alors j’ai versé l’eau bouillante dans l’évier. Le végétal en question, surveillé, a réagi énormément à cela. Maintenant, si vous ne mettez pas de produits chimiques ou d’eau chaude dans l’évier pendant une longue période, une jungle microscopique commence à s’y développer. Il s’est avéré que la plante réagissait à la mort des microbes présents dans les égouts.

À maintes reprises, j'ai été étonné de constater que la capacité de perception s'étend jusqu'au niveau bactérien. Un échantillon de yaourt, par exemple, réagira lorsqu'un autre est nourri, comme pour dire : " Celui-là reçoit de la nourriture. Où est la mienne? " Cela se produit avec un certain degré de répétabilité. Ou si vous déposez des antibiotiques dans l’autre échantillon, le premier échantillon de yaourt montre une énorme réponse à la mort de l’autre. Et il n’est même pas nécessaire qu’il s’agisse de bactéries du même type pour que cela se produise. Mon premier chat siamois ne mangeait que du poulet. J'en gardais un cuit dans le réfrigérateur du laboratoire et en retirais un morceau chaque jour pour nourrir le chat. Au moment où j'arriverais à la fin, la carcasse serait assez vieille et des bactéries auraient commencé à s'y développer. Un jour, j'ai fait brancher du yaourt, et alors que je sortais le poulet du réfrigérateur et commençais à retirer des lanières de viande, le yaourt a répondu. Ensuite, je mets le poulet sous une lampe chauffante pour le ramener à température ambiante.

Jensen : Vous avez visiblement chouchouté votre chat.

Backster : Je n'aurais pas voulu que le chat doive manger du poulet froid ! Quoi qu’il en soit, la chaleur frappant les bactéries a provoqué une énorme réaction dans le yaourt.

Jensen : Comment saviez-vous que vous n'aviez pas d'influence sur cela ?

Backster : Je n’étais pas au courant de la réaction à l’époque. Vous voyez, j'avais installé des commutateurs pip partout dans le laboratoire ; chaque fois que j'effectuais une action, j'appuyais sur un interrupteur, ce qui plaçait une marque sur un tableau distant. Ce n’est que plus tard que j’ai comparé la réaction du yaourt à ce qui s’était passé en laboratoire.

Jensen : Et quand le chat a commencé à ingérer le poulet ?

Backster : Chose intéressante, les bactéries semblent avoir un mécanisme de défense tel qu'un danger extrême les amène dans un état similaire à un choc : en fait, elles s'évanouissent. De nombreuses plantes font cela également ; si vous les harcelez suffisamment, elles se bloquent. C'est apparemment ce que les bactéries ont fait, car dès qu'elles ont touché le système digestif du chat, le signal s'est éteint. À partir de ce moment-là, la ligne est plate.

Jensen : Le Dr David Livingstone, l'explorateur africain, a été mutilé par un lion. Il a déclaré plus tard que lors de l'attaque, il n'avait pas ressenti de douleur, mais plutôt un sentiment de bonheur. Il a dit que cela n'aurait posé aucun problème de se livrer au lion.

Backster : Une fois, j'étais dans un avion et j'avais avec moi un petit compteur à réponse galvanique alimenté par batterie. Juste au moment où les agents de bord commençaient à servir le déjeuner, j'ai dit à l'homme assis à côté de moi : " Vous voulez voir quelque chose d'intéressant ? J'ai mis un morceau de laitue entre les électrodes, et quand les gens ont commencé à manger leurs salades, nous avons eu des réactions, mais elles se sont arrêtées car les feuilles étaient en état de choc. " Attendez qu'ils récupèrent les plateaux ", dis-je, "et voyez ce qui se passe." Lorsque les préposés ont retiré nos repas, la laitue a retrouvé sa réactivité. Le fait est que la laitue passait dans un état de latence pour ne pas souffrir. Quand le danger est parti, la réactivité est revenue. Cet arrêt de l’énergie électrique au niveau cellulaire est lié, je crois, à l’état de choc chez les humains.

Les cellules extérieures au corps réagissent toujours aux émotions que vous ressentez, même si vous êtes à des kilomètres de vous. La plus grande distance que nous avons testée est d’environ trois cents milles.

Jensen : Vous avez donc testé des plantes, des bactéries, des feuilles de laitue. . .

Backster : Et des œufs. J'ai eu un Doberman pinscher pendant un certain temps et je lui donnais un œuf par jour. Un jour, j'avais une plante reliée à un grand compteur à réponse galvanique, et alors que je cassais un œuf pour nourrir le chien, le compteur est devenu fou. Après cela, j’ai passé des centaines d’heures à surveiller les œufs, fécondés et non fécondés, c'est pareil ; c'est toujours une cellule vivante.

Après avoir travaillé avec des plantes, des bactéries et des œufs, j’ai commencé à me demander comment les animaux réagiraient. Mais je n’arrivais pas à faire en sorte qu’un chat ou un chien reste immobile assez longtemps pour effectuer une surveillance significative. J'ai donc pensé essayer les spermatozoïdes humains, qui sont capables de rester vivants en dehors du corps pendant de longues périodes et sont certainement assez faciles à obtenir. Dans cette expérience, l’échantillon du donneur était placé dans un tube à essai doté d’électrodes et le donneur était séparé du sperme par plusieurs pièces. Ensuite, le donneur a inhalé du nitrite d'amyle, qui dilate les vaisseaux sanguins et est classiquement utilisé pour arrêter un accident vasculaire cérébral. Le simple fait d’écraser le nitrite d’amyle a provoqué une réaction importante du sperme, et lorsque le donneur a inhalé, le sperme s’est déchaîné.

Cependant, je ne pouvais pas poursuivre ces recherches. Cela aurait été scientifiquement valable, mais politiquement stupide. Les sceptiques dévoués m'auraient sans doute ridiculisé en me demandant où se trouvait mon masturbatorium, etc.

Puis j’ai rencontré un chercheur dentaire qui avait mis au point une méthode de collecte de globules blancs dans la bouche. C’était politiquement faisable, facile à réaliser et ne nécessitait aucune surveillance médicale. J'ai commencé à faire des expériences enregistrées sur écran partagé, avec l'affichage du graphique superposé au bas d'un écran montrant les activités du donneur. Nous avons prélevé des échantillons de globules blancs, puis renvoyé les gens chez eux pour regarder un programme télévisé présélectionné susceptible de susciter une réaction émotionnelle – par exemple, montrer à un vétéran de Pearl Harbor un documentaire sur les attaques aériennes japonaises. Ce que nous avons découvert, c'est que les cellules situées à l'extérieur du corps réagissent toujours aux émotions que vous ressentez, même si elles sont à des kilomètres de vous.

La plus grande distance que nous avons testée est d’environ trois cents milles. Brian O'Leary, qui a écrit Exploring Inner and Outer Space , a laissé ses globules blancs ici à San Diego, puis s'est envolé pour Phoenix. En chemin, il a gardé une trace des événements qui l'avaient agacé, en notant soigneusement l'heure de chacun. La corrélation est restée, même sur cette distance.

Jensen : Les implications de tout cela...

Backster : – sont stupéfiantes, oui. J'ai des tiroirs remplis de données anecdotiques de haute qualité montrant à maintes reprises comment les bactéries, les plantes, etc. sont toutes incroyablement en harmonie les unes avec les autres. Les cellules humaines ont elles aussi cette capacité de perception primaire, mais d'une manière ou d'une autre, elle s'est perdue au niveau conscient. Ou peut-être n’avons-nous jamais eu un tel talent.

Je soupçonne que lorsqu’une personne est suffisamment avancée spirituellement pour gérer de telles perceptions, elle sera correctement à l’écoute. En attendant, il serait peut-être préférable de ne pas être à l’écoute, à cause des dommages que nous pourrions causer en manipulant mal les informations reçues.

Nous avons tendance à nous considérer comme la forme de vie la plus évoluée de la planète. C'est vrai, nous réussissons très bien dans nos efforts intellectuels. Mais ce n’est peut-être pas le critère ultime permettant de juger. Il se pourrait que d’autres formes de vie soient plus avancées spirituellement. Il se pourrait également que nous nous approchons de quelque chose qui nous permettra d'améliorer notre perception en toute sécurité. De plus en plus de personnes travaillent ouvertement dans ces domaines de recherche encore marginalisés. Par exemple, avez-vous entendu parler du travail de Rupert Sheldrake avec les chiens ? Il installe une caméra d'enregistrement du temps sur le chien à la maison et sur le compagnon humain au travail. Il a découvert que, même si les gens rentrent du travail à une heure différente chaque jour, au moment où la personne quitte le travail, le chien de la maison se dirige vers la porte.

Jensen : Comment la communauté scientifique a-t-elle accueilli votre travail ?

Backster : À l’exception de scientifiques marginalisés comme Sheldrake, la réponse a été d’abord la dérision, puis l’hostilité, et maintenant surtout le silence.

Au début, les scientifiques appelaient la perception primaire " l’effet Backster ", espérant peut-être pouvoir banaliser les observations en leur donnant le nom de cet homme sauvage qui prétendait voir des choses qui avaient échappé à la science dominante. Le nom est resté, mais comme la perception primaire ne peut pas être facilement écartée, ce n'est plus un terme de mépris.

Au moment même où les scientifiques ridiculisaient mon travail, la presse populaire lui prêtait une très grande attention, dans des dizaines d'articles et dans des livres, comme The Secret Life of Plants de Peter Tompkins . Je n’ai jamais demandé aucune attention et je n’en ai jamais profité. Les gens sont toujours venus me chercher des informations.

Pendant ce temps, la communauté botanique était de plus en plus mécontente. Ils voulaient " aller au fond de toutes ces absurdités " et prévoyaient de résoudre le problème lors de la réunion de 1975 de l’Association américaine pour l’avancement de la science à New York. Arthur Galston, un botaniste bien connu de l'Université de Yale, a réuni un groupe restreint de scientifiques pour, à mon avis, tenter de discréditer mon travail ; il s’agit d’une réponse typique de la communauté scientifique aux théories controversées. J'avais déjà appris qu'on ne se lance pas dans ces combats pour gagner ; vous y allez pour survivre. Et c’est exactement ce que j’ai pu faire.

Ils en sont maintenant arrivés au point où ils ne peuvent plus contrer mes recherches, leur stratégie consiste donc simplement à m'ignorer et à espérer que je m'en aille. Bien sûr, cela ne fonctionne pas non plus.

Jensen : Quelle est leur principale critique ?

Backster : Le gros problème – et c’est un gros problème en ce qui concerne la recherche sur la conscience en général – est la répétabilité. Les événements que j'ai observés ont tous été spontanés. Elles doivent être. Si vous les planifiez à l'avance, vous les avez déjà modifiés. Tout se résume à ceci : répétabilité et spontanéité ne font pas bon ménage, et aussi longtemps que les membres de la communauté scientifique insisteront trop sur la répétabilité dans la méthodologie scientifique, ils n’iront pas très loin dans la recherche sur la conscience.

Non seulement la spontanéité est importante, mais l’intention l’est aussi. Vous ne pouvez pas faire semblant. Si vous dites que vous allez brûler une feuille sur la plante, mais que vous ne le pensez pas, rien ne se passera. J'entends constamment des gens de tout le pays vouloir savoir comment provoquer des réactions chez les plantes. Je leur dis : " Ne faites rien. Allez à votre travail; prenez des notes sur ce que vous faites à des moments précis et comparez-les plus tard à votre enregistrement graphique. Mais ne planifiez rien, sinon l’expérience ne fonctionnera pas. " Les gens qui font cela obtiennent souvent les mêmes résultats que moi et remportent le premier prix aux expo-sciences. Mais lorsqu'ils arrivent au cours de biologie 101, on leur dit que ce qu'ils ont vécu n'est pas important.

Il y a eu quelques tentatives de la part des scientifiques pour reproduire mon expérience avec les crevettes Artemia, mais elles se sont toutes révélées inadéquates sur le plan méthodologique. Lorsqu’ils ont appris qu’ils devaient automatiser l’expérience, ils se sont simplement rendus de l’autre côté d’un mur et ont utilisé la télévision en circuit fermé pour regarder ce qui se passait. De toute évidence, ils ne retiraient pas leur conscience de l’expérience, il leur était donc très facile d’échouer. Et soyons honnêtes : certains scientifiques ont été soulagés lorsqu’ils ont échoué, car le succès aurait été contraire à l’ensemble des connaissances scientifiques.

Jensen : L'accent mis sur la répétabilité semble anti-vie, car la vie elle-même n'est pas reproductible. Comme Francis Bacon l’a clairement indiqué, la répétabilité est inextricablement liée au contrôle, et le contrôle est fondamentalement l’essence même de la science occidentale, de la culture occidentale. Pour que les scientifiques abandonnent la répétabilité, ils devraient abandonner le contrôle, ce qui signifie qu’ils devraient abandonner la culture occidentale, et cela n’arrivera pas tant que cette civilisation ne s’effondrera pas sous le poids de ses propres excès écologiques.

Backster : J’ai renoncé à lutter contre d’autres scientifiques sur ce point. Mais je sais que s’ils réalisent mon expérience, même si elle échoue, ils verront quand même des choses qui changeront leur conscience. Ils ne seront plus jamais tout à fait les mêmes.

Des gens qui n’auraient rien dit il y a vingt ans me disent souvent : " Je pense que je peux maintenant vous dire en toute sécurité à quel point vous avez vraiment changé ma vie avec ce que vous faisiez au début des années soixante-dix. " À l’époque, ces scientifiques ne pensaient pas avoir le luxe de faire bouger les choses ; leur crédibilité, et donc leurs demandes de subvention, en auraient été affectées.

Jensen : En regardant votre travail, nous sommes confrontés à plusieurs options : Nous pouvons croire que vous mentez, ainsi que tous ceux qui ont déjà fait des observations similaires. On peut croire que ce que vous dites est vrai, ce qui nécessiterait de retravailler toute la notion de répétabilité dans la méthode scientifique, ainsi que nos notions de conscience, de communication, de perception, etc. Ou bien on peut croire que vous avez commis une erreur. Est-il possible que vous ayez négligé une explication strictement mécaniste de vos observations ? Un scientifique a dit qu’il devait y avoir un fil lâche dans votre détecteur de mensonge.

Backster : En trente et un ans de recherche, c'est comme si j'avais " desserré tous les noeuds ". Non, je ne vois aucune solution mécaniste. Certains parapsychologues pensent que je maîtrise l'art de la psychokinésie, que je fait bouger les aiguilles et autres indicateurs avec mon esprit – ce qui serait en soi une très bonne astuce. Mais ils négligent le fait que j'ai automatisé et randomisé de nombreuses expériences, de sorte que je ne suis même conscient de ce qui se passe que plus tard, lorsque j'étudie les graphiques et les bandes vidéo qui en résultent. Les explications conventionnelles sont devenues assez minces. L’une de ces explications, proposée dans un article du Harper’s, était l’électricité statique : si vous vous déplacez à travers la pièce et touchez la plante, vous obtenez une réponse. Mais bien sûr, je touche rarement la plante pendant l'observation, et de toute façon cette réaction serait totalement différente.

Jensen : Alors, quel est le signal capté par la plante ?

Backster : Je ne sais pas. Quoi qu’il en soit, je ne crois pas que le signal se dissipe à distance, comme ce serait le cas si nous avions affaire à un phénomène électromagnétique. Le signal de Phoenix, par exemple, était aussi fort que si Brian O'Leary avait été dans la pièce voisine.

Nous avons également tenté d'obstruer le signal à l'aide de plomb et d'autres matériaux, mais nous ne pouvons pas l'arrêter. Cela me fait penser que le signal ne va pas réellement d'ici à là, mais se manifeste plutôt à différents endroits. Je soupçonne que le signal ne prend pas de temps pour se déplacer. Il n'y a aucun moyen, en utilisant les distances terrestres, de tester cela, car si le signal était électromagnétique, il se propagerait à la vitesse de la lumière, et les retards biologiques consommeraient plus que la fraction de seconde qu'il faudrait au signal pour se propager. La seule façon de tester cela serait dans l’espace.

Certains physiciens quantiques soutiennent cette conviction – selon laquelle le signal ne dépend ni du temps ni de la distance. Il existe une théorie quantique appelée théorème de Bell, qui stipule que deux atomes éloignés l'un de l'autre changent parfois simultanément la direction de leur rotation.

Bien entendu, tout cela nous amène fermement sur le territoire du métaphysique et du spirituel. Pensez à la prière, par exemple. Si vous deviez prier Dieu, et que Dieu se trouvait de l’autre côté de la galaxie, et que votre prière voyageait à la vitesse de la lumière, vos os seraient depuis longtemps poussière avant que Dieu puisse répondre. Mais si Dieu – quelle que soit la manière dont vous définissez Dieu – est partout, la prière n'a pas besoin de voyager.

Jensen : Soyons plus concrets. Vous avez une image mentale de la plante en train de brûler et la plante réagit. Que se passe-t-il précisément à cet instant ? Comment la plante sait-elle réagir ?

Backster : Je ne prétends pas savoir. En fait, j’ai attribué une grande partie de ma réussite à pouvoir rester actif dans ce domaine – et à ne pas avoir été discrédité – au fait que je ne prétends pas le savoir. Vous voyez, si je donne une explication erronée, peu importe la quantité de données dont je dispose ou le nombre d’observations de qualité que j’ai faites. La communauté scientifique dominante utilisera l’explication incorrecte comme excuse pour rejeter mes données et mes observations. J'ai donc toujours dit que je ne savais pas comment cela se produisait. Je suis un expérimentateur, pas un théoricien.

Jensen : La capacité des plantes à percevoir l'intention me suggère une redéfinition radicale de la conscience.

Backster : Vous voulez dire que cela supprimerait la notion de conscience comme quelque chose sur lequel les humains ont le monopole ?

Jensen : Les humains et autres animaux dits supérieurs. Selon la pensée occidentale, parce que les plantes n’ont pas de cerveau, elles ne peuvent pas avoir de conscience.

Backster : Je pense que la science occidentale exagère le rôle du cerveau dans la conscience. Des livres entiers ont été écrits sur la conscience de l’atome. La conscience pourrait exister à un tout autre niveau. De très bonnes recherches ont été réalisées sur la survie de la conscience après la mort corporelle. Tout cela pointe vers l’idée selon laquelle la conscience n’a pas besoin d’être spécifiquement liée à la matière grise. Cette notion est une autre camisole de force dont nous devons nous débarrasser. Le cerveau a peut-être quelque chose à voir avec la mémoire, mais on peut affirmer avec force qu’une grande partie de notre mémoire n’y est pas stockée.

Jensen : La notion de mémoire corporelle est familière à tout athlète : lorsque vous vous entraînez, vous essayez de créer des souvenirs dans vos muscles.

Backster : Le cerveau ne fait peut-être même pas partie de cette boucle.

Jensen : J'ai également lu des articles sur les séquelles physiologiques des traumatismes – maltraitance des enfants, viol, guerre. De nombreuses recherches montrent que le traumatisme s’imprime sur différentes parties du corps ; une victime de viol pourrait plus tard ressentir une brûlure dans son vagin, par exemple.

Backster : Si je me cogne, j'explique aux tissus de cette zone ce qui s'est passé. Je ne sais pas à quel point cette méthode de guérison est efficace, mais elle ne peut pas faire de mal.

Jensen : Avez-vous également travaillé avec ce que l'on appelle normalement des matériaux inanimés ?

Backster : J'ai déchiqueté certaines substances et je les ai mises en suspension dans de la gélose. Je reçois des signaux électriques, mais ils ne sont pas nécessairement liés à quoi que ce soit qui se passe dans l'environnement. Les schémas sont trop grossiers pour que je puisse les déchiffrer. Mais je soupçonne que la conscience est plus répandue.

En 1987, j'ai participé à un programme de l'Université du Missouri qui comprenait une conférence du Dr Sidney Fox, qui était alors lié à l'Institut pour l'évolution moléculaire et cellulaire de l'Université de Miami. Fox avait enregistré des signaux électriques provenant d’un matériau semblable à une protéine qui présentait des propriétés étonnamment similaires à celles des cellules vivantes. La simplicité du matériel qu'il a utilisé et la capacité d'auto-organisation dont il fait preuve me suggèrent que la biocommunication était présente dès les tout premiers stades de l'évolution de la vie sur cette planète.

Bien sûr, l’hypothèse de Gaia – selon laquelle la Terre est un grand, grand organisme fonctionnel – s’inscrit parfaitement dans ce contexte. La planète va avoir le dernier mot concernant les dégâts que les humains lui infligent. Il ne lui faudra qu'un certain nombre d'abus, et alors il pourrait bien roter et renifler un peu, et détruire une bonne partie de la population. Je ne pense pas qu'il serait exagéré de pousser l'hypothèse un peu plus loin et d'attribuer une telle stratégie de défense à une sorte d'intelligence planétaire.

Jensen : Comment votre travail a-t-il été reçu dans d'autres parties du monde ?

Backster : Les Russes ont toujours été très intéressés et n'ont pas eu peur de s'aventurer dans ces domaines de recherche. À bien des égards, ils semblent beaucoup plus sensibles aux concepts spirituels que la plupart des scientifiques occidentaux. Et chaque fois que je parle de ce que je fais avec des scientifiques indiens – bouddhistes ou hindous –, ils me demandent : " Qu’est-ce qui vous a pris autant de temps ? " Mon travail s'accorde très bien avec de nombreux concepts adoptés par l'hindouisme et le bouddhisme.

Jensen : De quoi avons-nous peur, nous, les Occidentaux ?

Backster : La crainte est que, si ce que j’observe est exact, bon nombre des théories sur lesquelles nous avons construit nos vies doivent être complètement remaniées. J'ai connu des biologistes dire : " Si Backster a raison, nous sommes dans la merde . " Cela signifierait une refonte radicale de notre place dans le monde. Je pense que nous le voyons déjà.

Notre communauté scientifique occidentale en général se trouve dans une situation difficile car, pour maintenir notre mode de pensée scientifique actuel, nous devons ignorer une énorme quantité d’informations. Et de plus en plus d’informations de ce type sont recueillies en permanence. Les chercheurs butent partout sur ce phénomène de biocommunication. Il semble impossible, compte tenu de la sophistication des instruments modernes, de passer à côté de cette harmonisation fondamentale entre les êtres vivants. Seulement pendant un certain temps, ils pourront prétendre qu’il s’agit que de " cables déconnectés ".

Auteur: Internet

Info: Les plantes réagissent - Une entrevue avec Cleve Backster, Derrick Jensen,  Juillet 1997 - https://www.thesunmagazine.org/

[ télépathie ] [ adéquation corps-esprit ] [ universel esprit ] [ ego prison ]

 
Commentaires: 1
Ajouté à la BD par Le sous-projectionniste