Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 16
Temps de recherche: 0.045s

christianisme

Mais nous mentionnerons généralement dans cette histoire uniquement les événements qui peuvent être utiles d'abord à nous-mêmes, ensuite à la postérité.

Auteur: Eusèbe Pamphile de Césarée

Info: VIII, 2, 3

[ information dirigée ]

 

Commentaires: 0

progrès

Le World Wide Web a consacré l'ère du zapping, en occasionnant bien souvent une perte de temps monumentale. Tous ces liens qui s'affichent ici ou là, ces publicités intempestives, ces informations qui surgissent ont pour objectif de tenter de vous détourner du chemin que vous aviez envisagé de suivre.
[...] Il ne paraît pas évident de se forger une culture solide et une méthode de pensée dirigée si l'on a pris ses habitudes à partir de la consultation du Web.

Auteur: Ichbiah Daniel

Info: Les Nouvelles Superpuissances

[ Internet ] [ média ] [ zapping ] [ discontinuité ]

 

Commentaires: 0

identité numérique

Les sept lois de l'identité
1. Contrôle et consentement de l'utilisateur : Les systèmes d'identité numérique ne doivent révéler des informations permettant d'identifier un utilisateur qu'avec son consentement.
2. Divulgation limitée pour usage limité : La solution qui divulgue le moins d'informations d'identification et qui limite le mieux son utilisation est la solution la plus stable et à long terme.
3. La loi du moins grand nombre de parties : Les systèmes d'identité numérique doivent limiter la divulgation d'informations d'identification aux parties ayant une place nécessaire et justifiable dans une relation d'identité donnée.
4. Identité dirigée : Un métasystème universel d'identité doit prendre en charge à la fois les identificateurs "omnidirectionnels" destinés aux entités publiques et les identificateurs "unidirectionnels" destinés aux entités privées, facilitant ainsi la découverte tout en empêchant la libération inutile des identificateurs de corrélations.
5. Pluralisme des opérateurs et des technologies : Un métasystème d'identité universel doit canaliser et permettre l'interfonctionnement de multiples technologies d'identité gérées par plusieurs fournisseurs d'identité.
6. Intégration humaine : Un métasystème identitaire unificateur doit définir l'utilisateur humain comme un composant intégré par des communications homme-machine protégées et non ambiguës.
7. Expérience cohérente dans tous les contextes : Un métasystème identitaire unificateur doit fournir une expérience simple et cohérente tout en permettant la séparation des contextes grâce à de multiples opérateurs et technologies.

Auteur: Cameron Kim

Info: Dans un post de 2005, avec ce commentaire : "Nous avons entrepris un projet visant à développer une compréhension formelle de la dynamique à l'origine du succès ou de l'échec des systèmes d'identité numérique dans divers contextes, exprimés sous la forme des lois de l'identité. Ensemble, ces lois définissent un métasystème identitaire unificateur qui peut offrir à l'Internet la couche d'identité dont il a si manifestement besoin. Elles permettent également aux personnes qui découvrent la discussion sur l'identité d'en comprendre les principaux enjeux. Cela leur permet de participer activement, plutôt que tout le monde doive recommencer la discussion à zéro.

[ sphère privée ]

 
Commentaires: 1
Ajouté à la BD par miguel

évolution

La biologie des derniers oiseaux à dents révélée
Une collaboration internationale dirigée par des chercheurs de l'Institut de génomique fonctionnelle de Lyon, montre par imagerie synchrotron que les dents des derniers oiseaux à dents ont des caractéristiques proches de celles des dinosaures théropodes. Cette étude publiée dans la revue BMC Evolutionary Biology, confirme la parenté étroite entre oiseaux et dinosaures.
Les dents sont une véritable boîte noire qui enregistre au quotidien de nombreux traits de vie de l'animal qui les porte. Ainsi les dents de tous les vertébrés (Homme compris) renferment des informations clés sur le mode de vie, le régime alimentaire, ou encore les rythmes de croissance. Pour cette raison, les dents fossiles sont très prisées des paléontologues et l'étude de celles qui appartenaient à des animaux disparus sans laisser de descendance, permet de lever le voile sur des pans encore méconnus de l'histoire de la vie.
Les oiseaux actuels sont dépourvus de dents, mais leurs plus proches parents qui se sont éteints il y a environ 66 millions d'années, avaient des dents pointues et acérées qu'ils utilisaient pour saisir leurs proies, principalement des poissons. Ces oiseaux, qui se nomment Hesperornis et Ichthyornis, vivaient en Amérique du Nord au Crétacé supérieur aux côtés des derniers dinosaures. Les restes fossiles de ces oiseaux à dents sont extrêmement rares. C'est donc une opportunité exceptionnelle qui s'est présentée à Maïtena Dumont de pouvoir étudier, au sein d'une collaboration internationale pilotée par Antoine Louchart et Laurent Viriot à l'Institut de Génomique Fonctionnelle de Lyon, des dents isolées en utilisant une technique d'imagerie 3D de qualité exceptionnelle produite par l'ESRF (European Synchroton Radiation Facility) de Grenoble. La microtomographie à rayons-X Synchrotron permet de générer des volumes virtuels dont la forme et la structure interne sont fidèles dans les moindres détails à celles des dents fossiles. On peut ainsi se déplacer au sein de la dent virtuelle avec une résolution inférieure au micron, et ceci sans abimer le fossile d'origine.
Les résultats obtenus montrent que le remplacement de ces dents au cours de la vie et leur mode d'attachement et d'implantation dans les mâchoires, sont semblables à ce qu'on connaît chez les dinosaures théropodes, parmi lesquels se situent les ancêtres des oiseaux. La croissance des dents de ces oiseaux était rapide, plus rapide que chez certains reptiles ou certains mammifères actuels, ce qui peut être mis en relation avec des contraintes liées aux modes de prédation et d'alimentation. Enfin, les dents des deux oiseaux étudiés montrent une couche d'émail simplifiée et amincie, une tendance évolutive qui a vraisemblablement précédé la perte totale des dents.
Dans une étude précédente, Antoine Louchart et Laurent Viriot avaient souligné que la perte des dents chez les oiseaux actuels était un phénomène irréversible et que la fonction exercée par les dents autrefois est aujourd'hui remplie par leur bec corné et leur gésier musculeux. Seule la paléontologie est capable, grâce aux fossiles, de retracer les relations évolutives entre des animaux aujourd'hui disparus.

Auteur: Internet

Info: oct 2016, http://www.techno-science.net/?onglet=news&news=15561

[ denture ] [ dentition ]

 

Commentaires: 0

nématologie

Ce ver parasite " vole " discrètement les gènes de son hôte 

En explorant ce processus connu sous le nom de " transfert horizontal de gènes ", les scientifiques pourraient en apprendre davantage sur la façon dont les bactéries deviennent résistantes aux médicaments.

Des scientifiques du Centre RIKEN de recherche sur la dynamique des biosystèmes au Japon ont récemment découvert que le parasite connu sous le nom de ver de crin de cheval " vole " les gènes de son hôte afin de le contrôler.

Il s’agit d’un processus connu sous le nom de " transfert horizontal de gènes ", c’est-à-dire lorsque deux génomes partagent des informations génétiques de manière non sexuelle.

L’étude de ce processus pourrait aider les scientifiques à comprendre comment les bactéries développent une résistance aux antibiotiques grâce à un processus similaire.

On nous a tous rappelé l'horreur existentielle des parasites cérébraux grâce aux " fourmis zombie "  , mais la manière exacte dont les parasites du monde réel réalisent ce spectacle de marionnettes biologiques reste un peu mystérieuse. L'un de ces parasites est le ver crin de cheval (​​ Chordodes ) , qui dépend des sauterelles, des grillons, des coléoptères et même des mantes pour sa survie et sa reproduction. Né dans l'eau, ce ver utilise des éphémères pour atteindre la terre ferme, où il attend ensuite d'être consommé par sa proie et se met au travail.

Une fois à l’intérieur d’un hôte, le ver commence à se développer et à manipuler l’insecte. Une fois qu'il est complètement mature, il incite cet hôte à sauter dans l'eau, complétant ainsi son cycle de vie. Le ver de crin de cheval parvient à cette capacité de contrôle mental en utilisant des molécules qui imitent le système nerveux central de l'hôte, mais la manière dont il crée ces molécules reste un mystère depuis un certain temps.

Aujourd'hui, une nouvelle étude du Centre RIKEN pour la recherche sur la dynamique des biosystèmes au Japon a révélé que les vers en crin de cheval utilisent le " transfert horizontal de gènes " – en volant effectivement les gènes d'un insecte – afin de contrôler leurs hôtes. Les résultats ont été récemment publiés dans la revue Current Biology.

Pour trouver cette réponse étrange – et plutôt grossière –, une équipe dirigée par Tappei Mishina a analysé l’expression génétique d’un ver de crin de cheval dans tout le corps avant, pendant et après avoir infecté une mante. L'étude montre que 3 000 gènes étaient exprimés davantage chez le ver lorsqu'il manipulait la mante (et 1 500 autres étaient exprimés moins), alors que l'expression des gènes de la mante restait inchangée.

Une fois qu'ils ont compris que le ver à crins produisait ses propres protéines au cours du processus de manipulation, les scientifiques se sont tournés vers une base de données pour discerner l'origine de ces protéines et ont été confrontés à un phénomène surprenant.

"Il est frappant de constater que de nombreux gènes de vers à crins susceptibles de jouer un rôle important dans la manipulation de leurs hôtes sont très similaires à des gènes de mante, ce qui suggère qu'ils ont été obtenus par transfert horizontal de gènes", a déclaré Mishina dans un communiqué de presse.

Dit simplement le transfert horizontal de gènes est le partage d’informations génétiques de manière non sexuelle entre deux génomes – dans ce cas, entre les génomes d’une mante et d’un ver de crin de cheval. Ce n’est pas un phénomène inconnu des scientifiques, car c’est la principale façon dont les bactéries développent une résistance aux antibiotiques .

Dans le cas du ver crin de cheval, quelque 1 400 gènes correspondaient à ceux des mantes, mais ils étaient complètement absents chez d'autres spécimens de Chordodes qui ne dépendent pas des mantes pour se reproduire. L’étude émet l’hypothèse que ces " gènes de mimétisme " ont probablement été acquis au cours de multiples événements de transfert et que les gènes affectant la neuromodulation, l’attraction vers la lumière et les rythmes circadiens étaient particulièrement utiles pour contrôler l’hôte.

En étudiant ce couple parasitaire, Mishina et d’autres scientifiques pourraient en apprendre davantage sur le transfert horizontal de gènes multicellulaires, le fonctionnement interne de cette partie non sexuelle de l’évolution et les mécanismes qui rendent les bactéries résistantes à nos médicaments les plus avancés.

Il est temps pour le parasite de donner un peu en retour

Auteur: Internet

Info: https://www.popularmechanics.com/ Darren Orf, 18 oct 2023

[ copie latérale ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

intrications

Les scientifiques qui étudient le cerveau ont découvert que cet organe opère simultanément jusqu'à 11 dimensions différentes, créant des structures multivers qui présentent "un monde que nous n'avions jamais imaginé".

En utilisant un système mathématique avancé, les chercheurs ont pu montrer des structures architecturales qui apparaissent lorsque le cerveau doit traiter l'information, avant de se désintégrer et disparaitre. Leurs résultats, publiés dans la revue Frontiers in Computational Neuroscience, révèlent les processus extrêmement complexes impliqués dans la création de structures neuronales, ce qui pourrait aider à expliquer pourquoi le cerveau est si difficile à comprendre et à associer sa structure à sa fonction.

L'équipe, dirigée par des scientifiques de l'EPFL en Suisse, effectuait des recherches dans le cadre du projet Blue Brain, une initiative visant à créer une reconstruction biologiquement détaillée du cerveau humain. En travaillant d'abord sur les cerveaux des rongeurs, l'équipe a utilisé des simulations de supercalculateurs pour étudier les interactions complexes dans différentes de ses régions. Dans cette dernière étude, les chercheurs ont pu approfondir les structures du réseau neuronal du cerveau en utilisant la topologie algébrique - un système utilisé pour décrire des réseaux avec des espaces et des structures en constante évolution.

C'est la première fois que cette branche des mathématiques est appliquée aux neurosciences. "La topologie algébrique est comme un télescope et un microscope en même temps. Elle peut zoomer dans les réseaux pour trouver des structures cachées - les arbres dans la forêt - et voir les espaces vides - les clairières - tout en même temps", précise Kathryn Hess. Dans l'étude, les chercheurs ont effectué de multiples tests sur le tissu cérébral virtuel pour découvrir des structures cérébrales qui n'apparaitraient jamais par hasard. Ils ont ensuite effectué les mêmes expériences sur des tissus cérébraux réels afin de confirmer leurs résultats virtuels. Ils ont découvert que lorsqu'on présente un stimulus au tissu virtuel, des groupes de neurones forment une clique. Chaque neurone se connecte à tous les autres neurones de manière très spécifique pour produire un objet géométrique précis. Plus il y a de neurones dans une clique, plus les dimensions sont élevées. Dans certains cas, les chercheurs ont découvert des cliques avec jusqu'à 11 dimensions différentes.

Les structures s'assemblent en des enceintes qui forment des trous à haute dimension que l'équipe a nommé cavités. Une fois que le cerveau a traité l'information, la clique et la cavité disparaissent.

Multivers du cerveau. "L'apparition de ces cavités high-dimensionnelles lorsque le cerveau traite des informations signifie que les neurones du réseau réagissent aux stimuli d'une manière extrêmement organisée", a déclaré l'un des chercheurs, Ran Levi. "C'est comme si le cerveau réagit à un stimulus en construisant puis en rasant une tour de blocs multidimensionnels, en commençant par des tiges (1D), des planches (2D), puis des cubes (3D), puis des géométries plus complexes avec 4D, 5D, etc. La progression de l'activité à travers le cerveau ressemble à un château de sable multidimensionnel qui se matérialise hors du sable puis se désintègre ", a-t-il déclaré. Henry Markram, directeur de Blue Brain Project, avance que les résultats pourraient aider à expliquer pourquoi le cerveau est si difficile à comprendre. "Les mathématiques appliquées habituellement aux réseaux d'étude ne peuvent pas détecter les structures et les espaces à grande dimension que nous voyons maintenant clairement", a-t-il déclaré. "Nous avons découvert un monde que nous n'avions jamais imaginé. Il y a des dizaines de millions de ces objets, même dans un petit segment du cerveau, à travers sept dimensions. Dans certains réseaux, nous avons même trouvé des structures allant jusqu'à onze dimensions". Les résultats indiquent que le cerveau traite les stimuli en créant ces cliques et cavités complexes, de sorte que la prochaine étape sera de savoir si notre capacité à effectuer des tâches compliquées nécessite ou non la création de ces structures multidimensionnelles.

Dans une interview par courrier électronique avec Newsweek, Hess dit que la découverte nous rapproche de la compréhension d' "un des mystères fondamentaux de la neuroscience: le lien entre la structure du cerveau et la façon dont elle traite l'information". En utilisant la topologie algébrique l'équipe a pu découvrir "la structure hautement organisée cachée dans les modèles de tir apparemment chaotiques des neurones, une structure qui était invisible jusqu'à ce que nous l'examinions avec ce filtre mathématique particulier". Hess dit que les résultats suggèrent que lorsque nous examinons l'activité du cerveau avec des représentations à faible dimension, nous n'observons que l'activité réelle qui se déroule. Cela signifie que nous pouvons voir des informations, mais pas l'image complète. "Alors, dans un sens, nos découvertes peuvent expliquer pourquoi il a été si difficile de comprendre la relation entre la structure et la fonction du cerveau", explique-t-elle.  

"Le schéma de réponse stéréotypique que nous avons découvert indique que le circuit répond toujours aux stimuli en construisant une séquence de représentations géométriques commençant dans des dimensions faibles et en ajoutant des dimensions progressivement plus élevées, jusqu'à ce que l'accumulation s'arrête soudainement et s'effondre: une signature mathématique pour les réactions à stimuli. "Pour le travail futur, nous avons l'intention d'étudier le rôle de la plasticité - le renforcement et l'affaiblissement des connexions en réponse aux stimuli - avec les outils de topologie algébrique. La plasticité est fondamentale pour le processus mystérieux d'apprentissage, et nous espérons que nous pourrons donner un nouvel aperçu de ce phénomène", a-t-elle ajouté.

Auteur: Internet

Info: https://www.newsweek.com/brain-structure-hidden-architecture-multiverse-dimensions-how-brain-works-6243006/12/17 by Hannah Osborne - Ici FLP regrette sa volonté réitérée de ne pas insérer d'images dans les textes. Elles sont ici très parlantes.

[ simultanéïté ] [ réfléchir ] [ réflexion humaine modélisée ]

 

Commentaires: 0

science mystique

Science de l'ADN, ce que les chercheurs russes ont découvert de manière surprenante...

Des scientifiques russes pensent pouvoir reprogrammer l'ADN humain à l'aide de mots et de fréquences.

La science de l'ADN semble enfin expliquer des phénomènes auparavant mystérieux tels que la clairvoyance ... l'intuition ... la guérison mains libres ... la lumière et les auras "surnaturelles" ... et bien d'autres choses encore. Ces découvertes sont à mettre au crédit de chercheurs russes, qui se sont aventurés sur le terrain de l'ADN que les chercheurs occidentaux n'avaient pas envisagé. Les scientifiques occidentaux limitant leurs études aux 10 % de notre ADN responsables de la construction des protéines. Cela signifie qu'ils ont considéré les 90 % restants de l'ADN comme des "déchets" (junk).

AInsi, une équipe russe innovante, dirigée par le biophysicien et biologiste moléculaire Pjotr Garjajev, a refusé d'accepter qu'une si grande majorité de l'ADN puisse n'avoir aucune valeur pour la recherche. Pour percer les mystères de ce terrain inconnu, ils ont associé des linguistes à des généticiens dans le cadre d'une étude non conventionnelle visant à tester l'impact des vibrations et du langage sur l'ADN humain. Ce qu'ils ont découvert est tout à fait inattendu : notre ADN stocke des données comme le système de mémoire d'un ordinateur. De plus, notre code génétique utilise des règles de grammaire et une syntaxe qui reflètent étroitement le langage humain ! Ils ont également constaté que même la structuration des paires ADN-alcaline suit une grammaire régulière et des règles établies. Il semble que toutes les langues humaines soient simplement des verbalisations de notre ADN.

Modifier l'ADN en prononçant des mots et des phrases

Le plus étonnant, c'est que l'équipe a découvert que l'ADN humain vivant peut être modifié et réorganisé via des des mots et des phrases. La clé de la modification de l'ADN par des mots et des phrases réside dans l'utilisation de la bonne fréquence. Grâce à l'application de fréquences radio et lumineuses modulées, les Russes ont pu influencer le métabolisme cellulaire et même remédier à des défauts génétiques. L'équipe a obtenu des résultats incroyables en utilisant les vibrations et le langage. Par exemple, ils ont réussi à transmettre des modèles d'information d'un ensemble d'ADN vers un autre.

Ils ont même réussi à reprogrammer des cellules pour qu'elles adoptent un autre génome : ils ont transformé des embryons de grenouille en embryons de salamandre sans utiliser le moindre scalpel ou faire une seule incision. Les travaux des Russes prouvent scientifiquement pourquoi les affirmations et l'hypnose ont des effets si puissants sur les êtres humains. Notre ADN est intrinsèquement programmé pour réagir au langage.

Les enseignants ésotériques et spirituels le savent depuis longtemps. Toutes les formes d'affirmations et de "pouvoir de la pensée" découlent en partie de ce principe sous-jacent. La recherche russe permet également d'expliquer pourquoi ces techniques ésotériques n'ont pas le même succès pour tous ceux qui les utilisent. Étant donné qu'une "communication" claire avec l'ADN nécessite une fréquence correcte, les personnes dont les processus intérieurs sont plus développés seront plus à même de créer un canal de communication conscient avec l'ADN. Les personnes dont la conscience est plus développée auront moins besoin d'un quelconque appareil (pour appliquer des fréquences radio ou lumineuses). Les spécialistes de cette science pensent qu'avec la conscience, les gens peuvent obtenir des résultats en utilisant uniquement leurs propres mots et pensées.

ADN et intuition : Comment fonctionne l'"hypercommunication" et pourquoi l'homme pourrait être en mesure de la récupérer

Les scientifiques russes ont également trouvé une base ADN en rapport avec le phénomène de l'intuition - ou "hypercommunication". L'hypercommunication est le terme utilisé pour décrire les situations dans lesquelles une personne accède soudainement à des informations hors de sa base de connaissances personnelle. À notre époque, ce phénomène est devenu de plus en plus rare. Cela est probablement dû au fait que les trois principaux facteurs qui empêchent l'hypercommunication (le stress, l'anxiété et l'hyperactivité cérébrale) sont devenus très répandus. Pour certaines créatures, comme les fourmis, l'hypercommunication fait partie intégrante de l'existence quotidienne. Saviez-vous que lorsqu'une reine est physiquement retirée de sa colonie, ses sujets continuent à travailler et à construire selon le plan prévu ? En revanche, si elle est tuée, le but du travail des fourmis disparait et leur activité en ce sens s'arrête instantanément. Apparemment, tant que la reine est en vie, elle peut accéder à la conscience de groupe de sa colonie grâce à l'hypercommunication.

Maintenant que les Russes tentent de démêler les fondements biologiques de l'hypercommunication, les humains pourraient être en mesure de retrouver l'usage de cette compétence. Ils ont découvert que notre ADN peut produire des "vortex magnétisés". Ces vortex magnétisés sont des versions miniatures des ponts qui se forment près des étoiles en fin de vie (nommés ponts d'Einstein-Rosen). Les ponts d'Einstein-Rosen relient différentes zones de l'univers et permettent la transmission d'informations en dehors de l'espace et du temps. Si nous étions capables d'activer et de contrôler consciemment ces connexions, nous pourrions utiliser notre ADN pour transmettre et recevoir des informations du réseau de données de l'univers. Nous pourrions également entrer en contact avec d'autres participants au réseau. Les découvertes de la science et de la recherche russes sur l'ADN sont si révolutionnaires qu'elles paraissent vraiment incroyables. Pourtant, nous disposons déjà d'exemples isolés d'individus qui ont maîtrisé les techniques nécessaires, au moins à un certain niveau. Les personnes qui ont réussi à pratiquer la guérison à distance et la télépathie sont des exemples à prendre en considération. Selon de nombreuses personnes qui s'intéressent activement à ces recherches russes sur l'ADN, ces résultats reflètent les changements majeurs qui se produisent sur notre Terre, dans notre soleil et dans notre galaxie. Ces changements affectent l'ADN humain et élèvent la conscience d'une manière que nous ne comprendrons peut-être que dans un avenir lointain.   

Auteur: Internet

Info: https://undergroundhealthreporter.com, july 2023

[ . ]

 

Commentaires: 0

Ajouté à la BD par miguel

cognition

Les secrets de la conscience : l'imagerie cérébrale révèle pour la première fois des connexions critiques 

Des chercheurs américains ont réussi à cartographier un réseau cérébral essentiel dans l'intégration de l'éveil et de la conscience humaine, en utilisant des techniques d'IRM multimodales avancées. Cette approche offre de nouvelles pistes pour traiter certains troubles neurologiques.

(Image : illustration d'une galaxie dans la silhouette d'une tête humaine représentant l'éveil de la conscience)

Au cœur des neurosciences se trouve un défi complexe : comprendre les fondements de la conscience humaine. Entre éveil et perception, se dessinent des réseaux cérébraux dont les mystères ont longtemps échappé à nos outils d'observation. Mais grâce à la neuro-imagerie, les chercheurs ont identifié un réseau cérébral crucial pour la conscience humaine.

Dans un article publié le 1er mai 2024 dans Science Translational Medicine, un groupe de chercheurs du Massachusetts General Hospital et du Boston Children's Hospital, aux États-Unis, tous deux faisant partie du système de santé Mass General Brigham, ont réussi à cartographier un réseau cérébral sous-cortical crucial dans l'intégration de l'éveil et de la conscience humaine. 

Éveil et conscience : deux dimensions de l'activité cérébrale

L'éveil concerne l'activité et l'attention du cerveau, tandis que la conscience implique nos pensées et sensations résultant de l'intégration d'informations sensorielles et émotionnelles. Il est intéressant de noter que ces deux aspects de la conscience peuvent être dissociés, comme chez les patients en état végétatif qui présentent des cycles d'éveil mais une absence de conscience.

Si le cortex cérébral est considéré comme le siège principal des processus neuronaux de la conscience, les voies sous-corticales ascendantes du tronc cérébral, de l'hypothalamus, du thalamus et du cerveau basal sont essentielles pour l'éveil. Les voies ascendantes transportent des informations sensorielles et des signaux moteurs depuis le tronc cérébral vers le cerveau.

Visualiser les connexions cérébrales à une résolution submillimétrique

À l'aide de techniques d'IRM multimodales avancées, les chercheurs ont pu visualiser les connexions cérébrales à une résolution spatiale submillimétrique.

Cette approche leur a permis de cartographier des connexions jusqu'alors inconnues entre le tronc cérébral, le thalamus, l’hypothalamus, le prosencéphale basal et le cortex cérébral, formant ainsi ce qu'ils nomment le "réseau d'éveil ascendant par défaut", essentiel pour maintenir l'éveil.

Le tronc cérébral est une partie essentielle du cerveau située à la base, qui contrôle des fonctions vitales comme la respiration et la fréquence cardiaque. Le thalamus agit comme un relais pour les informations sensorielles, aidant à les transmettre au cortex cérébral pour le traitement. L’hypothalamus joue un rôle clé dans la régulation des fonctions corporelles telles que la faim, la soif, et le sommeil. Le prosencéphale basal est impliqué dans le contrôle des mouvements et des émotions. Le cortex cérébral est la couche externe du cerveau responsable des fonctions cognitives supérieures telles que la pensée, la perception et la conscience. Ensemble, ces régions forment un réseau appelé le "réseau d'éveil ascendant par défaut", crucial pour maintenir l'état de veille et la conscience dans le cerveau.

(Illustration : Anatomie du cerveau en coupe)

"Notre objectif était de cartographier un réseau cérébral (ensemble de régions du cerveau qui travaillent conjointement pour effectuer des fonctions spécifiques, connectées par des voies de communication neuronales) crucial pour la conscience humaine et de fournir aux cliniciens des outils améliorés pour détecter, prédire et favoriser la récupération de la conscience chez les patients atteints de graves lésions cérébrales", explique Brian Edlow, premier auteur de l'étude, co-directeur du Neuroscience Mass General et directeur associé du Center for Neurotechnology and Neurorecovery (CNTR), dans un communiqué.

Ce réseau " ascendant par défaut de l'éveil" maintient l'éveil dans le cerveau conscient au repos. Le concept d'un réseau " par défaut" repose sur l'idée que certains systèmes de neurones dans le cerveau sont le plus activement fonctionnels lorsque le cerveau est dans un état de repos conscient. En revanche, d'autres réseaux sont plus actifs lorsque le cerveau effectue des tâches dirigées vers des objectifs.

Intégration des données IRM pour cartographier le réseau cérébral

Pour étudier les propriétés fonctionnelles de ce réseau cérébral par défaut, les chercheurs ont combiné des techniques d'imagerie cérébrale avancées, intégrant des données de tractographie par IRM de diffusion ex vivo (cultures cellulaires) et d'IRM fonctionnelle (IRMf) in vivo (humain) à 7 Tesla (7-T).

Les données d'IRM ont ainsi permis de localiser les zones dans le cerveau et d'étudier leurs connexions à l'aide de techniques de tractographie par IRM de diffusion. L’analyse des données d'IRM fonctionnelle, quant à elle, a permis aux chercheurs de comprendre comment ces connexions influent sur l'état d'éveil et de conscience du cerveau humain.

Ces analyses ont finalement révélé des connexions fonctionnelles entre le réseau ascendant par défaut du tronc cérébral et le réseau mode par défaut cortical qui contribue à la conscience de soi dans le cerveau conscient au repos. Les cartes de connectivité structurelle et fonctionnelles complémentaires fournissent une base neuroanatomique pour intégrer l'éveil et la conscience dans la conscience humaine.

(image en coupe montrant un exemple de données de tractographie par IRM de diffusion. Il s'agit là d'une vue latérale du tractus moteur, le tractus corticospinal, d'un sujet humain.)

Feuille de route pour mieux comprendre 

"Les connexions cérébrales humaines que nous avons identifiées peuvent être utilisées comme une feuille de route pour mieux comprendre un large éventail de troubles neurologiques associés à une conscience altérée, allant du coma, aux crises, au syndrome de mort subite du nourrisson (SIDS)", précise Hannah Kinney, MD, Professeure Émérite à l'Hôpital pour Enfants de Boston et à l'École de Médecine de Harvard, dans un communiqué.

Les données de cette étude pourraient servir de base pour comprendre divers troubles neurologiques liés à une altération de la conscience. Les chercheurs ont mis à disposition des données IRM et des méthodes de cartographie cérébrale, ainsi qu'un nouvel atlas du Réseau Ascendant de l'Éveil de Harvard, pour soutenir de futures recherches dans ce domaine.

Les auteurs mènent actuellement des essais cliniques pour stimuler le réseau ascendant par défaut de l'éveil chez les patients en coma après une lésion cérébrale traumatique, dans le but de réactiver le réseau et de restaurer la conscience.

Auteur: Internet

Info: sciencesetavenir.fr - Juliette Frey le 10.05.2024

[ vigilance ] [ proencéphale basal ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

neurologie

Construire de meilleures cartes mentales

Des techniques innovantes d'analyse de la fonction et de la structure cérébrales révèlent des détails remarquables de l'architecture neuronale, offrant ainsi de nouvelles pistes pour le diagnostic et le traitement des maladies cérébrales.

Bien que le cerveau humain soit un objet de fascination scientifique depuis des siècles, nous ne faisons qu'effleurer la surface en termes de compréhension de sa fonctionnalité et de sa complexité. Nous connaissons bien les zones fonctionnelles générales du cerveau, mais la manière dont ce réseau interconnecté de neurones traite et transmet les informations pour donner naissance à la pensée et à la mémoire reste un domaine de recherche très actif.

L'étude du fonctionnement du cerveau au niveau physiologique fondamental est l'un des domaines de recherche les plus difficiles, nécessitant de nouvelles méthodes d'expérimentation et de détection de l'activité cérébrale à l'échelle neuronale. Les progrès récents des techniques d'imagerie cérébrale et la compréhension de la structure fine du cerveau ont permis d'explorer les fonctions cérébrales d'une nouvelle manière. Ces découvertes ont des répercussions sur la santé du cerveau et l'intelligence artificielle.

Cerveau/ESPRITS et au-delà

Les projets japonais Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS) et Strategic International Brain Science Research Promotion Program (Brain/MINDS Beyond), qui font partie de plusieurs projets nationaux de recherche à grande échelle sur le cerveau lancés ces dernières années dans le monde entier, visent à étudier les circuits neuronaux qui sous-tendent les fonctions cérébrales supérieures. Il s'agit d'initiatives nationales auxquelles participent des dizaines d'institutions, chacune spécialisée dans un domaine particulier de l'étude du cerveau.

L'étude des primates non humains à l'Université de Tokyo et à l'Institut national des sciences et technologies quantiques (QST) est un domaine qui apporte de nouvelles connaissances sur l'architecture du cerveau.

"Lorsqu'il s'agit de comprendre le cerveau humain et les troubles qui peuvent l'affecter, seuls les autres primates partagent nos fonctions supérieures, telles qu'un cortex visuel hiérarchisé et un cortex préfrontal hautement développé responsable de la fonction exécutive et de la prise de décision", explique Takafumi Minamimoto, qui dirige le groupe des systèmes et circuits neuronaux du département d'imagerie cérébrale fonctionnelle de l'Institut national des sciences et technologies quantiques.

"La recherche sur le cerveau des primates est difficile et coûteuse, mais indispensable. Elle nous permet de mieux comprendre le fonctionnement du cerveau, ce qui peut nous aider à comprendre et à traiter les troubles cérébraux chez l'homme".

L'équipe de Minamimoto se concentre sur le développement de méthodes plus précises d'analyse des fonctions cérébrales. Leur plus grande réussite a été la mise au point d'une méthode chimiogénétique pour désactiver l'activité cérébrale au niveau d'un neurone unique, combinée à la tomographie par émission de positrons (TEP) - une technique d'imagerie pour des molécules spécifiques. Cela a permis de visualiser non seulement l'activité des neurones des primates, mais aussi leur connexion avec d'autres zones du cerveau.

"Avec la chimiogénétique, nous injectons une solution virale inoffensive dans une zone spécifique du cerveau pour modifier génétiquement les neurones afin de les rendre sensibles à un produit chimique suppresseur", explique Minamimoto. "Nous pouvons ensuite injecter le suppresseur afin d'éteindre les neurones modifiés pendant plusieurs heures".

L'équipe a récemment mis au point un produit chimique suppresseur 100 fois plus efficace, ce qui lui permet d'injecter de minuscules doses de ce suppresseur pour affecter sélectivement des groupes individuels de neurones et leurs connexions axonales. Ils ont utilisé cette technique pour réduire au silence des connexions spécifiques afin de découvrir les circuits responsables de la mémoire de travail et de la prise de décision.

Cette approche est également prometteuse pour le traitement des troubles cérébraux chez l'homme. Par exemple, comme modèle potentiel de traitement chez l'homme, le groupe a récemment rapporté que la chimiogénétique peut supprimer les crises d'épilepsie chez les macaques.

Le système visuel

Une autre équipe, située à l'université de Tokyo et dirigée par Kenichi Ohki, étudie la manière dont les informations visuelles sont traitées chez les primates, dont le cortex visuel est très développé et hiérarchisé. Les recherches du groupe sur les ouistitis utilisent une technique d'imagerie calcique à haute sensibilité qui permet de visualiser la façon dont des parties spécifiques du cerveau réagissent à différents stimuli.

"L'imagerie au calcium est une technique utilisée depuis longtemps pour observer le fonctionnement du cerveau chez les souris, mais elle n'était pas assez sensible pour visualiser des groupes discrets de neurones chez les primates avec la même qualité que chez les souris", explique M. Ohki. "En collaboration avec Tetsuo Yamamori du RIKEN, nous avons mis au point une méthode améliorée qui a augmenté de manière significative l'expression de la protéine fluorescente GCaMP6 dans le cerveau des primates, ce qui, combiné à l'imagerie à deux photons basée sur le laser, nous permet de visualiser l'activité des neurones avec une étonnante précision dans des détails.

Le système visuel représente plus de la moitié du cortex cérébral chez les primates et se constitue vie une hiérarchie élaborée d'étapes de traitement de l'information. Il existe des zones distinctes qui traitent les motifs et les angles, par exemple, et les recherches d'Ohki ont montré que les neurones se déclenchent selon des schémas coordonnés sensibles à ces différents stimuli, avec des fonctionnalités différentes au niveau cellulaire.

"L'une des conclusions fascinantes de nos travaux est que la hiérarchie du système visuel semble traiter le bruit dans une direction opposée à celle dont les réseaux neuronaux artificiels traitent généralement les stimuli sonores", explique Ohki. "Il serait intéressant de construire un réseau neuronal artificiel qui permette une telle méthode de traitement du bruit dans le système visuel des primates.

Le groupe de recherche d'Ohki étudie en détail la façon dont le bruit est traité dans ces connexions cortico-corticales, qui semblent fondamentales pour le fonctionnement du cerveau chez les primates. Ces connexions peuvent également expliquer la plasticité du cerveau et la façon dont différentes zones peuvent être enrôlées pour le traitement de l'information si la connexion primaire est entravée.

"Par exemple, nous avons découvert que le développement du système visuel se produit chez le nouveau-né à la suite d'une activité ondulatoire à travers la rétine, qui stimule les connexions thalamo-corticales qui construisent cette structure hiérarchique", explique Ohki4.

Sans ces stimuli, les connexions ne peuvent pas se développer du cortex visuel primaire vers le cortex visuel supérieur. Par ailleurs, si ces connexions ne se développent pas, on peut s'attendre à ce que des connexions alternatives soient établies à partir d'autres zones, telles que le cortex somatosensoriel, vers le cortex visuel supérieur. Ohki suggère que cela pourrait également expliquer comment les patients aveugles utilisent le cortex visuel pour "lire" le braille, bien qu'il s'agisse d'une fonction tactile.

"Les résultats de nos études sur les primates fournissent des indications précieuses sur les troubles neuropsychiatriques humains, en particulier ceux qui sont liés à une mauvaise communication dans le cerveau. Nos techniques seront utiles pour orienter la recherche spécifique et transposer les connaissances des primates à l'homme", déclare M. Minamimoto.

"Nous espérons partager ces connaissances et cette technologie avec le monde entier et collaborer avec d'autres groupes pour faire avancer ce domaine important de la recherche sur le cerveau.

Auteur: Internet

Info: https://www.nature.com, article publicitaire, Réf : Nagai, Y. et al. Nat. Comm. 7, 13605 (2016), Neuro. 23, 1157-1167 (2020), Miyakawa, N. et al. Nat 608, 578-585 (2022). Comm. 14, 971 (2023)

[ visualisation ] [ primatocentrisme ]

 

Commentaires: 0

Ajouté à la BD par miguel

émergence du regard

Les yeux des mollusques révèlent à quel point l'évolution future dépend du passé

Les systèmes visuels d'un groupe obscur de mollusques fournissent un exemple naturel rare d'évolution dépendante du chemin, dans lequel une bifurcation critique dans le passé des créatures a déterminé leur avenir évolutif.

(photo : Les systèmes visuels des chitons, un type de mollusque marin, représentent un rare exemple réel d’évolution dépendante du chemin – où l’histoire d’une lignée façonne irrévocablement sa trajectoire future.)

Les biologistes se sont souvent demandé ce qui se passerait s'ils pouvaient rembobiner la bande de l'histoire de la vie et laisser l'évolution se dérouler à nouveau. Les lignées d’organismes évolueraient-elles de manière radicalement différente si on leur en donnait la possibilité ? Ou auraient-ils tendance à développer les mêmes types d’yeux, d’ailes et d’autres traits adaptatifs parce que leurs histoires évolutives précédentes les avaient déjà envoyés sur certaines voies de développement ?

Un nouvel article publié aujourd'hui dans Science décrit un cas test rare et important pour cette question, qui est fondamentale pour comprendre comment l'évolution et le développement interagissent. Une équipe de chercheurs de l'Université de Californie à Santa Barbara l'a découvert alors qu'elle étudiait l'évolution de la vision chez un groupe obscur de mollusques appelés chitons. Dans ce groupe d’animaux, les chercheurs ont découvert que deux types d’yeux – les ocelles et les yeux en coquille – ont chacun évolué deux fois indépendamment. Une lignée donnée peut évoluer vers un type d’œil ou vers l’autre, mais jamais les deux.

Curieusement, le type d’œil d’une lignée était déterminé par une caractéristique plus ancienne apparemment sans rapport : le nombre de fentes dans l’armure du chiton. Cela représente un exemple concret d' " évolution dépendante du chemin ", dans lequel l'histoire d'une lignée façonne irrévocablement sa trajectoire évolutive future. Les moments critiques dans une lignée agissent comme des portes à sens unique, ouvrant certaines possibilités tout en fermant définitivement d’autres options.

"C'est l'un des premiers cas où nous avons pu observer une évolution dépendante du cheminement", a déclaré Rebecca Varney , chercheuse postdoctorale au laboratoire de Todd Oakley à l'UCSB et auteur principal du nouvel article. Bien qu’une évolution dépendante du chemin ait été observée chez certaines bactéries cultivées en laboratoire, " montrer cela dans un système naturel était une chose vraiment excitante ".

"Il y a toujours un impact de l'histoire sur l'avenir d'un trait particulier", a déclaré Lauren Sumner-Rooney , qui étudie les systèmes visuels des invertébrés à l'Institut Leibniz pour les sciences de l'évolution et de la biodiversité et n'a pas participé à la nouvelle étude. "Ce qui est particulièrement intéressant et passionnant dans cet exemple, c'est que les auteurs semblent avoir identifié le moment où se produit cette division."

Pour cette raison, les chitons "sont susceptibles d'entrer dans les futurs manuels sur l'évolution" comme exemple d'évolution dépendante du chemin, a déclaré Dan-Eric Nilsson, un écologiste visuel à l'Université de Lund en Suède qui n'a pas participé à la recherche.

Les chitons, petits mollusques qui vivent sur les roches intertidales et dans les profondeurs marines, ressemblent à de petits réservoirs protégés par huit plaques de coquille – un plan corporel resté relativement stable pendant environ 300 millions d'années. Loin d'être des armures inertes, ces genres de plaques d'obus sont fortement décorées d'organes sensoriels qui permettent aux chitons de détecter d'éventuelles menaces.

(photo : Chiton tuberculatus , qui vit sur les côtes rocheuses des Caraïbes, utilise de nombreux ocelles pour obtenir une vision spatiale. Les chitons ont développé des ocelles à deux reprises au cours de leur histoire évolutive.)

Les organes sensoriels sont de trois types. Tous les chitons ont des esthètes (aesthetes : récepteur tout-en-un extrêmement synesthésique qui permet de détecter la lumière ainsi que les signaux chimiques et mécaniques de l'environnement.)

Certains chitons possèdent également un système visuel approprié : soit des milliers d'ocelles sensibles à la lumière, soit des centaines d'yeux en forme de coquille plus complexes, dotés d'un cristallin et d'une rétine permettant de capturer des images grossières. Les animaux dotés d'yeux en forme de coquille peuvent détecter les prédateurs imminents, en réponse à quoi ils se cramponnent fermement au rocher.

Pour comprendre comment cette variété d’yeux de chiton a évolué, une équipe de chercheurs dirigée par Varney a examiné les relations entre des centaines d’espèces de chiton. Ils ont utilisé une technique appelée capture d'exome pour séquencer des sections stratégiques d'ADN provenant d'anciens spécimens de la collection de Doug Eernisse , spécialiste du chiton à la California State University, Fullerton. Au total, ils ont séquencé l’ADN de plus de 100 espèces soigneusement sélectionnées pour représenter toute l’étendue de la diversité des chitons, assemblant ainsi la phylogénie (ou l’arbre des relations évolutives) la plus complète à ce jour pour les chitons.

Ensuite, les chercheurs ont cartographié les différents types d’yeux sur la phylogénie. Les chercheurs ont observé que la première étape avant l’évolution des yeux en coquille ou des ocelles était une augmentation de la densité des esthètes sur la coquille. Ce n’est qu’alors que des yeux plus complexes pourraient apparaître. Les taches oculaires et les yeux en coquille ont chacun évolué à deux reprises au cours de la phylogénie, ce qui représente deux instances distinctes d'évolution convergente.

Indépendamment, les chitons ont fait évoluer les yeux - et, à travers eux, ce que nous pensons être probablement quelque chose comme la vision spatiale - à quatre reprises, ce qui est vraiment impressionnant", a déclaré M. Varney. 

" Cette évolution s'est faite incroyablement rapidement ". Les chercheurs ont estimé que chez le genre néotropical Chiton, par exemple, les yeux ont évolué en l'espace de 7 millions d'années seulement, soit un clin d'œil à l'échelle de l'évolution.

Les résultats ont surpris les chercheurs. "Je pensais qu'il s'agissait d'une évolution progressive de la complexité, passant des esthètes à un système d'ocelles et à des yeux en forme de coquille - une progression très satisfaisante", a déclaré Dan Speiser , écologiste visuel à l'Université de Caroline du Sud et co-auteur d'un article. auteur. " Au lieu de cela, il existe plusieurs chemins vers la vision."

Mais pourquoi certaines lignées ont-elles développé des yeux en coquille plutôt que des ocelles ? Au cours d'un trajet de six heures en voiture depuis une conférence à Phoenix jusqu'à Santa Barbara, Varney et Oakley ont commencé à développer l'hypothèse selon laquelle le nombre de fentes dans la coquille d'un chiton pourrait être la clé de l'évolution de la vision du chiton.

Toutes les structures sensibles à la lumière sur la coquille du chiton, a expliqué Varney, sont attachées à des nerfs qui passent à travers les fentes de la coquille pour se connecter aux nerfs principaux du corps. Les fentes fonctionnent comme des organisateurs de câbles, regroupant les neurones sensoriels. Plus il y a de fentes plus il y les ouvertures par lesquelles les nerfs peuvent passer.

Il se trouve que le nombre de fentes est une information standard qui est enregistrée chaque fois que quelqu'un décrit une nouvelle espèce de chiton. " L'information était disponible, mais sans le contexte d'une phylogénie sur laquelle la cartographier, elle n'avait aucune signification ", a déclaré Varney. " Alors je suis allé voir ça et j'ai commencé à voir ce modèle."

Varney a constaté qu'à deux reprises, indépendamment, des lignées comportant 14 fentes ou plus dans la plaque céphalique ont développé des ocelles. Et deux fois, indépendamment, des lignées comportant 10 fentes ou moins ont développé des yeux en coquille. On se rend ainsi compte que le nombre de fentes verrouillées et le type d'yeux pouvaient évoluer : un chiton avec des milliers d'ocelles a besoin de plus de fentes, tandis qu'un chiton avec des centaines d'yeux en coquille en a besoin de moins. En bref, le nombre de fentes dans la  coquille déterminait l’évolution du système visuel des créatures.

Les résultats conduisent vers une nouvelle série de questions. Les chercheurs étudient activement pourquoi le nombre de fentes limite le type d'œil dans son évolution. Pour répondre à cette question, il faudra travailler à élucider les circuits des nerfs optiques et la manière dont ils traitent les signaux provenant de centaines ou de milliers d’yeux.

Alternativement, la relation entre le type d’œil et le nombre de fentes pourrait être déterminée non pas par les besoins de vision mais par la manière dont les plaques se développent et se développent dans différentes lignées, a suggéré Sumner-Rooney. Les plaques de coquille se développent du centre vers l'extérieur par accrétion, et des yeux sont ajoutés tout au long de la vie du chiton à mesure que le bord se développe. " Les yeux les plus anciens sont ceux au centre de l'animal, et les plus récents sont ajoutés sur les bords. ", a déclaré Sumner-Rooney. En tant que chiton, " vous pourriez commencer votre vie avec 10 yeux et finir votre vie avec 200 ".

Par conséquent, le bord de croissance d'une plaque de carapace doit laisser des trous pour les yeux nouceaux – de nombreux petits trous pour les ocelles, ou moins de trous plus grands pour les yeux de la coquille. Des trous trop nombreux ou trop grands pourraient affaiblir une coque jusqu'à son point de rupture, de sorte que des facteurs structurels pourraient limiter les possibilités pour cest yeux.

Il reste beaucoup à découvrir sur la façon dont les chitons voient le monde, mais en attendant, leurs yeux sont prêts à devenir le nouvel exemple préféré des biologistes d'évolution dépendante du chemin, a déclaré Nilsson. "Les exemples de dépendance au chemin qui peuvent être vraiment bien démontrés, comme dans ce cas, sont rares - même si le phénomène n'est pas seulement courant, c'est la manière standard dont les choses se produisent."



 



Auteur: Internet

Info: Résumé par Gemini

[ évolution qui dépend du chemin ] [ biologie ]

 

Commentaires: 0

Ajouté à la BD par miguel