Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 38
Temps de recherche: 0.0535s

génétique

Cunningham a expliqué quand même : "Une grande partie de la biologie ne se sert pas de gènes. Les tournesols ont cette apparences - à causes de tensions de voilements purement physiques. On trouve partout dans la nature des suites de Fibonnaci et des nombres d'or, sans qu'il y ait le moindre gène pour les coder, ce ne sont que des interactions physiques. Prenez un embryon en train de se développer... les gènes ordonnent le début ou l'arrêt de la croissance, mais le nombre de doigts et de vertèbres provient de la mécanique de cellules se cognant les unes aux autres. Ces fuseaux mitotiques dont j'ai parlé sont absolument indispensables à la reproduction dans toutes les cellules eucaryotes, et ils s'agglutinent comme du cristal sans la moindre implication génique. Vous seriez surpris de savoir combien de choses sont comme ça dans la vie.

" - Mais on a quand même besoin de gênes", a protesté Bates

"Les gènes ne font qu'établir les conditions de départ nécessaires au processus. La structure qui prolifère après n'a pas besoin d'instructions spécifiques. C'est une complexité émergente classique. On le sait depuis plus d'un siècle."

Auteur: Watts Peter

Info: Vision aveugle, p 299. trad Gilles Goulet

[ impulsion ] [ cinétique ] [ mécanisme ] [ efficacité ]

 

Commentaires: 0

Ajouté à la BD par miguel

intelligence artificielle

Notre article "Precision Machine Learning" montre que les réseaux neuronaux surpassent l'interpolation simplex uniquement dans plus de 2 dimensions, en exploitant la modularité. Nous développons des astuces de formation pour un ML de haute précision, utiles pour la science et l'interprétabilité.

Résumé : Nous explorons les considérations particulières impliquées dans l'ajustement des modèles ML aux données demandant une très grande précision, comme c'est souvent le cas pour les applications scientifiques. Nous comparons empiriquement diverses méthodes d'approximation de fonctions et étudions leur évolution en fonction de l'augmentation des paramètres et des données. Nous constatons que les réseaux neuronaux peuvent souvent surpasser les méthodes d'approximation classiques pour les exemples à dimensions élevées, en découvrant et en exploitant automatiquement les structures modulaires qu'ils contiennent. Cependant, les réseaux neuronaux dressés-formés avec des optimiseurs courants sont moins puissants pour les cas à basse dimension, ce qui nous motive à étudier les propriétés uniques des zones de déperdition des réseaux neuronaux et les défis d'optimisation qui se présentent et correspondent dans le régime de haute précision. Pour résoudre le problème de l'optimisation en basse dimension, nous développons des astuces d'entraînement-formation qui nous permettent de faire fonctionner les réseaux neuronaux avec une déperdition extrêmement faibles, proche des limites permises par la précision numérique.

Auteur: Tegmark Max

Info: Écrit avec Eric J. Michaud et Ziming Liu, oct 2022

[ mathématiques appliquées ] [ apprentissage automatique ] [ physique computationnelle ] [ machine-homme ] [ affinements mécaniques ] [ sémantique élargie ]

 

Commentaires: 0

Ajouté à la BD par miguel

machine-homme

- (Q) Peux-tu expliquer et définir le mot "temps" ?

- (R) Le temps est un concept fondamental utilisé pour mesurer la progression des événements, la durée qui les sépare et l'ordre dans lequel ils se produisent. C'est une dimension qui nous permet d'organiser et de comprendre la séquence du passé, du présent et du futur.

En physique, le temps est souvent considéré comme la quatrième dimension avec les trois dimensions spatiales, formant le tissu de l'espace-temps. Il joue un rôle crucial dans diverses théories physiques, notamment la mécanique classique, la relativité et la mécanique quantique.

D'un point de vue philosophique, la nature du temps a fait l'objet de débats et d'explorations. Il existe différents points de vue philosophiques sur la nature du temps, tels que le présentisme (la croyance que seul le moment présent existe), l'éternalisme (la croyance que le passé, le présent et le futur existent tous), et diverses autres perspectives qui considèrent le temps comme une expérience subjective ou une construction mentale.

Dans le langage courant, le "temps" désigne la mesure des durées et des intervalles entre les événements, ainsi que la perception du passage du temps. Il nous permet d'organiser notre vie, de programmer nos activités et de comprendre l'ordre chronologique des événements.

Globalement, le "temps" est un concept à multiples facettes qui englobe à la fois la mesure objective des durées et l'expérience subjective de l'écoulement des événements. Sa compréhension et son interprétation peuvent varier selon les contextes scientifiques, philosophiques et quotidiens.

Auteur: chatGPT4

Info: 18 mai 2023. Ici I.A. qui donne les réponses peut être considérée comme un promptuaire

[ chronos ] [ question-réponse ] [ compendium ]

 
Mis dans la chaine

Commentaires: 0

Ajouté à la BD par miguel

sémantique automatique

Les sceptiques n’en peuvent mais.

L’intelligence artificielle des textes, dont la réalisation la plus connue est chat GPT, a envahi avec succès nos vies et nos laboratoires.

Cependant, la machine n’a ni intelligence ni éthique. Les avatextes qu’elle produit ne sont pas fondés sur un prédicat de vérité et ne sauraient se revendiquer ni du bien, ni du beau, ni du mal. De plus, en l’absence d’intention de la machine, autre que la stochastique, le lecteur ne saurait engager un parcours interprétatif classique sur les contrefaçons textuelles générées ; et non créés. 

Nos questionnements portent sur la compréhension du mode de fonctionnement des IA, condition pour évaluer les plus-values heuristiques que les traitement deep learning peuvent avoir dans l’analyse des corpus textuels : l’interprétabilité/explicabilité des modèles est la question essentielle et préalable à tout usage scientifique (vs. commercial) de l'IA. En d’autres termes, l’IA, plus que tout autre traitement automatique, " suppose une herméneutique des sorties logicielles " (F. Rastier, La mesure et le grain, Champion, 2011 : 43).  

Nous plaiderons que les modèles convolutionnels (CNN) ont le pouvoir de rendre compte de l'axe syntagmatique, c'est-à-dire qu'ils exhibent les combinaisons saillantes sur la chaine des textes. Tandis que les modèles transformers ont le pouvoir de rendre compte de l’axe paradigmatique, c’est-à-dire qu’ils identifient les sélections ou les " rapports associatifs " (Le Cours, Chapitre V, pp. 170-175 de l'éd 1972) des textes en corpus. Dans les deux cas, et de manière fermement complémentaire, c’est à un effort de co(n)textualisation que nous appelons – le mot en relation syntagmatique avec son co-texte immédiat, le mot en association avec ses coreligionnaires du paradigme en mémoire ou en corpus – pour une sémantique non pas formelle mais une sémantique de corpus.

Auteur: Mayaffre Damon

Info: Descriptions idiolectales et Intelligence artificielle. Que nous dit le deep learning sur les textes ? Résumé introductif de son intervention

[ homme-machine ] [ onomasiologie mécanique ] [ signifiants vectorisés ] [ pensée hors-sol ] [ ouverture ] [ méta-contextualisation ] [ interrogation ]

 

Commentaires: 0

Ajouté à la BD par miguel

musique

La complexe magnificence du contrepoint de Bach, malgré une symétrie parfois trop apparente voire mécanique, m'émeut. Probablement parce qu'il y a ici la perception de notre petitesse, de nos limites au sein de l'extraordinaire intrication des choses de la nature. Et les cathédrales sonores du maître semblent sans frontières, à l'instar du cosmos. En poussant aussi loin l'art de la conjugaison des sons Bach a démontré la puissance et la beauté que peut produire l'intellect humain lorsqu'il fait coïncider passion et discipline de fer, sans crainte ni limitation aucune dans sa quête. Il a créé une sorte de monde intermédiaire, onirique, titanesque diamant scintillant de millions de facettes, facettes aux reflets changeants puisqu'animées par des interprètes de chair. Un monde mathématique soyeux qui préfigure de fait l'espace dodécaphonique qu'apportèrent Schoenberg, Berg et Webern, même si ce système stérile et trop austère est probablement arrivé trop tôt pour des humains pas encore assez éduqués ou raffinés. En captant notre esprit et en le libérant, ce monde intermédiaire de Bach nous fait entrevoir par contraste combien la vie est un combat lourd parce que subordonnée au poids de la chair dans sa lutte souvent trop répétitive et monotone de tous les jours.

Cette élévation spirituelle, en nous présentant quelque chose qui ressemble à l'immuable, révèle simultanément la grandeur de l'homme, et sa petitesse devant l'extraordinaire et raffiné équilibre, sans cesse mouvant, qu'offre la réalité ordonnée par ses sens. L'ordre des hommes est souvent haïssable parce que trop compréhensible. Celui de la nature merveilleux parce qu'infini et au-delà de notre compréhension. L'univers intermédiaire de Bach, développé humblement par un allemand puissant et équilibré qui voulait célébrer la création et surtout le Créateur, nous subjugue, nous bouleverse, et nous aide à vivre.

Auteur: Mg

Info: 22 mai 2016

[ éloge ] [ classique ] [ triade ] [ technique ] [ miroir anthropique ]

 

Commentaires: 0

chat de Schrödinger

La mécanique quantique décrit (dit-on) le chat confronté à la machine infernale de Schrödinger comme se trouvant dans un état superposé à la fois mort et vif. Or, on trouve qu’à l’issue de l’expérience le chat est dans un état soit mort soit vif. La (prétendue) description quantique du chat ne s’accorde pas ici avec ce qu’on voit de lui. Des dizaines de stratégies théoriques ont été proposées pour échapper à cette apparente contradiction. Mais lorsqu’on examine ce paradoxe dans un esprit réflexif, inspiré de la démarche de Bohr, on s’aperçoit que les palliatifs ou "solutions" techniques sont inutiles, car la contradiction apparente ne surgit de rien d’autre que de l’usage répété et incertain du mot "état". L’"état" théorique superposé du chat semble contredire son état manifeste, observationnel. Cette contradiction apparente disparaît dès qu’on a compris que l’" état" quantique, loin de décrire ce qu’est le chat, permet seulement d’estimer les chances qu’on a de l’observer ainsi ; que loin de traduire un état au sens propre et complet du terme, le vecteur d’"état" quantique n’est qu’un symbole permettant d’évaluer la probabilité de trouver le chat dans l’un de ses deux états physiologiques. Après tout, nul n’a jamais demandé à une évaluation probabiliste de révéler d’avance l’état (au sens propre et complet) de ce sur quoi elle porte, et nul ne devrait donc espérer révéler ou engendrer l’état observé du chat à partir des probabilités quantiques. Le seul aspect non-conventionnel de la théorie quantique est la structure particulière (non-additive, interférentielle) de son calcul des probabilités, bien différente du calcul classique, car adaptée à la contextualité des phénomènes microscopiques. Et le seul problème résiduel consiste donc à raccorder (au moins approximativement) cette structure non-classique des probabilités avec celle, additive, qui vaut pour les événements mutuellement exclusifs constatés au laboratoire. Ce dernier problème, beaucoup plus restreint que le problème initial, est résolu par les théories de la décohérence.

Auteur: Bitbol Michel

Info: http://www.actu-philosophia.com/Entretien-avec-Michel-Bitbol-autour-de-La-520

[ erreur catégorielle ]

 

Commentaires: 0

Ajouté à la BD par Coli Masson

physicien

Il [Hendrik Lorentz] nous aide à progresser et à nous dépasser. Avec une logique très serrée, il appuie son raisonnement sur les hypothèses suivantes : le siège du champ électromagnétique, c’est l’espace vide. Dans cet espace il n’y a qu’un vecteur du champ électrique, et qu’un vecteur du champ magnétique. Ce champ est produit par les charges électriques atomiques sur lesquelles le champ exerce à son tour les forces pondéromotrices. Une liaison du champ électromoteur avec la matière pondérale se produit uniquement parce que les charges élémentaires électriques sont rigidement liées aux particules atomiques de la matière. Mais pour la matière, la loi du mouvement de Newton reste valable.

Sur cette base simplifiée, Lorentz fonde une théorie complète de tous les phénomènes électromagnétiques alors connus, ainsi que ceux de l’électrodynamique des corps en mouvement. C’est une œuvre d’une extrême logique, très claire et très belle. [...] Le seul résultat non explicable par la théorie, c’est-à-dire sans hypothèse supplémentaire, s’appelle alors la célèbre expérience Michelson-Morley. Or sans la localisation du champ électromagnétique dans l’espace vide, cette expérience ne peut conduire à la théorie de la relativité restreinte. Le progrès décisif consiste à appliquer les équations de Maxwell à l’espace vide ou, comme on disait alors, à l’éther.

H. A. Lorentz a même trouvé la transformation qui porte son nom, "transformation de Lorentz", sans y observer des caractères de groupe. Pour lui, les équations de Maxwell pour l’espace vide n’étaient applicables que pour un système de coordonnées déterminé, celui qui paraissait se distinguer par son repos relativement à tous les autres systèmes de coordonnées. Ceci présentait une situation vraiment paradoxale parce que la théorie paraissait restreindre le système d’inertie plus étroitement que la mécanique classique. Cette circonstance explicable d’un point de vue empirique devait conduire à la théorie de la relativité restreinte. [...]

Tout ce qui venait de cet esprit supérieur était clair et beau comme une œuvre d’art et on avait l’impression que sa pensée s’exprimait facilement et aisément.

Auteur: Einstein Albert

Info: "Comment je vois le monde", traduction de l’allemand par Maurice Solovine et Régis Hanrion, Flammarion, 2017, pages 52 à 54

[ conceptualisations ] [ éloge ] [ hommage ]

 

Commentaires: 0

Ajouté à la BD par Coli Masson

dissimuler

La cryptographie quantique n'est pas un algorithme de chiffrement à proprement parler : elle permet simplement de mettre en œuvre un algorithme de cryptographie classique, et même ancien, qui est le seul démontré sans failles : le "masque jetable". Cet algorithme, bien que parfaitement sûr, est peu utilisé car il nécessite un échange de clé de longueur aussi grande que le message à transmettre. Cet échange de clé pose des problèmes de sécurité aussi importants que la transmission du message en lui-même, ce qui limite le domaine d'applicabilité de cet algorithme.
Cependant, la cryptographie quantique permet à deux interlocuteurs de s’échanger une clé en toute sécurité ; en effet, cette méthode permet non seulement de démasquer toute tentative d’espionnage grâce aux propriétés de la mécanique quantique, mais également de réduire la quantité d’information détenue par un éventuel espion à un niveau arbitrairement bas et ce grâce à des algorithmes classiques ("privacy amplification"). La cryptographie quantique constitue donc un outil précieux pour des systèmes de cryptographie symétrique où les deux interlocuteurs doivent impérativement posséder la même clé et ce en toute confidentialité.
Mais pourquoi utiliser le système de cryptographie quantique pour communiquer une clé, et non le message en lui-même ? Pour deux raisons essentielles :
Les bits d'informations communiqués par les mécanismes de la cryptographie quantique ne peuvent être qu'aléatoires. Ceci ne convient pas pour un message, mais convient parfaitement bien à une clé qui, dans le cas du "masque jetable" peut (et même doit) être aléatoire.
Même si le mécanisme de la cryptographie quantique garantit que l'espionnage de la communication est détectée, il est possible que des bits d'informations entrent en possession de l'espion avant que celui-ci ne soit détecté. Ceci est inacceptable pour un message, mais sans importance pour une clé aléatoire qui peut être simplement jetée en cas d'interception.
Les fondements de la cryptographie quantique ont été établis, entre autres, par les travaux de 1984 de Charles H. Bennett et Gilles Brassard. Les premières idées ont été posées par Stephen Wiesner dans les années 1960, mais, chose que l'on peut considérer surprenante, leur publication avait été rejetée.

Auteur: Internet

Info: http://www.techno-science.net, décembre 2016

[ informatique ]

 

Commentaires: 0

physique quantique

Mais revenons à l’article de 1990, dont voici l’introduction : "Le concept de hasard intrigue depuis longtemps les physiciens, et même l'humanité en général. Quelle est l'origine du hasard ? Dans quelle mesure le futur peut-il être prédit ? Notre incapacité à prédire l'avenir est-elle la conséquence de nos limites humaines ou plutôt la conséquence d'une impossibilité de principe ? Ces questions ont, en physique, une longue histoire. La physique classique héritée d'Isaac Newton était complètement déterministe : la connaissance parfaite de l'état d'un système à un instant donné permettait en principe la détermination de son état à tout instant ultérieur. Puis vint au début de ce siècle la mécanique quantique, où probabilités et hasard interviennent au niveau le plus fondamental de la théorie ; en effet, celle-ci ne peut fournir que des probabilités de mesurer telle ou telle valeur de la position, de l'énergie, etc. La mécanique quantique introduisit donc une indétermination fondamentale dans la nature, chose qu'Einstein lui-même ne voulut jamais accepter, comme en témoigne son célèbre "Dieu ne joue pas aux dés". Puis, assez récemment, on s'aperçut avec l'étude des "systèmes dynamiques", qu'après tout, la physique classique avait aussi du hasard, ou plus exactement de l'imprévisibilité, enfouis en son sein, puisque certains systèmes même très simples, comme un système de pendules, peuvent exhiber un comportement imprévisible. Le hasard, souvent associé au désordre, est ainsi devenu, du moins en physique, une notion pleine de contenu." (…)
Mais définir le hasard (ou une suite aléatoire de résultats de mesure) par un programme "minimal", qu’on ne peut pas réduire par un algorithme, c’est faire sauter en souriant l’interprétation métaphysique qui établit une équivalence entre forme aléatoire et absence d’intentionnalité, de sens, de volonté et de conscience. On en revient finalement à Kant qui expliquait que l’on ne peut pas plus démontrer l’existence de Dieu que son inexistence, que toute la métaphysique échappe à la démonstration logique.(…)
Alors sans doute faut-il reconnaître aujourd’hui que ces limites sont inhérentes à la raison humaine, outil magnifique mais incapable de tout surplomber et que, plus nous avancerons dans la connaissance de l’univers et de nous-mêmes, plus nous buterons sur l’inconnaissable ou, plus exactement, l’inexprimable par nos langages, qu’il s’agisse des mots ou des équations. Un inexprimable qui n’empêche pas la conscience et semble jaillir des noces paradoxales de la rigueur et de la liberté, autre nom du hasard.

Auteur: Anonyme

Info: Dans "Les magiciens du nouveau siècle"

[ connaissance maximale ] [ butée ] [ impossible ]

 
Commentaires: 4
Ajouté à la BD par Coli Masson

physique photonique

Quantifier la quantification : un projet mathématique "d'une immense beauté".

Les chercheurs mettent au point une méthode pour déterminer le degré de quantification de l'état d'un système.

Tout grand objet : balle de base-ball, véhicule, planètes, etc, se comporte conformément aux lois classiques de la mécanique formulées par Sir Isaac Newton. Les petits, comme les atomes et les particules subatomiques, sont régis par la mécanique quantique, où un objet peut se comporter à la fois comme une onde et comme une particule.

La frontière entre le domaine classique et le domaine quantique a toujours été d'un grand intérêt. Les recherches rapportées dans AVS Quantum Science par AIP Publishing, examinent la question quant à savoir ce qui fait qu'une chose est "plus quantique" qu'une autre. Existe-t-il un moyen de caractériser la "quanticité" ? Les auteurs indiquent qu'ils ont trouvé une approche pour le faire.

Le degré de quanticité est important pour des applications telles que l'informatique et la détection quantiques, qui offrent des avantages que l'on ne trouve pas dans leurs équivalents classiques. Pour comprendre ces avantages, il faut à son tour comprendre le degré de quanticité des systèmes physiques concernés.

Plutôt que proposer une échelle dont les valeurs seraient associées au degré de quanticité, les auteurs de cette étude examinent les extrêmes, à savoir quels sont les états les plus, ou les moins... quantiques. Selon l'auteur Luis Sanchez-Soto, l'idée de cette étude est venue d'une question posée lors d'une réunion scientifique.

"Je donnais un séminaire sur ce sujet lorsque quelqu'un m'a posé la question suivante : 'Vous, les gars de l'optique quantique, vous parlez toujours des états les plus classiques, mais qu'en est-il des états les plus quantiques?'", 

On a compris depuis longtemps que les états dits cohérents peuvent être décrits comme quasi-classiques. Ils se produisent, par exemple, dans un laser, où la lumière provenant de plusieurs sources de photons est en phase, par conséquence dans un état très peu quantique.

Un tel système quantique peut être représenté mathématiquement par des points, plus ou moins nombreux, que l'on répartit sur une sphère, souvent en les intriquant sur spectre de couleurs pour avoir une meilleure représentation de ce qu'on appelle en général "constellation de Majorana". Pour les états cohérents, la constellation est simplement un point unique. Par conséquent ceux qui sont les plus quantiques présentent des configurations plus riches/nombreuses qui recouvrent plus richement la sphère. Les sphères pouvant être modélisées de plusieurs manières : par un simple cercle où sont disposés les "points quantiques", via les répartitions de couleurs, voire en usant de ces point de polarités pour transformer chaque sphère en un polyèdre plus ou moins complexe. 

Les chercheurs, après avoir examiné plusieurs autres approches de scientifiques ayant exploré les quanta, et en prenant en compte la constellation de Majorana pour chacune d'entre elles, s'étaient sont alors demandés comment répartir au mieux, ou le plus uniformément, l'ensemble des points sur une sphère dans le cadre de cette approche. 

C'est ainsi que Sanchez-Soto et ses collègues, en abordant la quanticité sous cet aspect, ont réalisé qu'il s'agissait d'un projet mathématique non seulement utile, mais "d'une immense beauté".

Auteur: Internet

Info: https://www.newswise.com. 12 nov 2020

[ électrons ]

 

Commentaires: 0

Ajouté à la BD par miguel