Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 109
Temps de recherche: 0.0552s

fausse bonne solution

Richard Branson affirme que d’ici une trentaine d’années on ne tuera plus d’animaux pour leur viande. La viande de culture serait ainsi l’unique futur de la viande.

Bill Gates a, quant à lui, désigné la viande de culture comme l’une des principales technologies de rupture de 2019.

Les acteurs du secteur de la viande traditionnelle ne s’y trompent pas: Bell Food Group, l’un des principaux producteurs européens de viande, et les géants américains Tyson Foods et Cargill, ont tous investi des millions dans des start-ups de la viande de culture. Ils misent sur le potentiel hautement disruptif de cette industrie émergente, qui pourrait écarter tout simplement les personnes qui font de l'élevage du processus de production de la viande.

Cette industrie n’est pourtant pas tout à fait au point, puisqu’elle exige d’abord un passage à l’échelle du processus de production: aucune des start-ups n’affirme aujourd’hui posséder les solutions aux défis posés. Elles ne sont, par exemple, pas encore parvenu à s’affranchir du sérum de veau fœtal et d’autres molécules d’origine animale indispensables à l’élaboration de la viande artificielle.

Le sérum de veau fœtal s’obtient à partir du sang des fœtus retirés aux vaches gestantes au moment de l’abattage. Cet élixir onéreux, représentant environ 80% du coût de production de la viande artificielle, requiert pour le prélever de continuer à abattre presque autant de vaches qu’aujourd’hui. Et il posera sans doute problème au consommateur comme le pressent le PDG de Mosa Meat qui affirme que son entreprise ne se lancera pas sur le marché avec un produit en contenant.

Il existe bien une version synthétique de ce sérum, mais les facteurs de croissance qu’on y trouve demeurent extrêmement coûteux. Ils ne sont actuellement produits et utilisés qu’en très petites quantités, pour la recherche scientifique.

[...]

Les bienfaits environnementaux de cette alternative sont pourtant loin de faire l’unanimité. L’étude réalisée par des scientifiques des universités d’Oxford et d’Amsterdam, qui annonçait en 2011 une réduction spectaculaire de l’impact environnemental, a par la suite été vivement critiquée, en particulier sur les valeurs de certains paramètres.

Comment peut-on raisonnablement estimer la consommation électrique des usines géantes de viande de culture alors qu’il n’en existe aucune aujourd’hui et que le processus de production à l’échelle est inconnu? Certains des résultats de cette étude ont depuis été revus à la baisse. De son côté, le Forum économique mondial (forum de Davos) a affirmé début 2019 que les émissions de la viande de culture ne seraient qu’environ 7% moindre que celles de la production de bœuf actuelle. Et une nouvelle étude publiée en février assure pour sa part qu’à long terme cette industrie émergente pourrait être plus polluante encore que l’élevage actuel.

La santé est un autre argument des persones qui produisent de la viande de synthèse: celle-ci ne contiendrait pas de résidus d’antibiotiques et ne présenterait pas de risques de contaminations bactériologiques qui accompagnent la viande d’abattage.

Pourtant, la propreté de la viande artificielle est largement remise en question. Le fameux sérum nutritif évoqué précédemment est composé de facteurs de croissance, de nutriments énergétiques, d’acides aminés, d’hormones ainsi que d’antibiotiques et d’antifongiques. Le matériau d’échafaudage nécessaire à sa production contient quant à lui du collagène et de la gélatine.

L’industrialisation de la production pourrait par ailleurs impliquer une entrée d’agents pathogènes comme la listeria. Des scientifiques notent en effet que les protocoles nécessaires à la production de volumes commerciaux seraient supérieurs à ceux nécessités dans l’industrie pharmaceutique. La culture cellulaire à cette échelle fait peser de sérieux risques de contaminations croisées.

Auteur: Slate.fr

Info: http://www.slate.fr/story/176337/viande-artificielle-marche-economie-monsanto-bayer-environnement-sante?

[ évaluation du risque ] [ business ] [ fabrication ] [ alimentation ]

 
Mis dans la chaine

Commentaires: 0

Ajouté à la BD par Coli Masson

artiste

Elle tenait dans sa main tous les âges de la vie, depuis la naissance jusqu’à la vieillesse, avec la mort en fantôme permanent derrière chaque étape. Elle les dansait les uns après les autres dans un dégradé de nuances physiques qui faisait oublier son âge véritable. Cet exercice de mue à couper le souffle, la danseuse et chorégraphe japonaise Carlotta Ikeda, star féminine du butô, mouvement chorégraphique radical né à Tokyo dans les années 1960, en a achevé le cycle, mercredi 24 septembre, chez elle, à Bordeaux, où elle vivait depuis la fin des années 1990. Elle avait 73 ans et luttait depuis quelques mois contre un cancer.
Carlotta Ikeda, de son vrai prénom "Sanae" ("pousse de riz" en japonais) n’a jamais dévié de sa route artistique escarpée. Née en 1941 à Fukui, au bord de la mer du Japon, fille d’un fonctionnaire issu d’une lignée de samouraïs et d’une femme qui élevait des animaux, elle aimait évoquer son village, la campagne où elle se promenait et dansait librement. C’est en voyant sa mère interpréter certains styles chorégraphiques traditionnels qu’elle eut le désir de danser.
VÉRITÉ ARCHAÏQUE DE L’ÊTRE
Passée par l’université de Tokyo et la technique classique – elle prit son premier cours à l’âge de 19 ans –, elle est professeur de gymnastique dans les collèges, tout en cherchant sa voie. En 1970, elle croise Tatsumi Hijikata (1928-1986), fondateur du butô. Ebranlement esthétique devant ce geste physique sauvage et viscéral. Celle qui affirme avoir toujours été danseuse s’initie à ce mouvement nourri des écrits d’Artaud, de Lautréamont et de Sade pour faire surgir la vérité archaïque de l’être.
En 1974, elle intègre la fameuse compagnie Dairakudakan, puis rencontre le chorégraphe Ko Murobushi, qui deviendra son partenaire de prédilection. La même année, elle fonde sa compagnie uniquement composée de femmes Ariadone et choisit de s’appeler Carlotta en hommage à la danseuse classique Carlotta Grisi (1819-1899), fameuse interprète de Giselle, "pour marquer l'irréductible opposition entre le ballet et le butô". Pour gagner sa vie, elle joue, toute poudrée d’or, dans des spectacles de cabaret où elle affirme une pensée du geste audacieuse et libre. "Quand je faisais mon strip-tease, j'avais un objectif : c'est que les gens qui étaient là pour rire et boire se taisent et me regardent pendant quinze minutes, confiait-elle en 2004. J'ai fini par arriver à mes fins, j'ai commencé à trouver ma manière de faire."
EFFACEMENT DE SOI
Grave et grotesque, puissant et vulnérable, cru et érotique, son butô se libère peu à peu pour devenir ce qu’elle définissait ainsi : "Mon art danse n'est ni une forme ni une technique particulière, mais plutôt un effacement de soi, une sorte de néant." De cet effacement, naît la présence hautement particulière d’une femme en quête d’elle-même. Ses solos ont marqué son parcours en inscrivant sa touche.
Emblématique, Utt (1981), qu’elle a transmis par ailleurs à une interprète de sa troupe, surexposait les codes du butô : corps blanc nu, yeux renversés dans les orbites, pieds et mains tordus comme des moignons. Un corps "débilité", selon la formule d’Hijikata, qu’elle fera évoluer à sa façon. "Mon butô est une quête intérieure à la frontière de la normalité et de la folie. Comme dans le bouddhisme, j'essaye d'atteindre un certain état d'effacement de soi, de néant." Tout aussi éberluant, sur un texte de Marguerite Duras, Waiting (1997), ou récemment Médée (2012), font palpiter le mystère du vivant.
Lorsqu’on lui demandait le sens de son travail, Carlotta Ikeda le résumait par un seul mot "le désir", trouvant sur scène "une sorte de vie pure".

Auteur: Boisseau Rosita

Info: Le Monde sept. 2014

[ passion ]

 

Commentaires: 0

conjecture scientifique

L’Univers pourrait être dominé par des tachyons, des particules se déplaçant plus vite que la lumière

 (Photo : Une délicate sphère de gaz créée par une onde de souffle de supernova à 160 000 années-lumière de la Terre.)

Dans un article préliminaire récent, deux physiciens avancent une proposition qui pourrait révolutionner notre compréhension de l’Univers. Leur théorie audacieuse suggère que notre cosmos pourrait être gouverné par des particules hypothétiques appelées tachyons qui se déplacent toujours plus vite que la lumière.

L’hypothèse des tachyons

Dans le monde fascinant de la physique théorique où les frontières de la connaissance sont sans cesse repoussées, la quête pour comprendre les mystères de l’Univers est incessante. Récemment, deux physiciens ont par exemple fait une proposition audacieuse qui pourrait potentiellement transformer notre vision fondamentale de l’Univers : l’hypothèse des tachyons. Selon la théorie, il s’agirait de particules hypothétiques qui se déplacent toujours plus vite que la lumière.

Bien que leur existence soit largement contestée et contredite par les principes de la relativité restreinte, qui dit qu’aucune particule dotée de masse ne peut voyager à une vitesse supérieure à celle de la lumière dans le vide, les tachyons continuent de susciter l’intérêt des chercheurs en raison de leur potentiel à repousser les frontières de notre compréhension.

Comment leur présence pourrait-elle changer le monde ?

Les chercheurs avancent plus précisément l’hypothèse audacieuse que les tachyons pourraient jouer un rôle fondamental dans notre compréhension de la composition de l’Univers. Dans ce modèle, ces particules pourraient en effet être la clé pour expliquer deux phénomènes mystérieux : la matière noire et l’énergie noire. La première est une substance invisible qui compose la majorité de la masse de l’Univers observable, mais dont la nature exacte reste largement inconnue. L’énergie noire est quant à elle responsable de l’expansion accélérée de l’univers. Plus précisément, les chercheurs suggèrent que les tachyons pourraient être la véritable identité de la matière noire.

Concernant l’énergie noire, rappelons que les astronomes peuvent mesurer la luminosité intrinsèque des supernovae de type Ia, ce qui leur permet de déterminer leur distance par rapport à la Terre. En comparant cette luminosité apparente à la luminosité intrinsèque attendue d’une supernova de type Ia standard, ils peuvent calculer la distance de la supernova et ainsi estimer la distance de l’objet hôte (généralement une galaxie).

En combinant les mesures de distance de nombreuses supernovae de ce type à différentes distances, les astronomes peuvent alors tracer la relation entre la distance et le taux d’expansion de l’Univers. Dans le cadre de cette étude sur les tachyons, les chercheurs ont appliqué leur modèle cosmologique alternatif aux données observées sur ces supernovae. Il s’est alors avéré que ce dernier était tout aussi cohérent avec ces observations.

En intégrant les tachyons dans leur modèle, les physiciens suggèrent que ces particules pourraient ainsi fournir une explication unifiée à ces deux phénomènes cosmologiques complexes.

Quelles sont les limites de cette théorie ?

Malgré son potentiel révolutionnaire, la théorie des tachyons est confrontée à de nombreuses limites. Tout d’abord, leur existence même est hautement improbable selon les connaissances actuelles de la physique. En effet, la notion de voyager plus vite que la lumière soulève des questions fondamentales sur la causalité et les principes de la relativité. De plus, bien que ce modèle cosmologique puisse expliquer certaines observations, il nécessite encore des tests expérimentaux rigoureux pour être validé.

En conclusion, l’étude des tachyons représente une exploration audacieuse des limites de notre compréhension de l’Univers. Cependant, bien que cette théorie ouvre de nouvelles perspectives fascinantes, elle devra être soumise à un examen minutieux et à des tests rigoureux pour être pleinement acceptée par la communauté scientifique.

Les recherches de l’équipe ont été publiées dans la base de données pré-imprimée arXiv en mars.



 

Auteur: Internet

Info: https://sciencepost.fr/ - Brice Louvet, expert espace et sciences18 avril 2024

[ spéculations ] [ monde subatomique ] [ vitesse supraluminique ] [ effet Tcherenkov ] [ superluminique ]

 

Commentaires: 0

Ajouté à la BD par miguel

entendement

Les capacités cognitives des oiseaux sont étonnantes
Avoir une "cervelle d'oiseau" est en fait un compliment vu que la densité des neurones confère aux oiseaux un avantage intellectuel.
Des chercheurs ont découvert que les oiseaux chanteurs, les perroquets et d'autres espèces d'oiseaux peuvent avoir dans leur cerveau autant ou plus de neurones que les mammifères, y compris les primates.
Certains oiseaux excellent dans des tâches nécessitant une "pensée supérieure", comme planifier l'avenir, utiliser des outils, compter, et se reconnaître dans un miroir. Ces oiseaux peuvent accomplir ces tâches à un niveau égal voire supérieur à celui des primates en matière de résolution de problèmes, bien que leurs cerveaux soient beaucoup plus petits. Les scientifiques estimaient auparavant que le "câblage" du cerveau des oiseaux était complètement différent de celui des primates, mais cette idée a été réfutée il y a deux ans, par une étude du cerveau des pigeons.
Des scientifiques de l'université Charles à Prague et de la Vanderbilt University à Nashville, dans le Tennessee, pourraient avoir une réponse. Ils ont étudié 28 espèces d'oiseaux et découvert que les oiseaux chanteurs et les perroquets peuvent avoir dans leur cerveau autant ou plus de neurones que les mammifères (notamment dans le prosencéphale qui est lié à des activités plus complexes). Ces neurones plus petits, bien tassés et hautement connectés semblent conférer aux oiseaux des capacités cognitives qui dépasseraient largement les attentes et peut-être même les aptitudes de primates aux cerveaux de la même taille. En résumé, les chercheurs estiment que les cerveaux des oiseaux pourraient fournir une puissance cognitive bien plus élevée que les de mammifères, par unité de masse cervicale.
L'équipe de recherche a acheté ou capturé divers oiseaux (étourneaux, passereaux, choucas et perruches) afin d'en examiner les structures cérébrales. Une fois les cerveaux retirés, les scientifiques ont ciblé le pallium, une structure du cerveau des oiseaux comparable au cortex cérébral des mammifères. Chez les mammifères, des neurones plus grands permettent de connecter les régions cérébrales plus lointaines, mais au prix de la densité. Les oiseaux évitent ce compromis en gardant la plupart de leurs neurones plus près les uns des autres, et en développant un petit nombre de neurones plus grands pour traiter la communication à longue distance.
Le cerveau d'un ara n'est pas plus gros qu'une noix, mais il possède davantage de neurones dans le prosencéphale (utile pour un comportement) que le macaque dont le cerveau a la taille d'un citron. Le cerveau des cacatoès à crête jaune et des galagos pèsent environ 10 g, mais le cacatoès possède deux milliards de neurones, soit le double des galagos. Les perroquets, les oiseaux chanteurs et les corvidés (soit les corbeaux, les corneilles et les freux) présentaient la densité des neurones la plus élevée dans leur prosencéphale. De fait, la taille inférieure du cerveau est compensée par le nombre élevé de cellules cérébrales.
"On s'est longtemps étonné que les oiseaux soient remarquablement intelligents, malgré la petite taille de leur cerveau", commentait Pavel Nymec, l'un des membres de l'équipe de recherche. "Ils peuvent faire des choses que l'on pensait être réservées aux singes et aux autres mammifères. Il y avait un décalage entre la taille de leur cerveau et leurs capacités cognitives."
Ce n'est pas la première fois que l'intelligence inattendue des oiseaux surprend les chercheurs. En 2002, une équipe à l'université d'Oxford a été choquée de voir un corbeau de Nouvelle Calédonie plier un fil de fer pour l'utiliser comme appât. D'autres oiseaux ont fait preuve de capacités très sophistiquées, comme les perroquets gris d'Afrique qui savent compter et les pies qui reconnaissent leur reflet dans un miroir.
Il est prévu d'analyser les cerveaux d'encore plus d'oiseaux, dont les pigeons, les oiseaux aquatiques et les poules pour en étudier les connexions des cerveaux. "Nous aimerions voir si les neurones aviaires présentent un nombre de connexions similaires à celles des primates, mais cela s'inscrira dans un plus grand projet à venir", fut la conclusion.

Auteur: Internet

Info: Proceedings of the National Academy of Sciences, juin 2016

[ homme-animal ] [ sciences ]

 

Commentaires: 0

extension

La conscience humaine pourrait être un effet de l’entropie 

Une nouvelle étude suggère que la conscience pourrait être une caractéristique émergente découlant de l’effet d’entropie, soit le mécanisme physique faisant que le désordre au sein de tout système ne peut faire qu’augmenter, et par le biais duquel le cerveau maximiserait les échanges d’informations. Cette conclusion a été déduite de l’analyse de l’activité cérébrale de patients épileptiques ou non, indiquant que les états d’éveil normaux (ou conscients) sont associés à des valeurs entropiques maximales.

En thermodynamique, l’entropie se traduit par le passage inéluctable d’un système d’un agencement ordonné à désordonné. La valeur entropique est le niveau de désorganisation de ce système. Les physiciens suggèrent qu’après le Big Bang, l’Univers est progressivement passé d’un état entropique faible à élevé et qu’à l’instar du temps, l’entropie ne peut qu’augmenter au sein d’un système. De leur côté, les neurobiologistes estiment que le principe est transposable à l’organisation de nos connexions neuronales.

La question est de savoir quel type d’organisation neuronale sous-tend les valeurs de synchronisation observées dans les états d’alerte normaux ou non. C’est ce que des chercheurs de l’Université de Toronto et de l’Université de Paris Descartes ont exploré. " Nous avons cherché à identifier les caractéristiques globales de l’organisation du cerveau qui sont optimales pour le traitement sensoriel et qui peuvent guider l’émergence de la conscience ", expliquent-ils dans leur étude, publiée dans la revue Physical Review E.

Les observations de l’activité cérébrale chez l’Homme ont montré qu’elle est sujette à une importante fluctuation au niveau des interactions cellulaires. Cette variabilité serait à la base d’un large éventail d’états, incluant la conscience. D’un autre côté, des travaux antérieurs traitant du fonctionnement cérébral ont suggéré que l’état conscient n’est pas nécessairement associé à des degrés élevés de synchronisation entre les neurones, mais davantage à des niveaux moyens. Les chercheurs de la nouvelle étude ont alors supposé que ce qui est maximisé au cours de cet état n’est pas la connectivité neuronale, mais le nombre de configurations par lesquelles un certain degré de connectivité peut être atteint.

État de conscience = entropie élevée ?

Dans le cadre de leur analyse, les scientifiques ont utilisé la mécanique statistique pour l’appliquer à la modélisation de réseaux neuronaux. Ainsi, cette méthode permet de calculer des caractéristiques thermodynamiques complexes. Parmi ces propriétés figure la manière dont l’activité électrique d’un ensemble de neurones oscille de façon synchronisée avec celle d’un autre ensemble. Cette évaluation permet de déterminer précisément de quelle façon les cellules cérébrales sont liées entre elles.

Selon les chercheurs, il existerait une multitude de façons d’organiser les connexions synaptiques en fonction de la taille de l’ensemble de neurones. Afin de tester leur hypothèse, des données d’émission de champs électriques et magnétiques provenant de 9 personnes distinctes ont été collectées. Parmi les participants, 7 souffraient d’épilepsie. Dans un premier temps, les modèles de connectivité ont été évalués et comparés lorsqu’une partie des volontaires était endormie ou éveillée. Dans un deuxième temps, la connectivité de 5 des patients épileptiques a été analysée, lorsqu’ils avaient des crises de convulsions ainsi que lorsqu’ils étaient en état d’alerte normal. Ces paramètres ont ensuite été rassemblés afin de calculer leurs niveaux d’entropie cérébrale. Le résultat est le même dans l’ensemble des cas : le cerveau affiche une entropie plus élevée lorsqu’il est dans un état de conscience.

Les chercheurs estiment qu’en maximisant l’entropie, le cerveau optimise l’échange d’informations entre les neurones. Cela nous permettrait de percevoir et d’interagir de manière optimale avec notre environnement. Quant à la conscience, ils en ont déduit qu’elle pourrait tout simplement être une caractéristique émergente découlant de cette entropie. Toutefois, ces conclusions sont encore hautement spéculatives en raison des limites que comporte l’étude, telles que le nombre restreint de participants à l’étude. Le terme " entropie " devrait même être considéré avec parcimonie dans ce cadre, selon l’auteur principal de l’étude, Ramon Guevarra Erra de l’Université de Paris Descartes.

De nouvelles expériences sur un échantillon plus large sont nécessaires afin de véritablement corroborer ces résultats. On pourrait aussi évaluer d’autres caractéristiques thermodynamiques par le biais de l’imagerie par résonance magnétique, qui peut être utilisée pour mesurer l’oxygénation — une propriété directement liée au métabolisme et donc à la génération de chaleur (et de ce fait d’augmentation de l’entropie). Des investigations menées en dehors de conditions d’hôpital seraient également intéressantes afin d’évaluer des états de conscience associés à des comportements cognitifs plus subtils. On pourrait par exemple analyser l’activité cérébrale de personnes exécutant une tâche spécifique, comme écouter ou jouer de la musique.

Auteur: Internet

Info: https://trustmyscience.com/ - Valisoa Rasolofo & J. Paiano - 19 octobre 2023

[ complexification ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

épigénétique

De la biologie quantique dans la photosynthèse ? La biologie actuelle en est-elle au stade où était la physique classique avant la découverte de la physique quantique ? Certains le soupçonnent depuis quelques années, et une publication récente dans Nature Communications vient d'apporter de l'eau à leur moulin. Il y aurait bien des processus quantiques derrière l'efficacité de la photosynthèse.

(On note Ψ la fameuse fonction d'onde décrivant les amplitudes de probabilité en mécanique quantique depuis les travaux de Schrödinger sur sa célèbre équation. On a de nouvelles raisons de penser que la vie exploite les lois de la mécanique quantique pour rendre certains processus plus efficaces, en particulier la photosynthèse. © Engel Group, University of Chicago - En commentaire de la photo d'une feuille au soleil)

C'est un fait bien établi que l'existence des atomes, des molécules et des liaisons chimiques ne sont pas compréhensibles en dehors des lois de la mécanique quantique. En ce sens, la physique et la chimie d'un bloc de métal ou d'une cellule sont quantiques. Mais on sait bien que le comportement de ces objets ne manifeste pas directement la nature quantique de la matière, ils font partie du monde de la physique classique. Cependant, certains phénomènes comme la supraconductivité ou la superfluidité débordent du domaine quantique d'ordinaire réservé à la microphysique pour entrer dans le monde à notre échelle. Lorsque la nécessité de la physique quantique s'est révélée aux physiciens explorant la matière et la lumière, ce fut essentiellement avec deux phénomènes qui semblaient au départ être de simples anomalies bien localisées dans l'univers de la physique classique : le rayonnement du corps noir et l'effet photoélectrique. Nous savons aujourd'hui qu'ils étaient la pointe émergée du monde quantique et que, fondamentalement, le réel est fort différent de la vision du monde bâtie par les fondateurs de la science classique comme Galilée, Descartes et Newton.

La biologie quantique pour expliquer la photosynthèse
De nos jours, les biologistes qui réfléchissent sur le fonctionnement des cellules, de l'ADN ou des neurones considèrent que ces objets sont majoritairement décrits par les lois de la physique classique. Il n'est pas nécessaire d'utiliser l'équation de Schrödinger ou les amplitudes de probabilités qu'elle gouverne pour comprendre l'origine de la vie, les mutations, l'évolution ou l'apparition de la conscience dans un cerveau. Pourtant, ces dernières années, quelques résultats expérimentaux en biologie, notamment sur la photosynthèse, semblaient défier les lois de la physique classique.

Il était et il est encore bien trop tôt pour savoir si la photosynthèse finira par être, pour une éventuelle biologie quantique, ce que le rayonnement du corps noir a été pour la physique quantique. Toutefois, Alexandra Olaya-Castro et Edward O'Reilly, des chercheurs du célèbre University College de Londres, viennent de publier dans Nature Communications un article, également disponible en accès libre sur arxiv, dans lequel ils affirment que des macromolécules biologiques utilisent bel et bien des processus quantiques pour effectuer de la photosynthèse. Jusqu'à présent, le doute planait sur l'inadéquation des processus classiques pour décrire le comportement de chromophores attachés à des protéines qu'utilisent les cellules végétales pour capter et transporter l'énergie lumineuse.

Selon les deux physiciens, certains des états de vibrations moléculaires des chromophores facilitent le transfert d'énergie lors du processus de photosynthèse et contribuent à son efficacité. Ainsi, lorsque deux chromophores vibrent, il arrive que certaines énergies associées à ces vibrations collectives des deux molécules soient telles qu'elles correspondent à des transitions entre deux niveaux d'énergie électronique des molécules. Un phénomène de résonance se produit et un transfert d'énergie en découle entre les deux chromophores.

Distributions de probabilités quantiques négatives
Or, si le processus était purement classique, les mouvements et les positions des atomes dans les chromophores seraient toujours décrits par des distributions de probabilités positives. Alexandra Olaya-Castro et Edward O'Reilly ont découvert qu'il fallait employer des distributions négatives. C'est une signature indiscutable de l'occurrence de processus quantiques. Mieux, il s'agit dans le cas présent de la manifestation d'une superposition d'états quantiques à température ambiante assistant un transfert cohérent d'énergie. On retrouve ces vibrations collectives de macromolécules dans d'autres processus biologiques comme le transfert d'électrons dans les centres de réaction des systèmes photosynthétiques, le changement de structure d'un chromophore lors de l'absorption de photons (comme dans les phénomènes associés à la vision). Selon les chercheurs, il est donc plausible que des phénomènes quantiques assistant des processus biologiques que l'on croyait classiques soient assez répandus. Si tel est le cas, on peut s'attendre à découvrir d'autres manifestations hautement non triviales de la mécanique quantique en biologie. Cela n'aurait certainement pas surpris Werner Heisenberg, et encore moins Niels Bohr qui, il y a déjà plus de 60 ans, prédisaient que l'on pourrait bien rencontrer des limites de la physique classique avec les systèmes vivants.

Auteur: Internet

Info: https://www.futura-sciences.com/. Laurent Sacco. 20- 01-2014

[ biophysique ]

 

Commentaires: 0

Ajouté à la BD par miguel

chimie organique

Des chercheurs créent un nouveau composé chimique pour résoudre un problème vieux de 120 ans

L’accès à ces molécules peut avoir des impacts majeurs sur l’agriculture, les produits pharmaceutiques et l’électronique.

(Image - graphique qui représente le composé chimique découvert)  

Pour la première fois, des chimistes du Twin Cities College of Science and Engineering de l'Université du Minnesota ont créé un composé chimique hautement réactif qui échappe aux scientifiques depuis plus de 120 ans. Cette découverte pourrait conduire à de nouveaux traitements médicamenteux, à des produits agricoles plus sûrs et à une meilleure électronique.

Depuis des décennies, les chercheurs étudient des molécules appelées N-hétéroarènes, qui sont des composés chimiques en forme d'anneau contenant un ou plusieurs atomes d'azote. Les molécules bioactives ayant un noyau N-hétéroarène sont largement utilisées pour de nombreuses applications médicales, pharmaceutiques vitales, pesticides et herbicides, et même dans l'électronique.

"Bien que la personne moyenne ne pense pas quotidiennement aux hétérocycles, ces molécules uniques contenant de l'azote sont largement utilisées dans toutes les facettes de la vie humaine", a déclaré Courtney Roberts, auteur principal de l'étude et professeur au département de chimie de l'Université du Minnesota.

Ces molécules sont très recherchées par de nombreuses industries, mais sont extrêmement difficiles à fabriquer pour les chimistes. Les stratégies précédentes ont pu cibler ces molécules spécifiques, mais les scientifiques n’ont pas réussi à créer une série de ces molécules. L’une des raisons à cela est que ces molécules sont extrêmement réactives. Elles sont si actives que les chimistes ont utilisé la modélisation informatique pour prédire qu’elles devraient être impossibles à réaliser. Cela a créé des défis pendant plus d’un siècle et a empêché de trouver une solution pour créer cette substance chimique.

"Ce que nous avons pu faire, c'est exécuter ces réactions chimiques avec un équipement spécialisé tout en éliminant les éléments couramment présents dans notre atmosphère", a déclaré Jenna Humke, étudiante diplômée en chimie à l'Université du Minnesota et auteur principal de l'article. " Heureusement, nous disposons des outils nécessaires pour le faire à l’Université du Minnesota. Nous avons mené des expériences sous azote dans une boîte à gants à chambre fermée, ce qui crée un environnement chimiquement inactif pour tester et déplacer les échantillons."

Ces expériences ont été réalisées en utilisant la catalyse organométallique, l'interaction entre les métaux et les molécules organiques. La recherche a nécessité une collaboration entre des chimistes organiques et inorganiques. C'est quelque chose de courant à l'Université du Minnesota.

"Nous avons pu résoudre ce défi de longue date parce que le département de chimie de l'Université du Minnesota est unique en ce sens que nous n'avons pas de divisions formelles", a ajouté Roberts. " Cela nous permet de constituer une équipe d’experts dans tous les domaines de la chimie, ce qui a été un élément essentiel pour mener à bien ce projet. "

Après avoir présenté le composé chimique dans cet article, les prochaines étapes consisteront à le rendre largement accessible aux chimistes de plusieurs domaines afin de rationaliser le processus de création. Cela pourrait aider à résoudre des problèmes importants tels que la prévention de la pénurie alimentaire et le traitement des maladies pour sauver des vies.

Aux côtés de Roberts et Humke, l'équipe de recherche de l'Université du Minnesota comprenait le chercheur postdoctoral Roman Belli, les étudiants diplômés Erin Plasek, Sallu S. Kargbo et l'ancienne chercheuse postdoctorale Annabel Ansel.  



(Résumé : jusqu'à quel point une triple liaison carbone-carbone peut-elle être confinée ? Avec les réactions motrices appropriées, il est devenu simple de comprimer le motif dans des anneaux à six chaînons tels que le benzyne et de récolter les bénéfices de la réactivité rapide favorisée par la contrainte. Cependant, les anneaux à cinq chaînons ont eu tendance à être trop serrés. Humke et al. rapportent maintenant que la coordination par le nickel peut soulager la contrainte juste assez pour stabiliser une triple liaison dans la partie pentagonale des azaindoles. Ces complexes azaindolynes ont été caractérisés cristallographiquement et ont réagi avec des nucléophiles et des électrophiles.  Jake S. Yeston

La liaison au nickel permet d'isoler et de réactiver des 7-aza-2,3-indolynes auparavant inaccessibles

Les N-hétéroaromatiques sont des éléments clés des produits pharmaceutiques, agrochimiques et des matériaux. Les N-hétéroarynes fournissent un échafaudage pour construire ces molécules essentielles, mais ils sont sous-utilisés parce que les N-hétéroarynes à cinq chaînons ont été largement inaccessibles en raison de la contrainte d'une triple liaison dans un anneau aussi petit. Sur la base des principes d'interactions métal-ligand qui sont fondamentaux pour la chimie organométallique, nous rapportons dans ce travail la stabilisation des N-hétéroarynes à cinq chaînons dans la sphère de coordination du nickel. Une série de complexes 1,2-bis(dicyclohexylphosphino)éthane-nickel 7-azaindol-2,3-yne ont été synthétisés et caractérisés par cristallographie et spectroscopie. La réactivité ambiphile des complexes de nickel 7-azaindol-2,3-yne a été observée avec de multiples partenaires de couplage nucléophiles, électrophiles et énophiles.)

Auteur: Internet

Info: https://www.eurekalert.org/ https://www.science.org/doi/10.1126/science.adi1606?adobe_mc=MCMID%3D03744988943267014683426377033153538910%7CMCORGID%3D242B6472541199F70A4C98A6%2540AdobeOrg%7CTS%3D1714721362, 2 mai 2024

[ nanomonde ] [ N-hétéroarènes ] [ N-heterocycles ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

machine-homme

- (Q) Comment définir et expliquer les mot "vie" ?

- (R) La vie est un phénomène complexe et multiforme qui englobe les caractéristiques, les processus et les activités associés aux organismes vivants. Bien qu'il n'existe pas de définition universellement acceptée de la vie, celle-ci peut être comprise de manière générale comme l'état d'être vivant, présentant certaines propriétés et certains comportements fondamentaux.

Les principales caractéristiques de la vie sont les suivantes

L'organisation : Les organismes vivants sont hautement organisés, constitués de cellules ou de structures cellulaires qui remplissent des fonctions spécifiques. Ils ont une structure hiérarchique, des cellules aux tissus, aux organes et aux systèmes d'organes.

Métabolisme : La vie implique la capacité d'acquérir et d'utiliser de l'énergie par le biais de divers processus métaboliques, tels que la respiration, la photosynthèse ou d'autres réactions biochimiques. Les organismes utilisent l'énergie pour maintenir leur environnement interne, croître, se reproduire et répondre aux stimuli.

Croissance et développement : Les organismes vivants ont la capacité de croître et de se développer, augmentant leur taille et leur complexité au fil du temps. Ils subissent des processus tels que la division cellulaire, la différenciation et la maturation.

Reproduction : La vie implique la capacité de se reproduire et de transmettre l'information génétique d'une génération à l'autre. La reproduction peut se faire par voie sexuée ou asexuée et assure la pérennité d'une espèce.

Réponse aux stimuli : les organismes vivants peuvent percevoir les changements dans leur environnement et y répondre, en adoptant des comportements qui leur permettent de survivre, de trouver des ressources, d'éviter les menaces et de s'adapter à des conditions changeantes.

Homéostasie : La vie implique le maintien d'une stabilité et d'un équilibre internes par le biais de divers mécanismes de régulation. Les organismes peuvent réguler leurs conditions internes, telles que la température, le pH et les niveaux de nutriments, afin de garantir un fonctionnement optimal.

Bien que ces caractéristiques fournissent un cadre général, il est important de reconnaître que la vie présente une diversité et une complexité considérables au sein des différentes espèces et écosystèmes. La vie peut exister sous différentes formes, des micro-organismes aux plantes, en passant par les animaux et les êtres humains, chacun ayant ses propres adaptations et caractéristiques.

L'étude de la vie est un vaste domaine appelé biologie, qui explore les mécanismes, les processus et la diversité des organismes vivants. Les scientifiques continuent d'étudier et d'approfondir leur compréhension de la nature fondamentale de la vie et de ses origines, cherchant à démêler les complexités de ce phénomène remarquable.

- (Q) D'accord, merci. Donc pour préciser un peu la question, où est la frontière entre minéral et  végétal. ou entre organique et inorganique ?

- (R) La frontière entre les domaines minéral (inorganique) et végétal (organique), ou entre la matière organique et inorganique, n'est pas toujours évidente, car il peut y avoir des chevauchements et des ambiguïtés. La distinction réside principalement dans la composition, la structure et les propriétés caractéristiques des substances concernées.

Dans le contexte de la géologie et de la chimie, les minéraux sont des substances inorganiques naturelles dont la composition chimique et la structure cristalline sont définies. Le quartz, le feldspath et la calcite sont des exemples de minéraux. Les minéraux sont généralement formés par des processus géologiques et n'ont pas les structures moléculaires complexes que l'on trouve dans les organismes vivants.

D'autre part, le terme "végétal" fait généralement référence à la matière organique associée aux plantes ou à la vie végétale. Les plantes sont des organismes vivants qui possèdent des structures cellulaires complexes et réalisent divers processus physiologiques. Elles sont classées dans le règne des Plantae et présentent des caractéristiques telles que la photosynthèse, la croissance, la reproduction et les réponses aux stimuli.

La matière organique désigne généralement les substances qui contiennent du carbone et qui proviennent d'organismes vivants ou de leurs restes. Les composés organiques, tels que les glucides, les protéines, les lipides et les acides nucléiques, sont les éléments constitutifs de la vie et sont présents dans les organismes vivants.

La frontière entre le minéral et le végétal ou entre la matière organique et la matière inorganique peut s'estomper dans certains cas. Par exemple, certains composés organiques, comme certains carbonates, peuvent se trouver à la fois dans les organismes vivants et dans les minéraux. En outre, les minéraux peuvent interagir avec la matière organique, par exemple lors de la formation de fossiles ou de l'absorption de minéraux par les plantes.

Il est important de noter que la classification et la compréhension de ces frontières sont principalement basées sur des catégorisations scientifiques et peuvent varier en fonction du contexte et de la perspective. Différents domaines scientifiques, tels que la géologie, la chimie et la biologie, peuvent aborder ces frontières différemment en fonction de leurs cadres respectifs et de leurs intérêts de recherche.

Auteur: chatGPT4

Info: 18 mai 2023. Ici l'I.A. qui donne les réponses peut être considérée comme un promptuaire, un résumé

[ question-réponse ] [ compendium ]

 
Mis dans la chaine

Commentaires: 0

Ajouté à la BD par miguel

épigénétique

"Percer les secrets du vivant grâce à la biologie quantique"

En primeur pour notre magazine, Birgitta Whaley, qui dirige le Berkeley Quantum Information and Computation Center de l'université de Californie, a accepté d'expliquer en quoi les "mécanismes quantiques à l'oeuvre chez les organismes vivants" pouvaient révolutionner le monde. D'autant qu'ils ne sont qu'une cinquantaine de scientifiques à travers la planète à poursuivre ces travaux fondamentaux.

Sciences et Avenir : Quand on évoque l’information quantique, on pense en premier lieu à la physique et aux particules de matière ou de lumière. Or, vous travaillez sur le vivant ?

Birgitta Whaley : Nous étudions tout un éventail d'organismes, des plantes vertes aux bactéries, qu'il s'agisse d'unicellulaires ou de feuilles. Mais aussi des oiseaux ou d'autres animaux. Nous voulons apporter la preuve qu'il existe un comportement quantique chez ces organismes vivants, à toute petite échelle, impliquant des "grains de lumière" (photons).

Avez-vous découvert ce comportement quantique ? Oui, il est tout à fait évident que des effets quantiques sont au coeur, en particulier, de ce qu’on appelle la photosynthèse. Nous les observons dans les premiers stades de ce mécanisme essentiel à la vie qui permet l’absorption de la lumière, puis sa transformation en énergie électronique, les électrons déclenchant ensuite les réactions chimiques qui permettent la formation de glucides [constituants essentiels des êtres vivants].

Outre la connaissance fondamentale, pourquoi est-ce important de comprendre ce mécanisme ?

Parce qu’il est essentiel à la production de nourriture et donc à notre vie. Mais imaginez aussi que nous parvenions à réaliser une photosynthèse artificielle qui capture l’énergie solaire aussi bien que le font les plantes, dont le processus a été hautement optimisé après 3,6 milliards d’années d’évolution. Ce ne serait plus 15 % de rendement que l’on obtiendrait, comme cela se pratique avec le photovoltaïque aujourd’hui, mais presque 100 % !

Qu’ont donc réussi à faire les plantes, et pas nous ?

Chez les plantes vertes, des récepteurs composés de chlorophylle sont capables d’absorber des photons alors même que la lumière reçue est très faible. Chacun d’eux ne reçoit en moyenne qu’un photon toutes les dix secondes. Il faut que la plante soit vraiment très efficace pour réaliser cette absorption avec si peu de lumière. Il y a même des bactéries marines qui n’absorbent qu’un photon (dans l’infrarouge) toutes les vingt minutes.

Qu’est-il important de mesurer ?

Les détails de ce processus d’absorption, en particulier sa dynamique… Nous connaissons très bien la chlorophylle, nous savons quelle partie de la molécule absorbe le photon et à quel niveau. Le problème vient de ce que cette chlorophylle est enchâssée dans un échafaudage complexe de protéines- pigments qui se mettent à leur tour à vibrer, à entrer en rotation… Nos expériences suggèrent fortement que ces vibrations oeuvrent en conjonction avec l’excitation électronique déclenchée par l’arrivée du photon. Elles aident au transfert des électrons qui déclencheront ultérieurement des réactions chimiques. Ce mécanisme d’absorption, facilité par des effets quantiques, peut avoir jusqu’à 99 % d’efficacité. Un photon arrive, un électron est produit. Finement réglé, il répond à une nécessité de survie de l’organisme.

Quel genre d’appareillages utilisez-vous pour les mesures ?

Nous employons des faisceaux laser pulsés, qui permettent de préciser la dynamique d’excitation des molécules. Par exemple, avec trois pulses qui se succèdent [arrivée de photons d’une certaine fréquence], nous pouvons voir, lors du premier, la molécule réceptrice amorcer son passage vers un état " excité", puis, lors du deuxième pulse, la molécule devenir entièrement excitée, le troisième pulse permettant d’apporter des précisions sur la durée de cette excitation.

Cela ne semble pas évident…

En biologie, vous ne savez pas où s’arrête le système quantique et où commence son environnement. La plupart des spécialistes haussent les épaules en disant que tout cela est trop compliqué, qu’ils ne veulent même pas en entendre parler !

Dans combien de temps pensez-vous comprendre ce qui se passe ?

Peut-être dans vingt ans… Mais d’ici à dix ans, grâce à la biologie synthétique, nous devrions pouvoir élaborer une structure qui fasse progresser notre compréhension.

"COMPORTEMENT. La fascinante intelligence spatiale des oiseaux.

La migration des oiseaux et leur capacité à déterminer la bonne direction à prendre sont aussi un domaine "très tendance" en biologie quantique ! Birgitta Whaley le trouve d’autant plus fascinant que "les effets quantiques ne sont pas du tout évidents. Est peut-être impliquée ici ce qu’on nomme l’intrication quantique" [deux objets qui peuvent être spatialement séparés mais doivent être traités globalement, comme un seul]. La lumière est en effet absorbée par une molécule à l’arrière de la rétine de chaque oeil de l’oiseau, qui produit puis transfère un électron. On se demande alors quel est le comportement quantique des deux électrons (entre eux) qui pénètrent dans le cerveau de l’oiseau, ce qui lui délivre un message particulier. Mais il ne s’agit pour l’instant que "d’une belle hypothèse et il nous faudrait des données expérimentales".)

Auteur: Internet

Info: www.sciencesetavenir.fr, Dominique Leglu, 7.11.2016

[ biophysique ]

 

Commentaires: 0

Ajouté à la BD par miguel

intrications

Les scientifiques qui étudient le cerveau ont découvert que cet organe opère simultanément jusqu'à 11 dimensions différentes, créant des structures multivers qui présentent "un monde que nous n'avions jamais imaginé".

En utilisant un système mathématique avancé, les chercheurs ont pu montrer des structures architecturales qui apparaissent lorsque le cerveau doit traiter l'information, avant de se désintégrer et disparaitre. Leurs résultats, publiés dans la revue Frontiers in Computational Neuroscience, révèlent les processus extrêmement complexes impliqués dans la création de structures neuronales, ce qui pourrait aider à expliquer pourquoi le cerveau est si difficile à comprendre et à associer sa structure à sa fonction.

L'équipe, dirigée par des scientifiques de l'EPFL en Suisse, effectuait des recherches dans le cadre du projet Blue Brain, une initiative visant à créer une reconstruction biologiquement détaillée du cerveau humain. En travaillant d'abord sur les cerveaux des rongeurs, l'équipe a utilisé des simulations de supercalculateurs pour étudier les interactions complexes dans différentes de ses régions. Dans cette dernière étude, les chercheurs ont pu approfondir les structures du réseau neuronal du cerveau en utilisant la topologie algébrique - un système utilisé pour décrire des réseaux avec des espaces et des structures en constante évolution.

C'est la première fois que cette branche des mathématiques est appliquée aux neurosciences. "La topologie algébrique est comme un télescope et un microscope en même temps. Elle peut zoomer dans les réseaux pour trouver des structures cachées - les arbres dans la forêt - et voir les espaces vides - les clairières - tout en même temps", précise Kathryn Hess. Dans l'étude, les chercheurs ont effectué de multiples tests sur le tissu cérébral virtuel pour découvrir des structures cérébrales qui n'apparaitraient jamais par hasard. Ils ont ensuite effectué les mêmes expériences sur des tissus cérébraux réels afin de confirmer leurs résultats virtuels. Ils ont découvert que lorsqu'on présente un stimulus au tissu virtuel, des groupes de neurones forment une clique. Chaque neurone se connecte à tous les autres neurones de manière très spécifique pour produire un objet géométrique précis. Plus il y a de neurones dans une clique, plus les dimensions sont élevées. Dans certains cas, les chercheurs ont découvert des cliques avec jusqu'à 11 dimensions différentes.

Les structures s'assemblent en des enceintes qui forment des trous à haute dimension que l'équipe a nommé cavités. Une fois que le cerveau a traité l'information, la clique et la cavité disparaissent.

Multivers du cerveau. "L'apparition de ces cavités high-dimensionnelles lorsque le cerveau traite des informations signifie que les neurones du réseau réagissent aux stimuli d'une manière extrêmement organisée", a déclaré l'un des chercheurs, Ran Levi. "C'est comme si le cerveau réagit à un stimulus en construisant puis en rasant une tour de blocs multidimensionnels, en commençant par des tiges (1D), des planches (2D), puis des cubes (3D), puis des géométries plus complexes avec 4D, 5D, etc. La progression de l'activité à travers le cerveau ressemble à un château de sable multidimensionnel qui se matérialise hors du sable puis se désintègre ", a-t-il déclaré. Henry Markram, directeur de Blue Brain Project, avance que les résultats pourraient aider à expliquer pourquoi le cerveau est si difficile à comprendre. "Les mathématiques appliquées habituellement aux réseaux d'étude ne peuvent pas détecter les structures et les espaces à grande dimension que nous voyons maintenant clairement", a-t-il déclaré. "Nous avons découvert un monde que nous n'avions jamais imaginé. Il y a des dizaines de millions de ces objets, même dans un petit segment du cerveau, à travers sept dimensions. Dans certains réseaux, nous avons même trouvé des structures allant jusqu'à onze dimensions". Les résultats indiquent que le cerveau traite les stimuli en créant ces cliques et cavités complexes, de sorte que la prochaine étape sera de savoir si notre capacité à effectuer des tâches compliquées nécessite ou non la création de ces structures multidimensionnelles.

Dans une interview par courrier électronique avec Newsweek, Hess dit que la découverte nous rapproche de la compréhension d' "un des mystères fondamentaux de la neuroscience: le lien entre la structure du cerveau et la façon dont elle traite l'information". En utilisant la topologie algébrique l'équipe a pu découvrir "la structure hautement organisée cachée dans les modèles de tir apparemment chaotiques des neurones, une structure qui était invisible jusqu'à ce que nous l'examinions avec ce filtre mathématique particulier". Hess dit que les résultats suggèrent que lorsque nous examinons l'activité du cerveau avec des représentations à faible dimension, nous n'observons que l'activité réelle qui se déroule. Cela signifie que nous pouvons voir des informations, mais pas l'image complète. "Alors, dans un sens, nos découvertes peuvent expliquer pourquoi il a été si difficile de comprendre la relation entre la structure et la fonction du cerveau", explique-t-elle.  

"Le schéma de réponse stéréotypique que nous avons découvert indique que le circuit répond toujours aux stimuli en construisant une séquence de représentations géométriques commençant dans des dimensions faibles et en ajoutant des dimensions progressivement plus élevées, jusqu'à ce que l'accumulation s'arrête soudainement et s'effondre: une signature mathématique pour les réactions à stimuli. "Pour le travail futur, nous avons l'intention d'étudier le rôle de la plasticité - le renforcement et l'affaiblissement des connexions en réponse aux stimuli - avec les outils de topologie algébrique. La plasticité est fondamentale pour le processus mystérieux d'apprentissage, et nous espérons que nous pourrons donner un nouvel aperçu de ce phénomène", a-t-elle ajouté.

Auteur: Internet

Info: https://www.newsweek.com/brain-structure-hidden-architecture-multiverse-dimensions-how-brain-works-6243006/12/17 by Hannah Osborne - Ici FLP regrette sa volonté réitérée de ne pas insérer d'images dans les textes. Elles sont ici très parlantes.

[ simultanéïté ] [ réfléchir ] [ réflexion humaine modélisée ]

 

Commentaires: 0