Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 168
Temps de recherche: 0.0504s

proto-vie

Preuve que les premières cellules de la Terre - il y a 3,8 milliards d'années - auraient pu créer des compartiments spécialisés

De nouvelles recherches menées par l'Université d'Oslo montrent que les "protocellules" qui se sont formées il y a environ 3,8 milliards d'années, avant les bactéries et les organismes unicellulaires, pourraient avoir eu des compartiments spécialisés ressemblant à des bulles formées spontanément, ont encapsulé de petites molécules et ont formé des protocellules "filles".

Les scientifiques ont longtemps spéculé sur les caractéristiques que nos lointains ancêtres unicellulaires auraient pu avoir et sur l'ordre dans lequel ces caractéristiques sont apparues. Les compartiments en forme de bulles sont une caractéristique du super-royaume auquel nous appartenons, ainsi que de nombreuses autres espèces, dont la levure. Mais les cellules du supra-royaume actuel possèdent une multitude de molécules spécialisées qui contribuent à la création et à la formation de ces bulles à l'intérieur de nos cellules. Les scientifiques se demandaient ce qui vint en premier : les bulles ou les molécules qui les façonnent ? De nouvelles recherches menées par Karolina Spustova, étudiante diplômée, et ses collègues du laboratoire d'Irep Gözen à l'université d'Oslo, montrent qu'avec seulement quelques éléments clés, ces petites bulles peuvent se former d'elles-mêmes, encapsuler des molécules et se diviser sans aide. Mme Spustova présentera ses travaux, publiés en janvier, le mercredi 24 février lors de la 65e réunion annuelle de la Biophysical Society.

Il y a 3,8 milliards d'années, c'est à peu près la date à laquelle notre ancêtre unicellulaire est apparu. Il aurait précédé non seulement les organismes complexes de notre super-royaume, mais aussi les bactéries les plus élémentaires. La question de savoir si cette "protocellule" possédait des compartiments en forme de bulles reste un mystère. Pendant longtemps, les scientifiques ont pensé que ces bulles de lipides étaient un élément qui distinguait notre superroyaume des autres organismes, comme les bactéries. C'est pourquoi ils pensaient que ces compartiments avaient pu se former après l'apparition des bactéries. Mais des recherches récentes ont montré que les bactéries possèdent elles aussi des compartiments spécialisés, ce qui a amené l'équipe de recherche de Gözen à se demander si la protocellule qui a précédé les bactéries et nos ancêtres pouvait en posséder. Et si oui, comment auraient-ils pu se former ?

L'équipe de recherche a mélangé les lipides qui forment les compartiments cellulaires modernes, appelés phospholipides, avec de l'eau et a placé le mélange sur une surface de type minéral. Ils ont constaté que de grosses bulles se formaient spontanément et qu'à l'intérieur de ces bulles se trouvaient des bulles plus petites. Pour vérifier si ces compartiments pouvaient encapsuler de petites molécules, comme ils devraient le faire pour avoir des fonctions spécialisées, l'équipe a ajouté des colorants fluorescents. Ils ont observé que ces bulles étaient capables d'absorber et de retenir les colorants. Ils ont également observé des cas où les bulles se divisaient, laissant des bulles "filles" plus petites, ce qui est "un peu comme une simple division des premières cellules", explique Mme Spustova. Tout cela s'est produit sans machine moléculaire, comme celles que nous avons dans nos cellules, et sans apport d'énergie.

L'idée que cela ait pu se produire sur Terre il y a 3,8 milliards d'années n'est pas inconcevable. M. Gözen explique que l'eau aurait été abondante et que "la silice et l'aluminium, que nous avons utilisés dans notre étude, sont présents dans les roches naturelles". Les recherches montrent que les molécules de phospholipides pourraient avoir été synthétisées dans les premières conditions terrestres ou être arrivées sur Terre avec des météorites. Selon M. Gözen, "on pense que ces molécules ont atteint des concentrations suffisantes pour former des compartiments phospholipidiques". Il est donc possible que l'ancienne "protocellule" qui a précédé tous les organismes actuellement présents sur Terre ait eu tout ce qu'il fallait pour que des compartiments en forme de bulles se forment spontanément.

Auteur: Internet

Info: https://scitechdaily.com/ - BIOPHYSICAL SOCIETY FEBRUARY 24, 2021

[ microgoutte ] [ protobionte ] [ inorganique organique ]

 

Commentaires: 0

Ajouté à la BD par miguel

chirurgie

On reprit, mais sur des bases nouvelles, l’antique constatation des mages d’autrefois concernant l’intervention nécessaire d’un nombre pair dans toutes les constructions humaines ; mais on eut le tort considérable de négliger, à ce moment, le nombre impair, qui se retrouva dans tous les mythes anciens, et qui complétait soit le chiffre douze, par le nombre treize, soit le chiffre six par le nombre sept, figurant l’unité divine. On constata simplement la dualité fondamentale de tous les êtres supérieurs, et l’on s’avisa, dans les laboratoires, de couper des hommes en deux, dans le sens vertical, pour essayer d’en faire une complète analyse.

Je n’ai pas besoin de dire qu’en ce temps-là, la technique opératoire était parvenue à un si haut degré de perfection que de pareilles opérations semblaient toutes naturelles.

Ces premières expériences ne furent couronnées d’aucun succès. Il semblait cependant logique de séparer, par un plan vertical passant par l’arête du nez, un homme composé de parties semblables des deux côtés et qui ne formait, à bien prendre, qu’un être double. Malheureusement, je le répète, cette analyse ne donna aucun résultat satisfaisant.

Tandis que depuis des siècles on pouvait sectionner un être humain dans le sens horizontal en le privant définitivement du double usage de certains membres, l’opération contraire demeurait impossible.

En section transversale, on arrivait à réaliser de véritables merveilles opératoires. Après avoir pratiqué l’ablation banale des deux bras et des deux jambes, on réussit également celle du tronc. Au moyen de canalisations très simplement réglées, la tête put vivre isolée sans aucune difficulté. On parvint même à la sectionner horizontalement, à isoler le cerveau, puis une couche horizontale de substance cérébrale. Tant que le corps ainsi réduit présentait deux parties symétriques, il continuait à montrer indubitablement tous les caractères de la vie.

Au contraire, la section verticale, beaucoup plus logique, beaucoup plus facile, semblait-il, à réaliser, puisqu’elle laissait subsister un être entier dédoublé, eut toujours pour effet d’éteindre instantanément les sources mêmes de la vie.

Les savants d’alors, dans leur entêtement, ne se découragèrent point ; cette division de l’homme qu’ils ne pouvaient obtenir anatomiquement, ils la tentèrent au simple point de vue psychique. Petit à petit, ils parvinrent à éduquer la race humaine, alors très réduite par la science, et à la diviser en deux classes nettement opposées.

D’un côté, il y eut ce que l’on appela alors les matérialistes, construits à l’image du Léviathan, chez qui toute conscience fut abolie et qui ne conservaient que la vision du monde extérieur à trois dimensions. Leurs mouvements purement réflexes étaient suscités par les besoins journaliers de la vie sociale ; ils ne connaissaient d’autres ordres que les règlements scientifiques du monde extérieur ; leur discipline était absolue, leur science très complète, leur intelligence à peu près nulle.

Il y eut, d’autre part, ceux que l’on appela les idéalistes et qui furent privés de tout moyen de relation avec le monde extérieur à trois dimensions. Leur sort fut bientôt celui des anciens fakirs hindous, leur vie intérieure se développa dans d’étranges proportions. Pourvus simplement du seul sens de la quatrième dimension, ils ignoraient tout du temps et de l’espace. Pour eux, les phénomènes ne se succédaient pas ; pour eux bientôt il n’y eut même plus de phénomènes.

Les savants du Grand Laboratoire Central se montrèrent tout d’abord enivrés par les résultats obtenus ; ils avaient enfin, à leur sens, réalisé l’analyse de l’humanité, ils tenaient décomposés, en leur pouvoir, les éléments séparés qui composaient la vie. Leur enthousiasme diminua le jour où ils comprirent que ces éléments, ainsi séparés, ni d’un côté, ni de l’autre, n’étaient capables de reproduire la vie, et que prochainement, l’humanité allait s’éteindre pour toujours.

Ils avaient bien isolé ce qui constituait pour eux, jusqu’à ce jour, l’élément idéaliste ; mais il se trouvait que cet élément, à bien prendre, n’était lui-même qu’un phénomène d’origine matérielle comme les autres. De la réunion de ces éléments seule pouvait jaillir la flamme éternelle d’intelligence, la vie immortelle qui, jusqu’à ce jour, avait conduit l’humanité à ses plus hautes destinées.

Auteur: Pawlowski Gaston de

Info: Voyage au pays de la quatrième dimension, Flatland éditeur, 2023, pages 162 à 164

[ symétrie ] [ triade nécessaire ]

 

Commentaires: 0

Ajouté à la BD par Coli Masson

cognition

L'Étude d'une obscure tribu d'Amazonie jette un nouvel éclairage sur la façon dont le langage affecte la perception

En fin des années 30, le linguiste amateur Benjamin Lee Whorf posa la théorie que la langue peut déterminer la nature et la teneur de la pensée. Mais y a il des concepts dans une culture que les gens d'une autre culture ne peuvent pas simplement pas comprendre parce que leur langue n'a aucun mot pour elle ?

Personne n'a jamais répondu définitivement à cette question, mais les nouveaux résultats du Dr. Peter Gordon, scientifique bio-comportemental à Columbia University, vont vers une réponse positive.

Gordon a passé plusieurs années à étudier les Pirahã, une tribu isolée d'Amazonie comprenant moins de 200 personnes. Leur langue ne contient aucun mot pour les nombres au delà de "un", "deux" et "beaucoup." Même le mot Pirahã pour "un" semble se rapporter plutôt à "approximativement un" voire à "une petite quantité", par opposition à la connotation exacte du "un" dans les langues en général. Selon Gordon, ce que ces expériences montrent, c'est qu'avoir d’autres ressources linguistiques peut sculpter différemment la réalité.

Whorf indique que la langue divise le monde en différentes catégories. Il dit. "Qu'une langue choisisse de distinguer une chose contre une autres affecte la manière qu’ont les individu de percevoir la réalité." Quand Gordon donna aux gens de la tribu des tâches numériques dans lesquelles ils étaient invités à assortir de petits ensembles d'objets dans des configurations variables, les membres adultes répondirent avec précision jusqu'à deux ou trois articles, mais leur performance diminua une fois l'exercice passant de 8 à 10 articles, pour tomber à zéro avec de plus grands ensembles d'objets.

La seule exception à ce résultat fut lorsque les tâches impliquèrent des objets inégalement espacés. Ici, la performance des participants se détériora lorsque le nombre d'articles grimpa à 6 articles. Pourtant pour des ensembles de 7 à 10 objets, l'exécution était presque parfaite, alors que ces tâches étaient considérées comme plus difficiles. Gordon présume que l'espacement inégal permet aux sujets de percevoir les articles comme des parties "amas" de 2 ou 3 articles qu'ils peuvent ensuite assortir aux groupes correspondants.

Selon l'étude, l’exercice des Pirahã fut médiocre pour des tailles au-dessus de 2 ou 3, (qui n'étaient pas aléatoire). "Les participants Pirahã essayèrent réellement très dur d'obtenir les réponses correctes et ils avaient clairement compris les tâches" dit Gordon. Ces participants ont donc mis en évidence qu'ils utilisent des méthodes d'évaluation "par paquets" pour évaluer des quantités de plus grandes tailles. En moyenne, ils répondirent aux taches à peu près aussi bien que des étudiants d'université utilisant des estimations numérique bien plus complexes.

Leurs niveaux de compétence étant semblables à ceux d’enfants en bas âge (pré-linguistiques), à ceux des singes, d'oiseaux et de rongeurs, ceci semble se corréler avec les études récentes d'imagerie cérébrale qui montrent parfois une capacité différente de compétence numérique, différence qui apparaît être indépendante de la privation du langage.

De manière intéressante Gordon note que si les adultes Pirahã eurent des difficulté pour apprendre de grands nombres, leurs enfants non. Alors que les mots Pirahã pour "un" et "deux" ne se rapportent pas nécessairement à ces montants spécifiques. Gordon a également constaté que les membres de la tribu n'ont jamais l'habitude d'utiliser ces mots en association pour dénoter de plus grandes quantités. Dans l'étude, ils utilisèrent également leurs doigts en plus de leurs rapport verbaux de quantités, mais cette pratique s’avéra aussi fortement imprécise même pour les petits nombres de moins de cinq. La langue Pirahã n'a aucun mot pour "nombre," et les pronoms n'indiquent pas de quantité. "Lui" et "eux" sont le même mot. La plupart des quantificateurs standard comme "plus" "plusieurs" "tous" et "chacun" n'existent pas.

De manière générale, tout en utilisant une structure très complexe de verbes commune à beaucoup de langues américaines indigènes, la langue Pirahã ne tient pas compte de certains genres de constructions comparatives. Par exemple, il ne fut pas possible de demander aux participants si un groupe d'objets "avait plus de volume que l'autre" en raison du manque de cette construction grammaticale dans leur idiome. Cependant, le mot qu'ils emploient pour "beaucoup" - qui dans leur langue est dérivé d'un forme de la signification de verbe "rassembler" - est très distinct d'un mot qui signifie quelque chose comme "plus de".

Auteur: Fortean Times

Info: Les détails de cette étude paraîtront dans le journal Science du jeudi 19 août 2004. Source, Teachers College, Columbia University

[ idiomes ] [ sciences ] [ compter ] [ comptage ] [ termes quasi-esprit ]

 

Commentaires: 0

architecture sonore

Les intervalles essentiels de la musique sont enracinés dans le discours humain
L'utilisation de 12 intervalles dans la musique de beaucoup de cultures humaines est enracinée dans la façon physique utilisée par notre anatomie vocale pour produire de la parole, selon des chercheurs de Duke University en neurologie cognitive.
Les notes particulières utilisées dans le son musical sonnent juste à nos oreilles en raison du travail spécifique de notre appareil vocal dans toutes les langues humaines, a déclaré Dale Purves, du George Barth Geller Professor for Research in Neurobiology.
Ce n'est pas quelque chose qu'on peut entendre directement, mais quand les bruits de la parole sont examinés avec un analyseur de spectre, les rapports entre les diverses fréquences qu'un individu emploie pour faire le son des voyelles correspond d'une manière quasi parfaite et ordonnée aux rapports entre les 12 notes de la gamme chromatique musicale, dit Purves. Ce travail a été mis en ligne le 24 mai. (téléchargement à http://www.pnas.org/cgi/reprint/0703140104v1)
Purves et les co-auteurs Deborah Ross et Jonathan Choi ont testé leur idée en enregistrant les langues indigènes chinoises et anglaise en faisant dire des bruits de voyelle avec des mots simples ainsi que dans des monologues courts. Ils ont alors comparé les ratios vocaux de fréquence aux ratios numériques qui définissent des notes dans la musique.
La vocalisation humaine vient basiquement des cordes vocales dans le larynx (la pomme d'Adam, dans le cou), qui créent une série de crêtes résonnant puissamment grâce au jet d'air montant des poumons. Ces crêtes de puissance sont alors modifiées par une multitude de moyens spectaculaires comme la déformation du palais mou, de la langue, des lèvres et d'autres parties encore. Notre anatomie vocale est plutôt comme un orgue dont on pourrait étirer, pincer ou élargir les tuyaux. Les anglophones produisent environ 50 bruits différents dans leur langue de cette façon.
Cependant, en dépit de la grande variation en anatomie humaine individuelle, les bruits de la parole produit par différents individus dans différentes langues produisent la même variété de ratios de résonance dit Purves.
Les deux plus basses de ces résonances, appelées formants, sont là pour les voyelles dans la parole. Enlevez ces deux premiers formants et vous ne pourrez rien comprendre de ce qu'une personne dit. La fréquence du premier formant est entre 200 et 1.000 cycles par seconde (hertz) et le deuxième entre 800 et 3.000 hertz.
Quand les chercheurs de Duke ont examiné les rapports de ces deux premiers formants avec les spectres du langage, ils ont constaté que les ratios montraient des relations avec la musique. Par exemple, le rapport des deux premiers formants dans la voyelle anglaise /a/, comme en "physique," pourrait correspondre à l'intervalle musical entre C et A sur un clavier de piano.
"Dans environ 70 pour cent des sons de ces discours, ces ratios tombaient pile sur des intervalles musicaux" dit Purves. "Cette prédominance des intervalles musicaux cachés dans la parole suggère que les notes de la gamme chromatique musicale sonnent juste à nos oreilles parce qu'elles correspondent aux rapports auxquels nous sommes exposés sans arrêt dans nos idiomes, bien que nous soyons tout à fait ignorants de la chose."
Peu de musique, excepté certains morceaux expérimentaux modernes, emploie chacun des 12 tons. La plupart des musiques emploient une gamme diatonique de 7 tons - ou gamme diatonique - pour diviser les octaves, et beaucoup de musique folklorique n'emploient que cinq tons, la gamme pentatonique.
Ces caractériellement correspondent aux ratios des formants les plus répandus dans la parole. Purves et ses collaborateurs travaillent maintenant afin de savoir si dans une culture donnée ou il y a une particularité de ces tons ou formants, ceci est lié aux rapports de formants particulièrement répandus dans la langue maternelle d'un groupe donné.
Purves et ses collaborateurs pensent également que ces résultats peuvent aider à éclairer un débat séculaire ; à savoir quel type d'accordages fonctionne le mieux pour les instruments. Dix des 12 intervalles harmoniques identifiés dans les discours anglais et mandarin ont "la bonne intonation" qui sonne plus juste pour la plupart des musiciens qualifiés. Ils ont trouvé beaucoup moins de correspondances avec d'autres systèmes d'accordages, y compris l'accordage à tempérament égal généralement utilisé aujourd'hui.
L'accordage a tempérament égal, dans lequel chacun des 12 intervalles de la gamme chromatique est exactement le même et un schéma qui permet à un groupe tel qu'un orchestre de jouer ensemble dans différentes clefs et au travers de beaucoup d'octaves. Bien qu'un accordage à tempérament égal sonne bien, c'est juste un compromis par rapport a quelque chose d'origine plus naturelle, vocalement dérivé d'intonation juste, dit Purves.
La prochaine étude de son groupe concernera notre compréhension intuitive comme quoi un morceau musical tend à paraître joyeux s'il est dans une tonalité majeure ou relativement triste dans une tonalité mineure. Ce qui pourrait aussi provenir de la voix humaine, suggère Purves.

Auteur: Fortean Times

Info: From Duke University

[ langage ] [ sciences ]

 

Commentaires: 0

censure douce

LE GONCOURT 2023 TROUBLÉ PAR UNE POLÉMIQUE AUTOUR DES "SENSITIVITY READERS"

L'auteur Kevin Lambert a fait appel à une "sensitivity reader" pour son roman, retenu dans la première sélection du Goncourt 2023. Nicolas Mathieu, décoré de ce prestigieux prix en 2018, s'est élevé contre cette pratique.

Le prix Goncourt ne s'attendait pas à une polémique en sélectionnant le roman d'un Québécois, jusqu'à ce qu'on apprenne qu'il était passé par la relecture d'une Canado-Haïtienne, pour éviter selon son auteur "certains pièges de la représentation des personnes noires".

L'un des personnages de Que notre joie demeure de Kevin Lambert, paru en août aux éditions Le Nouvel Attila et en lice pour le Goncourt 2023, est d'origine haïtienne. Pour qu'il soit le plus crédible possible, le jeune romancier de 30 ans s'est attaché les services d'une universitaire et autrice d'origine haïtienne également, Chloé Savoie-Bernard. Il la qualifie d'"amie". Elle a été rémunérée.

Ce rôle est appelé "sensitivity reader" en anglais, traduit par "démineur éditorial" ou "lecteur sensible". Chez les éditeurs nord-américains, la pratique est devenue banale. Les maisons d'édition françaises les plus renommées, en revanche, quand elles y ont recours, ne le revendiquent pas, comme si cela risquait de leur coûter des lecteurs.

"Chloé s'est assurée que je ne dise pas trop de bêtises"

Pour Kevin Lambert, c'était de l'histoire ancienne: le roman est paru dès septembre 2022 au Canada, aux éditions Héliotrope. Mais les Français l'ont découvert grâce au Nouvel Attila, qui l'a révélé sur Instagram le 4 septembre, la veille de la parution de la première sélection du Goncourt.

Propos de l'auteur rapportés par l'éditeur: "Je peux toujours me tromper. Chloé s'est assurée que je ne dise pas trop de bêtises, que je ne tombe pas dans certains pièges de la représentation des personnes noires".

"En tant que Blanc"

Vendredi sur Radio Canada, il s'est expliqué plus en détail. "Ça m'a permis de ne pas écrire que le personnage rougissait, à un moment. Parce que j'écrivais ça en tant que Blanc, un peu nono..." (neuneu, en France).

La relectrice a aussi évoqué son travail, dans le quotidien montréalais La Presse jeudi. "J'ai posé des questions à Kevin, je lui ai fait des suggestions", a précisé Chloé Savoie-Bernard. "Pas seulement sur le personnage d'origine haïtienne, mais aussi sur la structure générale du texte".

En France, l'idée qu'il faille être d'une certaine couleur de peau pour juger de la justesse de certains passages de romans divise. Le prix Goncourt 2018, Nicolas Mathieu, auteur classé à gauche, la rejette vigoureusement.

"Faire de professionnels des sensibilités, d'experts des stéréotypes, de spécialistes de ce qui s'accepte et s'ose à un moment donné la boussole de notre travail, voilà qui nous laisse pour le moins circonspect", écrivait-il sur Instagram mercredi.

Au festival littéraire Le Livre sur la place de Nancy samedi, il n'a pas voulu alimenter la polémique. "J'ai eu des échanges avec Kevin", a-t-il déclaré à l'AFP. "Et il n'y a aucune animosité entre nous, bien au contraire".

Un jeu "risqué"

Le milieu de l'édition et des lettres, en privé, s'interrogeait surtout sur les motivations du Nouvel Attila quand il a mis en avant cette relecture. "C'est peut-être un jeu de l'éditeur!", disait à l'AFP l'un des concurrents, face à quoi l'un de ses confrères était sceptique: "Ils ont créé un 'bad buzz'. Si c'est un jeu, il est risqué". "Kevin Lambert va se faire sortir de la liste du Goncourt", pariait une autre éditrice.

Si le jury a préféré récemment se préserver des polémiques en écartant les livres qui en suscitaient, deux de ses membres ont affirmé au quotidien Le Monde que rien n'était joué.

"Cette controverse n'aura aucun impact sur notre choix du lauréat", a dit l'un de ses membres, Pierre Assouline. "Nicolas Mathieu devrait se contenter d'écrire des romans (...) Laissons cette polémique. Les chiens aboient, la caravane Goncourt passe!", a abondé le secrétaire de ce jury, Philippe Claudel.

Dider Decoin, président du Goncourt, a lui aussi réagi à l'occasion du festival Le Livre sur la place de Nancy, balayant une "polémique stupide":

"Quand on est un auteur, on a le droit de faire appel à qui on veut pour relire un texte", a-t-il déclaré, comme le rapporte Le Figaro.

La position de Nicolas Mathieu a suscité une certaine sympathie de ses collègues écrivains français. "Il faut se faire confiance en tant qu'écrivain. Se documenter bien sûr, mais écouter notre imagination", disait un autre romancier de la rentrée littéraire.

La première sélection du Goncourt comprend 16 titres. Elle sera réduite le 3 octobre, avant que la liste des quatre finalistes soit révélée le 25 octobre. Le prix sera décerné le 7 novembr, au restaurant Drouant à Paris, comme le veut la tradition.

Auteur: Internet

Info: BFMTV.com, B.P. avec AFP Le 09/09/2023

[ convenable médiatique ] [ wokisme ] [ sensibilité post-coloniale ] [ pouvoir sémantique ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

particules élémentaires

Les imprévisibles effets de l'interaction forte continuent de surprendre les physiciens

Après plus d'un siècle de collision de particules, les physiciens ont une assez bonne idée de ce qui se passe au cœur de l'atome. Les électrons bourdonnent dans des nuages probabilistes autour d'un noyau de protons et de neutrons, chacun contenant un trio de particules bizarres appelées quarks. La force qui maintient tous les quarks ensemble pour former le noyau est la force forte, la bien nommée. C'est cette interaction forte qui doit être surmontée pour diviser l'atome. Et cette puissante force lie les quarks ensemble si étroitement qu'aucun quark n'a jamais été repéré en solo.

Ces caractéristiques des quarks, dont beaucoup peuvent être expliquées dans un cours de sciences au lycée, ont été établies comme des faits expérimentaux. Et pourtant, d'un point de vue théorique, les physiciens ne peuvent pas vraiment les expliquer.

Il est vrai qu'il existe une théorie de la force forte, et c'est un joyau de la physique moderne. Elle se nomme chromodynamique quantique (QCD), " chromo " faisant référence à un aspect des quarks appelé poétiquement " couleur ". Entre autres choses, la QCD décrit comment la force forte s'intensifie lorsque les quarks se séparent et s'affaiblit lorsqu'ils se rassemblent, un peu comme une bande élastique. Cette propriété est exactement à l'opposé du comportement de forces plus familières comme le magnétisme, et sa découverte dans les années 1970 a valu des prix Nobel. D'un point de vue mathématique, les quarks ont été largement démystifiés.

Cependant, les mathématiques fonctionnent mieux lorsque la force entre les particules est relativement faible, ce qui laisse beaucoup à désirer d'un point de vue expérimental. Les prédictions de la CDQ furent confirmées de manière spectaculaire lors d'expériences menées dans des collisionneurs qui rapprochèrent suffisamment les quarks pour que la force forte entre eux se relâche. Mais lorsque les quarks sont libres d'être eux-mêmes, comme c'est le cas dans le noyau, ils s'éloignent les uns des autres et exercent des pressions sur leurs liens de confinement, et la force forte devient si puissante que les calculs stylo papier sont mis en échec. Dans ces conditions, les quarks forment des protons, des neutrons et une multitude d'autres particules à deux ou trois quarks, généralement appelées hadrons, mais personne ne peut calculer pourquoi cela se produit.

Pour comprendre les bizarreries dont les quarks sont capables, les physiciens ne peuvent que lancer des simulations numériques de force brute (qui ont fait des progrès remarquables ces dernières années) ou regarder les particules ricocher dans de bonnes expériences de collisionnement à l'ancienne. Ainsi, près de 60 ans après que les physiciens aient formalisé le quark, la particule continue de surprendre.

Quoi de neuf et digne de mention

Pas plus tard que l'été dernier, la collaboration du LHCb au Grand collisionneur de hadrons en Europe a repéré des signes de deux variétés jusqu'alors inédites de quarks, les tétraquarks, furtivement observés à travers les tunnels souterrains du collisionneur. Cataloguer la diversité des comportements des quarks aide les physiciens à affiner leurs modèles pour simplifier les complexités de la force forte en fournissant de nouveaux exemples de phénomènes que la théorie doit rendre compte.

Les tétraquarks ont été découverts pour la première fois au LHC à l'été 2014, après plus d'une décennie d'indices selon lesquels les quarks pourraient former ces quatuors, ainsi que des groupes de deux ou trois. Cette découverte a alimenté un débat qui s'est enflammé malgré une question apparemment ésotérique: faut-il considérer quatre quarks comme une "molécule" formée de deux hadrons doubles quarks faiblement attirés connus sous le nom de mésons, ou s'assemblent-ils en paires plus inhabituelles connues sous le nom de diquarks?

Au cours des années qui suivirent, les physiciens des particules accumulèrent des preuves de l'existence d'une petite ménagerie de tétraquarks exotiques et de " pentaquarks " à cinq quarks. Un groupe se détacha en 2021, un tétraquark " à double charme " qui vécut des milliers de fois plus longtemps que ses frères exotiques (à 12 sextillionièmes de seconde comme le Methuselah). Il a prouvé qu'une variété de quark — le quark charme — pouvait former des paires plus résistantes que la plupart des suppositions ou des calculs minutieux l'avaient prédit.

À peu près à la même époque, les chercheurs ont mis au point une nouvelle façon de tamiser le maelström qui suit une collision proton-proton à la recherche d'indices de rencontres fortuites entre des composites de quarks. Ces brefs rendez-vous permettent de déterminer si un couple donné de hadrons attire ou repousse, une prédiction hors de portée du QCD. En 2021, les physiciens ont utilisé cette technique de "femtoscopie" pour apprendre ce qui se passe lorsqu'un proton s'approche d'une paire de quarks " étranges ". Cette découverte pourrait améliorer les théories sur ce qui se passe à l'intérieur des étoiles à neutrons.

L'année dernière, les physiciens ont appris que même les quarks de l'atome d'hélium, très étudié, cachent des secrets. Les atomes d'hélium dénudés ont inauguré le domaine de la physique nucléaire en 1909, lorsque Ernest Rutherford (ou plutôt ses jeunes collaborateurs) les projeta sur une feuille d'or et découvrit le noyau. Aujourd'hui, les atomes d'hélium sont devenus la cible de projectiles encore plus petits. Au début de l'année 2023, une équipe a tiré un flux d'électrons sur des noyaux d'hélium (composés de deux protons et de deux neutrons) et a été déconcertée de constater que les cibles remplies de quarks gonflaient bien plus que ce que la CDQ leur avait laissé supposer.








Auteur: Internet

Info: https://www.quantamagazine.org/, Charlie Wood, 19 fev 2024

[ fermions ] [ bosons ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

topologie abstraite

Des surfaces au-delà de l'imagination sont découvertes après des décennies de recherche

Grâce à des idées empruntées à la théorie des graphes, deux mathématiciens ont montré que des surfaces extrêmement complexes sont faciles à parcourir.

En juillet dernier, deux mathématiciens de l'Université de Durham, Will Hide et Michael Magee , ont confirmé l'existence d'une séquence de surfaces très recherchée : chacune plus compliquée que la précédente, devenant finalement si étroitement liée à elles-mêmes qu'elles atteignent presque les limites de ce qui est possible. possible.

Au début, il n’était pas évident que ces surfaces existaient. Mais depuis que la question de leur existence s’est posée pour la première fois dans les années 1980, les mathématiciens ont compris que ces surfaces pouvaient en réalité être courantes, même si elles sont extrêmement difficiles à identifier – un exemple parfait de la façon dont les mathématiques peuvent renverser l’intuition humaine. Ce nouveau travail constitue un pas en avant dans une quête visant à aller au-delà de l’intuition pour comprendre les innombrables façons dont les surfaces peuvent se manifester.

"C'est un brillant morceau de mathématiques", a déclaré Peter Sarnak , mathématicien à l'Institute for Advanced Study de Princeton, New Jersey.

Les surfaces comprennent toutes sortes d’objets bidimensionnels : l’enveloppe extérieure d’une sphère, d’un beignet ou d’un cylindre ; une bande de Möbius. Ils sont essentiels aux mathématiques et à la physique. Mais même si la relation des mathématiciens avec les surfaces remonte à plusieurs siècles, ils ne connaissent pas du tout ces objets.

Les surfaces simples ne sont pas le problème. Simple dans ce cas signifie que la surface a un petit nombre de trous, ou un faible " genre ". Une sphère, par exemple, n'a pas de trous et a donc un genre nul ; un beignet en a un.

Mais lorsque le genre est élevé, l’intuition nous fait défaut. Lorsqu'Alex Wright , mathématicien à l'Université du Michigan, tente de visualiser une surface de haut genre, il se retrouve avec des trous disposés en rangée bien rangée. " Si vous vouliez que je sois un peu plus créatif, je pourrais l'enrouler en un cercle avec de nombreux trous. Et j’aurais du mal à imaginer une image mentale fondamentalement différente de celle-là ", a-t-il déclaré. Mais sur les surfaces de grande qualité, les trous se chevauchent de manière complexe, ce qui les rend difficiles à saisir. Une simple approximation est " aussi loin d’être représentative qu’elle pourrait l’être, dans tous les sens du terme ", a déclaré Wright.

Cette lutte était prévisible, a déclaré Laura Monk , mathématicienne à l'Université de Bristol. " On peut souvent faire des choses qui ne sont pas bonnes. Cependant, créer des choses qui sont bonnes, qui ressemblent à ce que nous attendons généralement d’être vrai, est un peu plus difficile ", a-t-elle déclaré.

Cela signifie que les mathématiciens souhaitant vraiment comprendre l’espace des surfaces doivent trouver des moyens de découvrir des objets dont ils ignorent même l’existence.

C’est exactement ce qu’ont fait Hide et Magee dans leur article de juillet, confirmant l’existence de surfaces sur lesquelles les mathématiciens s’interrogeaient depuis des décennies. La conjecture qu’ils ont prouvée et l’histoire qui l’entoure s’inspirent d’un tout autre domaine des mathématiques : la théorie des graphes.

Le maximum possible

Pour les mathématiciens, les graphiques sont des réseaux constitués de points ou de nœuds reliés par des lignes ou des arêtes. Dès 1967, des mathématiciens comme Andrey Kolmogorov étudiaient des réseaux qui imposaient un coût à la connexion de deux nœuds. Cela a conduit à un exemple de ce que l’on appellera plus tard un graphe d’expansion : un graphe qui maintient le nombre d’arêtes à un faible niveau, tout en maintenant une connectivité élevée entre les nœuds.

Les graphiques expanseurs sont depuis devenus des outils cruciaux en mathématiques et en informatique, y compris dans des domaines pratiques comme la cryptographie. À l’instar d’un système routier bien conçu, ces graphiques facilitent le déplacement d’un nœud à un autre sans couvrir l’intégralité du graphique avec des arêtes. Les mathématiciens aiment limiter le nombre d’arêtes en stipulant que chaque nœud ne peut avoir, disons, que trois arêtes en émanant – tout comme vous ne voudriez peut-être pas plus de quelques autoroutes sillonnant votre ville.

Si un ordinateur choisit au hasard où mènent les trois arêtes de chaque nœud, vous constaterez que, surtout lorsque le graphique est très grand, la plupart de ces graphiques aléatoires sont d'excellents expanseurs. Mais bien que l’univers soit rempli de graphiques d’expansion, les êtres humains ont échoué à maintes reprises à les produire à la main.

"Si vous voulez en construire un, vous ne devriez pas les dessiner vous-même", a déclaré Shai Evra , mathématicien à l'Université hébraïque de Jérusalem. "Notre imagination ne comprend pas ce qu'est un expanseur."

L’idée d’expansion, ou de connectivité, peut être mesurée de plusieurs manières. La première consiste à couper un graphique en deux gros morceaux en coupant les bords un par un. Si votre graphique est constitué de deux groupes de nœuds, les groupes étant reliés par une seule arête, il vous suffit de couper une seule arête pour la diviser en deux. Plus le graphique est connecté, plus vous devrez découper d'arêtes.

Une autre façon d’accéder à la connectivité consiste à parcourir le graphique de nœud en nœud, en choisissant à chaque étape une arête sur laquelle marcher au hasard. Combien de temps faudra-t-il pour visiter tous les quartiers du graphique ? Dans l'exemple avec les deux amas, vous serez confiné à l'une des bulles à moins que vous ne traversiez la seule connexion avec l'autre moitié. Mais s’il existe de nombreuses façons de voyager entre les différentes zones du graphique, vous parcourrez l’ensemble en peu de temps.

Ces mesures de connectivité peuvent être quantifiées par un nombre appelé écart spectral. L'écart spectral est nul lorsque le graphe est complètement déconnecté, par exemple s'il est composé de deux groupes de nœuds qui ne sont pas du tout attachés l'un à l'autre. À mesure qu’un graphe devient plus connecté, son écart spectral aura tendance à s’élargir.

Mais l’écart spectral ne peut aller que jusqu’à un certain point. En effet, les deux caractéristiques déterminantes des graphes d’expansion – peu d’arêtes et une connectivité élevée – sont apparemment en contradiction l’une avec l’autre. Mais en 1988, Gregory Margulis et, indépendamment, Sarnak et deux co-auteurs ont décrit des " expanseurs optimaux " – des graphiques dont l’écart spectral est aussi élevé que le maximum théorique. " C'est choquant qu'ils existent ", a déclaré Sarnak.

Plus tard, les mathématiciens prouveront que la plupart des grands graphes sont proches de ce maximum. Mais le travail avec les expanseurs optimaux et les graphiques aléatoires ne consistait pas simplement à trouver les bons endroits pour placer les arêtes. Cela nécessitait le recours à des techniques étranges et sophistiquées empruntées à la théorie des nombres et des probabilités.

Auteur: Internet

Info: https://www.quantamagazine.org/ - Leila Sloman, 2 juin 2022

[ . ]

 
Commentaires: 1
Ajouté à la BD par miguel

recherche fondamentale

Pourquoi nous pouvons cesser de nous inquiéter et aimer les accélérateur de particules

En plongeant dans les mystères de l'Univers, les collisionneurs sont entrés dans l'air du temps et ont exploité  merveilles et  craintes de notre époque.

Le scénario semble être le début d'une mauvaise bande dessinée de Marvel, mais il se trouve qu'il éclaire nos intuitions sur les radiations, la vulnérabilité du corps humain et la nature même de la matière. Grâce aux accélérateurs de particules, les physiciens peuvent étudier les particules subatomiques en les accélérant dans de puissants champs magnétiques, puis en retraçant les interactions qui résultent des collisions. En plongeant dans les mystères de l'Univers, les collisionneurs se sont inscrits dans l'air du temps et ont nourris des émerveillements et des craintes de notre époque.

Dès 2008, le Grand collisionneur de hadrons (LHC), exploité par l'Organisation européenne pour la recherche nucléaire (CERN), a été chargé de créer des trous noirs microscopiques qui permettraient aux physiciens de détecter des dimensions supplémentaires. Pour beaucoup, cela ressemblait à l'intrigue d'un film catastrophe de science-fiction. Il n'est donc pas surprenant que deux personnes aient intenté une action en justice pour empêcher le LHC de fonctionner, de peur qu'il ne produise un trou noir suffisamment puissant pour détruire le monde. Mais les physiciens firent valoir que l'idée était absurde et la plainte fut rejetée.

Puis, en 2012, le LHC détecta le boson de Higgs tant recherché, une particule nécessaire pour expliquer comment les particules acquièrent une masse. Avec cette réalisation majeure, le LHC est entré dans la culture populaire ; il a figuré sur la pochette de l'album Super Collider (2013) du groupe de heavy metal Megadeth, et a été un élément de l'intrigue de la série télévisée américaine The Flash (2014-).

Pourtant, malgré ses réalisations et son prestige, le monde de la physique des particules est si abstrait que peu de gens en comprennent les implications, la signification ou l'utilisation. Contrairement à une sonde de la NASA envoyée sur Mars, les recherches du CERN ne produisent pas d'images étonnantes et tangibles. Au lieu de cela, l'étude de la physique des particules est mieux décrite par des équations au tableau noir et des lignes sinueuses appelées diagrammes de Feynman. Aage Bohr, lauréat du prix Nobel dont le père Niels a inventé le modèle Bohr de l'atome, et son collègue Ole Ulfbeck sont même allés jusqu'à nier l'existence physique des particules subatomiques, qui ne sont rien d'autre que des modèles mathématiques.

Ce qui nous ramène à notre question initiale : que se passe-t-il lorsqu'un faisceau de particules subatomiques se déplaçant à une vitesse proche de celle de la lumière rencontre la chair du corps humain ? Peut-être parce que les domaines de la physique des particules et de la biologie sont conceptuellement très éloignés, ce ne sont pas seulement les profanes qui manquent d'intuition pour répondre à cette question, mais aussi certains physiciens professionnels. Dans une interview réalisée en 2010 sur YouTube avec des membres de la faculté de physique et d'astronomie de l'université de Nottingham, plusieurs experts universitaires ont admis qu'ils n'avaient aucune idée de ce qui se passerait si l'on introduisait une main à l'intérieur du faisceau de protons du LHC. Le professeur Michael Merrifield l'exprima de manière succincte : "C'est une bonne question. Je ne connais pas la réponse. Ce serait probablement néfaste pour la santé". Le professeur Laurence Eaves se montra également prudent avant de tirer des conclusions. "À l'échelle de l'énergie que nous percevons, ce ne serait pas si perceptible que cela, déclara-t-il, sans doute avec un brin d'euphémisme britannique. Est-ce que je mettrais ma main dans le faisceau ? Je n'en suis pas sûr."

De telles expériences de pensée peuvent être des outils utiles pour explorer des situations qui ne peuvent pas être étudiées en laboratoire. Il arrive cependant que des accidents malencontreux donnent lieu à des études de cas : occasions pour les chercheurs d'étudier des scénarios qui ne peuvent pas être induits expérimentalement pour des raisons éthiques. Etude de cas ici avec un échantillon d'une personne et qui ne comporte pas de groupe de contrôle. Mais, comme l'a souligné en son temps le neuroscientifique V S Ramachandran dans Phantoms in the Brain (1998), il suffit d'un seul cochon qui parle pour prouver que les cochons peuvent parler. Le 13 septembre 1848, par exemple, une barre de fer transperça la tête de Phineas Gage, un cheminot américain, et modifia profondément sa personnalité, ce qui constitue une première preuve de l'existence d'une base biologique de la personnalité.

Et puis le 13 juillet 1978, un scientifique soviétique du nom d'Anatoli Bugorski plongea sa tête dans un accélérateur de particules. Ce jour-là, Bugorski vérifiait un équipement défectueux sur le synchrotron U-70 - le plus grand accélérateur de particules d'Union soviétique - lorsqu'un mécanisme de sécurité a lâché et qu'un faisceau de protons se déplaçant à une vitesse proche de celle de la lumière lui a traversé la tête, à la manière de Phineas Gage. Il est possible qu'à ce moment de l'histoire, aucun autre être humain n'ait jamais été confronté à un faisceau de rayonnement concentré à une énergie aussi élevée. Bien que la protonthérapie - un traitement du cancer utilisant des faisceaux de protons pour détruire les tumeurs - ait été mise au point avant l'accident de Bugorski, l'énergie de ces faisceaux ne dépasse généralement pas 250 millions d'électronvolts (une unité d'énergie utilisée pour les petites particules). Bugorski aurait pu subir de plein fouet les effets d'un faisceau d'une énergie plus de 300 fois supérieure, soit 76 milliards d'électrons-volts.

Le rayonnement de protons est en effet très rare. Les protons provenant du vent solaire et des rayons cosmiques sont stoppés par l'atmosphère terrestre, et le rayonnement de protons est si rare dans la désintégration radioactive qu'il n'a été observé qu'en 1970. Les menaces plus familières, telles que les photons ultraviolets et les particules alpha, ne pénètrent pas dans le corps au-delà de la peau, sauf en cas d'ingestion d'une substance radioactive. Le dissident russe Alexandre Litvinenko, par exemple, fut tué par des particules alpha qui ne pénètrent même pas le papier lorsqu'il ingéra à son insu du polonium-210 radioactif livré par un assassin. Mais lorsque les astronautes d'Apollo, protégés par des combinaisons spatiales, furent exposés à des rayons cosmiques contenant des protons et à des formes de rayonnement encore plus exotiques, ils signalèrent des éclairs de lumière visuelle, signe avant-coureur de ce qui allait arriver à Bugorski le jour fatidique de son accident. Selon une interview publiée dans le magazine Wired en 1997, Bugorski a immédiatement vu un flash lumineux intense, mais n'a ressenti aucune douleur. Le jeune scientifique fut transporté dans une clinique de Moscou, la moitié du visage gonflée, et les médecins s'attendaient au pire.

Les particules de rayonnement ionisant, telles que les protons, font des ravages dans l'organisme en brisant les liaisons chimiques de l'ADN. Cette atteinte à la programmation génétique d'une cellule peut tuer la cellule, l'empêcher de se diviser ou induire une mutation cancéreuse. Les cellules qui se divisent rapidement, comme les cellules souches de la moelle osseuse, sont les plus touchées. Les cellules sanguines étant produites dans la moelle osseuse, par exemple, de nombreux cas d'irradiation se traduisent par une infection et une anémie dues à la perte de globules blancs et de globules rouges, respectivement. Mais dans le cas particulier de Bugorski, les radiations étaient concentrées le long d'un faisceau étroit à travers la tête, au lieu d'être largement dispersées lors des retombées nucléaires, comme cela a été le cas pour de nombreuses victimes de la catastrophe de Tchernobyl ou du bombardement d'Hiroshima. Pour Bugorski, les tissus particulièrement vulnérables, tels que la moelle osseuse et le tractus gastro-intestinal, auraient pu être largement épargnés. Mais là où le faisceau a traversé la tête de Bugorski, il a déposé une quantité obscène d'énergie de rayonnement, des centaines de fois supérieure à une dose létale selon certaines estimations.

Et pourtant, Bugorski est toujours en vie aujourd'hui. La moitié de son visage est paralysée, ce qui donne à un hémisphère de sa tête une apparence étrangement jeune. Il serait sourd d'une oreille. Il a souffert d'au moins six crises tonico-cloniques généralisées. Communément appelées crises de grand mal, ce sont les crises les plus fréquemment représentées au cinéma et à la télévision, impliquant des convulsions et une perte de conscience. L'épilepsie de Bugorski est probablement le résultat de la cicatrisation des tissus cérébraux causée par le faisceau de protons. Il souffre également de crises de petit mal ou d'absence, des crises beaucoup moins spectaculaires au cours desquelles la conscience est brièvement interrompue. Aucun cancer n'a été diagnostiqué chez Bugorski, bien qu'il s'agisse souvent d'une conséquence à long terme de l'exposition aux rayonnements.

Bien que son cerveau ait été traversé par rien de moins qu'un faisceau d'accélérateur de particules, l'intellect de Bugorski est resté intact et il a passé son doctorat avec succès après l'accident.  

Auteur: Frohlich Joel

Info: https://bigthink.com/   23 juin  2020

[ . ]

 

Commentaires: 0

Ajouté à la BD par miguel

orient-ponant

La pensée chinoise archaïque

Quelques éléments sur ce que nous savons aujourd’hui de la pensée chinoise archaïque (XVe – XIe siècles av. J.-C.).

La manière dont les Chinois parlent et écrivent constitue, chacun le sait, un langage dont la structure grammaticale est très éloignée de la nôtre, occidentale. Ce que nous appelons les " mots d’armature " : les articles, les prépositions, les conjonctions, ces mots qui nous permettent de relier entre eux les " mots de contenu " : les substantifs, les verbes, les adjectifs qualificatifs, les adverbes, ces mots d’armature qui constituent à nos yeux le " tissu conjonctif " de la langue, sont pour la plupart absents du chinois.

Alors que nous, Occidentaux, nous attendons à lire ces mots d’armature dans un texte comme la manière requise pour l’articuler, nous constatons à la place en chinois des séquences de noms de choses à la queue leu-leu, lesquels peuvent éventuellement être reliés par quelques éléments syntaxiques mais en tout cas d’une façon beaucoup plus rudimentaire que chez nous.

Il existe en particulier dans la phrase chinoise un mot que nous écrivons dans notre graphie comme " yeh " et que nous qualifions de marqueur d’affirmation, pour préciser la façon dont il sert à relier deux notions. Un philologue de la Chine, Kyril Ryjik, dit à propos de yeh : " … ce caractère entretient, entre son sens original et son emploi opératoire, le type de rapport qu’entretient la notion de “copule” […]. Il opère avec une notion de très forte jonction entre deux termes " (Ryjik 1980 : 218). Deux termes chinois sont rapprochés et il est suggéré à l’aide du terme yeh qu’il existe un lien spécial entre les deux.

Chad Hansen, commentateur éminent de la langue chinoise archaïque, explique : 

" Il n’y a pas en chinois de est, pas d’expression prédicative dénotant l’identité ou l’inclusion. La juxtaposition de deux termes (ordinairement suivis de la particule yeh) constitue une phrase relationnelle grossièrement équivalente à une phrase affirmant l’identité ou l’inclusion […] La phrase pai ma ma yeh (blanc cheval cheval “est”) : “(du) cheval blanc ‘est’ (du) cheval”, est un exemple d’une telle structure de phrase " (Hansen 1983 : 45). 

Par ailleurs, si je prononce l’un après l’autre les mots chinois pour cheval et pour bœuf et que je fais suivre leur séquence de yeh : " cheval bœuf yeh ", je laisse entendre qu’il existe quelque chose reliant les deux termes, quelque chose fait qu’ils aient été mentionnés ensemble et je réunis ce faisant automatiquement ces deux notions sous un seul concept qui conduit à parler de ce que nous caractérisons nous comme " animal de trait ", parce que l’union établie entre le bœuf et le cheval par la particule yeh met en avant ce qui nous apparaît comme un trait commun aux deux notions évoquées. Si l’on recourt au vocabulaire de la théorie mathématique des ensembles, on dira que leur rapprochement souligné par yeh met en avant l’intersection de leurs caractères propres : le principe de l’animal de trait ne combine pas l’équinité et la bovinité selon leur union, additionnant l’ensemble des chevaux à celui des bœufs, mais selon leur intersection : là où la blancheur recoupe l’équinité, nous avons " du cheval blanc ", là où l’équinité rencontre la bovinité, nous trouvons le principe de l’animal de trait, en l’occurrence le fait qu’ils puissent l’un et l’autre tracter un objet lourd, comme un chariot, une charrue, la meule d’un moulin à grain, etc. Et à partir de là, la conjonction cheval bœuf signifie en chinois " animal de trait ".

Nous disposons dès lors d’éléments susceptibles de nous faire appréhender de plus près cette notion d’affinité qui nous semble propre à la pensée totémique dont je considère, à la suite de Durkheim et de Mauss, qu’il s’agit avec elle des échos de la pensée archaïque chinoise dans le reste de la zone circum-pacifique, échos dus à un processus historique de diffusion à partir de la Chine ou à une identité foncière trouvant sa source dans leur origine commune.

Deux notions sont rapprochées, sans qu’il soit précisé pour quelle raison précise elles le sont, le seul geste posé étant cette suggestion d’un lien entre les deux. Comment opérons-nous, par exemple en français, dans un contexte similaire ? Dans un usage de copule, nous disposons de deux verbes : être et avoir. Le verbe être, nous l’utilisons pour exprimer la nature de la chose : " Le cheval est blanc ", où un élément de l’ordre d’une caractéristique vient compléter la description de la chose jusque-là : une nouvelle qualification est apportée en complément. Mais nous utilisons aussi le verbe être pour dire : " Le cheval est un mammifère ", ce qui nous permet de signaler l’inclusion d’une sorte dans une autre sorte. La sorte " cheval " est l’une des composantes de la sorte " mammifère ".

Le verbe avoir a un sens qui peut être en français celui de la possession mais également celui d’un lien plus lâche, à la façon de ce yeh que je viens d’évoquer. Quand nous disons : " Le pharaon et la pyramide ", nous savons qu’il existe un lien entre les deux sans qu’il soit clair de quel lien précis nous voulons parler. Est-ce le fait que le pharaon a une pyramide ? Que le pharaon a fait bâtir une pyramide ? Quoi qu’il en soit, que nous précisions d’une manière ou d’une autre, nous savons qu’il existe un lien, qu’il existe – pour recourir à ce terme vague que nous utilisons en Occident pour évoquer la pensée totémique ou celle de la Chine archaïque – une affinité entre le pharaon et la pyramide.

Un autre exemple, quand on dit " L’abeille et son miel ", on peut vouloir dire que l’abeille fait du miel ou que l’abeille dispose de miel. On peut dire aussi " le miel de l’abeille ". Là aussi, nous pouvons préciser la relation exacte mais quand on se contente de dire " l’abeille et son miel ", on procède comme le faisait le chinois dans la forme archaïque de sa langue quand il rapprochait, rassemblait, les deux notions à l’aide de ce terme yeh. Un autre exemple encore, fenêtre et verre : " la fenêtre est en verre ", " il y a du verre dans la fenêtre ", " le verre de la fenêtre ", etc. Tout cela demeure de l’ordre du réversible, d’une symétrie essentielle entre les deux notions rapprochées, alors que, par contraste, les langues de l’Occident, aussi haut que nous puissions retracer leur ascendance, sont familières de la relation anti-symétrique d’inclusion, ingrédient indispensable du raisonnement scientifique. L’émergence du discours théorique qu’est la science a permis la naissance d’une technologie qui soit à proprement parler de la " science appliquée ", par opposition à la technologie résultant de la méthode empirique de l’essai et erreur, la seule que connaissait la culture humaine, à l’Ouest comme à l’Est, dans la période qui précéda le XVIIe siècle.

Le moyen de signifier la relation d’inclusion manquait au chinois, du coup quand il s’agissait d’indiquer un rapport entre deux notions, n’existait dans tous les cas de figure que l’option d’indiquer une proximité, un apparentement, ou comme nous nous exprimons, une " affinité ", faute de pouvoir qualifier la relation plus précisément. Impossible dans ce contexte d’opérer une véritable classification de l’ensemble de ces notions : nous ne pouvons au mieux qu’en établir la liste.

H. G. Creel explique : " Le point crucial est que les anciens Chinois n’étaient dans l’ensemble ni des penseurs systématiques ni ordonnés […]. Ils étaient des cataloguistes infatigables ; ils n’étaient pas systématiciens " (in Hansen 1983 : 25).

Pour qu’un classement systématique puisse être opéré dans l’espace d’une langue, il faut qu’elle dispose parmi ses outils de cette relation d’inclusion et qu’elle permette en particulier d’utiliser le verbe être – ou ce qui en tient lieu – dans le sens qui est le sien quand nous disons : " Le cheval est un animal " ou " Le rat est un mammifère ", soit l’inclusion d’une sorte dans une autre.

Si vous êtes familier de l’œuvre de Jorge Luis Borges. Vous n’ignorez pas alors qu’il nous a diverti avec de petits textes mettant habilement en scène certains paradoxes essentiels. Parmi ceux-ci, celui qui est consacré à " Pierre Ménard, auteur du Don Quichotte ". Ménard, explique Borges, est considéré comme l’un des grands auteurs des années 1930 parce qu’il est parvenu à s’imprégner à ce point de l’esprit du temps de de Cervantes, qu’il a pu réécrire à l’identique deux chapitres (et une partie importante d’un troisième) du Don Quichotte. L’idée est ridicule bien sûr parce que l’on peut imaginer aussi bien qu’au lieu de s’imprégner à la perfection de l’esprit d’une époque, le Ménard en question se soit contenté de recopier le texte du Don Quichotte. Borges avait par ailleurs saisi dans l’une de ses petites fables ce qu’avançait Creel quand il rapportait que les Chinois anciens étaient " des cataloguistes infatigables et non des systématiciens ". Selon Borges, on pouvait trouver dans un ancien texte chinois que :

" Les animaux se divisent en : a) appartenant à l’Empereur, b) embaumés, c) apprivoisés, d) cochons de lait, e) sirènes, f) fabuleux, g) chiens en liberté, h) inclus dans la présente classification, i) qui s’agitent comme des fous, j) innombrables, k) dessinés avec un pinceau très fin en poils de chameau, l) etc., m) qui viennent de casser la cruche, n) qui de loin semblent des mouches ".

Un inventaire sans doute, mais privé de tout caractère systématique, au pôle opposé d’une classification fondée sur l’emboîtement des sortes sur plusieurs niveaux, les niveaux étant ici mélangés. Il s’agit d’une plaisanterie bien entendu et non d’un vrai texte chinois, mais Borges a su saisir ce qui caractérisait à nos yeux d’Occidentaux, l’essence de la … chinoiserie.

Lucien Lévy-Bruhl caractérisait de la même manière la " mentalité primitive ", l’autre nom chez lui, nous le verrons, du totémisme, qui est aussi ce que j’appelle, comme leur synonyme, et à la suite de Durkheim et Mauss, la pensée chinoise archaïque : 

" … les connaissances ne se hiérarchisent pas en concepts subordonnés les uns aux autres. Elles demeurent simplement juxtaposées sans ordre. Elles forment une sorte d’amas ou de tas " (Lévy-Bruhl 1935 : xiv).

Il s’agit bien avec la " mentalité primitive " selon Lévy-Bruhl, le totémisme et la pensée chinoise archaïque d’une seule et même entité.

Auteur: Jorion Paul

Info: 20 janvier 2024, sur son blog.

[ langues comparées ] [ listes ] [ éparpillement ] [ imprécision sémantique ] [ historique ] [ différences ] [ nord-sud ]

 
Commentaires: 1
Ajouté à la BD par Le sous-projectionniste

tour d'horizon de l'IA

Intelligence artificielle symbolique et machine learning, l’essor des technologies disruptives

Définie par le parlement Européen comme la " reproduction des comportements liés aux humains, tels que le raisonnement, la planification et la créativité ", l’intelligence artificielle s’initie de façon spectaculaire dans nos vies. Théorisée au milieu des années 50, plusieurs approches technologiques coexistent telles que l’approche machine learning dite statistique basée sur l’apprentissage automatique, ou l’approche symbolique basée sur l’interprétation et la manipulation des symboles. Mais comment se différencient ces approches ? Et pour quels usages ?

L’intelligence artificielle, une histoire ancienne

Entre les années 1948 et 1966, l’Intelligence Artificielle a connu un essor rapide, stimulé par des financements importants du gouvernement américain pour des projets de recherche sur l’IA, notamment en linguistique. Des progrès significatifs ont été réalisés dans la résolution de problèmes de logique symbolique, mais la capacité de l’IA à traiter des données complexes et imprécises était encore limitée.

A la fin des années 70, plus précisément lors du deuxième “été de l’IA” entre 1978 et 1987,  l’IA connaît un regain d’intérêt. Les chercheurs ont commencé à explorer de nouvelles approches, notamment l’utilisation de réseaux neuronaux et de systèmes experts. Les réseaux neuronaux sont des modèles de traitement de l’information inspirés par le fonctionnement du cerveau humain, tandis que les systèmes experts sont des programmes informatiques qui simulent l’expertise humaine dans un domaine spécifique.

Il faudra attendre la fin des années 90 pour voir un renouveau de ces domaines scientifiques, stimulé par des avancées majeures dans le traitement des données et les progrès de l’apprentissage automatique. C’est d’ailleurs dans cette période qu’une IA, Deepblue, gagne contre le champion mondial Garry Kasparov aux échecs.$

Au cours des dernières années, cette technologie a connu une croissance exponentielle, stimulée par des progrès majeurs dans le deep learning, la robotique ou la compréhension du langage naturel (NLU). L’IA est maintenant utilisée dans un large éventail de domaines, notamment la médecine, l’agriculture, l’industrie et les services. C’est aujourd’hui un moteur clé de l’innovation et de la transformation de notre monde, accentué par l’essor des generative AIs. 

Parmi ces innovations, deux grandes approches en intelligence artificielle sont aujourd’hui utilisées : 

1 - Le Machine Learning : qui est un système d’apprentissage automatique basé sur l’exploitation de données, imitant un réseau neuronal

2 - L’IA Symbolique : qui se base sur un système d’exploitation de " symboles ”, ce qui inspire des technologies comme le “système expert” basé sur une suite de règles par exemple.

Mais comment fonctionnent ces deux approches et quels sont leurs avantages et leurs inconvénients ? Quels sont leurs champs d’application ? Peuvent-ils être complémentaires ?

Le machine learning

Le Machine Learning est le courant le plus populaire ces dernières années, il est notamment à l’origine de ChatGPT ou bien MidJourney, qui font beaucoup parler d’eux ces derniers temps. Le Machine Learning (ML) est une famille de méthodes d’apprentissage automatique qui permet aux ordinateurs d’apprendre à partir de données, sans être explicitement programmés. En utilisant des algorithmes, le ML permet aux ordinateurs de comprendre les structures et les relations dans les données et de les utiliser pour prendre des décisions.

Le ML consiste à entraîner des modèles informatiques sur de vastes ensembles de données. Ces modèles sont des algorithmes auto apprenant se basant sur des échantillons de données, tout en déterminant des schémas et des relations/corrélations entre elles. Le processus d’entraînement consiste à fournir à l’algorithme des données étiquetées, c’est-à-dire des données qui ont déjà été classifiées ou étiquetées pour leur attribuer une signification. L’algorithme apprend ensuite à associer les caractéristiques des données étiquetées aux catégories définies en amont. Il existe cependant une approche non-supervisée qui consiste à découvrir ce que sont les étiquettes elles-mêmes (ex: tâche de clustering).

Traditionnellement, le machine learning se divise en 4 sous-catégories : 

Apprentissage supervisé : 

Les ensembles de données sont étiquetés, ce qui permet à l’algorithme de trouver des corrélations et des relations entre les caractéristiques des données et les étiquettes correspondantes. 

Apprentissage non supervisé : 

Les ensembles de données ne sont pas étiquetés et l’algorithme doit découvrir les étiquettes par lui-même. 

Apprentissage semi-supervisé : 

L’algorithme utilise un mélange de données étiquetées et non étiquetées pour l’entraînement.

Apprentissage par renforcement : 

L’algorithme apprend à prendre des décisions en interagissant avec son environnement. Il reçoit des récompenses ou des pénalités pour chaque action, ce qui lui permet d’ajuster sa stratégie pour maximiser sa récompense globale.

Un exemple d’application du Machine Learning est la reconnaissance d’images. Des modèles d’apprentissages profonds sont entraînés sur des millions d’images pour apprendre à reconnaître des objets, des personnes, des animaux, etc. Un autre exemple est la prédiction de la demande dans le commerce de détail, où des modèles sont entraînés sur des données de ventes passées pour prédire les ventes futures.

Quels sont les avantages ? 

Étant entraîné sur un vaste corpus de données, le ML permet de prédire des tendances en fonction de données.  

- Le machine learning offre la capacité de détecter des tendances and des modèles dans les données qui peuvent échapper à l’observation humaine.

- Une fois configuré, le machine learning peut fonctionner de manière autonome, sans l’intervention humaine. Par exemple, dans le domaine de la cybersécurité, il peut surveiller en permanence le trafic réseau pour identifier les anomalies.

- Les résultats obtenus par le machine learning peuvent s’affiner et s’améliorer avec le temps, car l’algorithme peut apprendre de nouvelles informations et ajuster ses prédictions en conséquence.

- Le machine learning est capable de traiter des volumes massifs et variés de données, même dans des environnements dynamiques et complexes.

L’intelligence artificielle symbolique

L’IA symbolique est une autre approche de l’intelligence artificielle. Elle utilise des symboles and des règles de traitement de l’information pour effectuer des tâches. Les symboles peuvent être des concepts, des objets, des relations, etc. Les règles peuvent être des règles de déduction, des règles de production, des règles d’inférence…etc.

Un exemple d’application de l’IA symbolique est le système expert. Un système expert est un programme informatique qui utilise des règles de déduction pour résoudre des problèmes dans un domaine spécifique, comme le diagnostic médical ou l’aide à la décision en entreprise. Un autre exemple est la traduction automatique basée sur des règles, les règles de grammaire et de syntaxe sont utilisées pour traduire un texte d’une langue à une autre.

Quelques exemples d’usages de l’IA symbolique :

La traduction

L’IA symbolique a été utilisée pour développer des systèmes de traduction automatique basés sur des règles. Ces systèmes utilisent des règles de grammaire et de syntaxe pour convertir un texte d’une langue à une autre. Par exemple, le système SYSTRAN, développé dans les années 1960, est un des premiers systèmes de traduction automatique basé sur des règles. Ce type de système se distingue des approches basées sur le Machine Learning, comme Google Translate, qui utilisent des modèles statistiques pour apprendre à traduire des textes à partir de corpus bilingues.

Le raisonnement logique

L’IA symbolique est également utilisée pour développer des systèmes capables de raisonnement logique, en exploitant des règles et des connaissances déclaratives pour résoudre des problèmes complexes. Par exemple, les systèmes d’aide à la décision basés sur des règles peuvent être utilisés dans des domaines tels que la finance, l’assurance ou la logistique, pour aider les entreprises à prendre des décisions éclairées. Un exemple concret est le système MYCIN, développé dans les années 1970 pour aider les médecins à diagnostiquer des infections bactériennes et à prescrire des antibiotiques adaptés.

L’analyse de textes

L’IA symbolique peut être utilisée pour l’analyse de textes, en exploitant des règles et des connaissances linguistiques pour extraire des informations pertinentes à partir de documents. Par exemple, les systèmes d’extraction d’information basés sur des règles peuvent être utilisés pour identifier des entités nommées (noms de personnes, d’organisations, de lieux, etc.) et des relations entre ces entités dans des textes. Un exemple d’application est l’analyse et la catégorisation des messages entrants pour les entreprises, cœur de métier de Golem.ai avec la solution InboxCare.

Les avantages de l’IA symbolique 

L’IA symbolique est une approche qui utilise des symboles, et parfois des " règles” basées sur des connaissances, qui comporte plusieurs avantages :

- Explicablilité : Les décisions prises par les systèmes d’IA symbolique sont explicites et peuvent être expliquées en fonction des règles logiques et des connaissances déclaratives utilisées par le système. Cette transparence peut être essentielle dans des applications critiques, comme la médecine ou la défense.

- Frugalité : Contrairement au Machine Learning, l’IA symbolique ne nécessite pas d’entraînement, ce qui la rend moins gourmande en énergie à la fois lors de la conception et de l’utilisation.

- Adaptabilité : Les systèmes d’IA symbolique peuvent être facilement adaptés à de nouveaux domaines en ajoutant de nouvelles règles logiques et connaissances déclaratives à leurs bases de connaissances existantes, leurs permettant de s’adapter rapidement à de nouvelles situations.

L’intelligence artificielle hybride ou le neuro-symbolique 

Les systèmes hybrides combinent les avantages de l’IA symbolique et du Machine Learning en utilisant une approche mixte. Dans ce type de système, l’IA symbolique est utilisée pour représenter les connaissances et les règles logiques dans un domaine spécifique. Les techniques de Machine Learning sont ensuite utilisées pour améliorer les performances de l’IA symbolique en utilisant des ensembles de données pour apprendre des modèles de décision plus précis et plus flexibles. Mais nous pouvons également voir d’autres articulations comme la taxonomie de Kautz par exemple.

L’IA symbolique est souvent utilisée dans des domaines où il est important de comprendre et de contrôler la façon dont les décisions sont prises, comme la médecine, la finance ou la sécurité. En revanche, le Machine Learning est souvent utilisé pour des tâches de classification ou de prédiction à grande échelle, telles que la reconnaissance de voix ou d’image, ou pour détecter des modèles dans des données massives.

En combinant les deux approches, les systèmes hybrides peuvent bénéficier de la compréhensibilité et de la fiabilité de l’IA symbolique, tout en utilisant la flexibilité et la capacité de traitement massif de données du Machine Learning pour améliorer la performance des décisions. Ces systèmes hybrides peuvent également offrir une plus grande précision et un temps de réponse plus rapide que l’une ou l’autre approche utilisée seule.

Que retenir de ces deux approches ?

L’Intelligence Artificielle est en constante évolution et transforme de nombreux secteurs d’activité. Les deux approches principales de l’IA ont leurs avantages et inconvénients et peuvent être complémentaires. Il est donc crucial pour les entreprises de comprendre ces technologies pour rester compétitives. 

Cependant, les implications éthiques et sociales de l’IA doivent également être prises en compte. Les décisions des algorithmes peuvent avoir un impact sur la vie des personnes, leur travail, leurs droits et leurs libertés. Il est donc essentiel de mettre en place des normes éthiques et des réglementations pour garantir que l’IA soit au service de l’humanité. Les entreprises et les gouvernements doivent travailler ensemble pour développer des IA responsables, transparentes et équitables qui servent les intérêts de tous. En travaillant ensemble, nous pouvons assurer que l’IA soit une force positive pour l’humanité dans les années à venir. 



 

Auteur: Merindol Hector

Info: https://golem.ai/en/blog/technologie/ia-symbolique-machinelearning-nlp - 4 avril 2023

[ dualité ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste