Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 39
Temps de recherche: 0.048s

mathématiques

La valeur trinitaire du triangle rectangle de Pythagore pouvait trouver une préfiguration dans sa probable source égyptienne, où il était dénommé "triangle isiaque" et pensé comme l’image la plus exacte de la nature de l’univers. Significativement, ses trois côtés étaient respectivement associés à Osiris (3), Isis (4) et Horus (5), marquant l’hypoténuse, produit de l’union des deux précédents. Cette géométrie théologique trouvera une correspondance dès le haut Moyen Age chrétien à travers l’assimilation de l’hypoténuse au Saint-Esprit, médiateur entre le Père et le Fils, avant de nets prolongements à la Renaissance. Ainsi, Guillaume Postel identifiait les côtés de valeurs 3, 4, 5 du triangle pythagoricien aux trois personnes de la Trinité, insistant sur le 4, assimilé au Christ. Poursuivant la méditation égypto-grecque qui posait ce triangle comme une figure clé de la nature de l’univers, il rappelait également que 3, 4 et 5 constituaient les nombres-racines des cinq solides géométriques platoniciens, archétypes "élémentaires" du monde manifesté. Dès l’Antiquité, cette dimension trinitaire et génésique put se doubler d’une perspective cyclologique voire eschatologique : dans son De Vita Contemplativa, Philon d’Alexandrie avait déjà montré que l’addition des nombres 3, 4, 5 élevés au carré donnait 50, nombre "jubilaire" marquant symboliquement dans le judaïsme le renouvellement des temps et la "remise des dettes". Agrippa rapportera pour sa part la suite 3-4-5 au nombre de lettres des trois noms divins qui rythment le progrès de la révélation divine, non sans écho à la doctrine joachimite des trois âges : le 3, associé à Shaddaï et au "temps de la nature", le 4 au Tétragramme et au "temps de la loi", enfin le 5 à Jésus, tel que noté dans la Kabbale chrétienne, instaurant le "temps de la grâce" (Agrippa, livre II, chap. 8).

Auteur: Viride Jean

Info: Harmoniques du "quatre de chiffre" dans Liber n°26 printemps 2021, pages 75-76

[ symbole ] [ mythologie ] [ historique ]

 

Commentaires: 0

Ajouté à la BD par Coli Masson

transmission

A en croire le récit de Gilberte, c’est son frère qui est à l’origine de tous les bouleversements religieux que vit la famille Pascal, en 1646, à Rouen. Amené par la Providence divine à lire quelques écrits de piété, il est éclairé par Dieu de façon particulière, et devient le responsable et le propagateur d’un incendie spirituel. [...]

C’est donc le fils, malgré tout, qui entraîne son père sur la voie de la conversion – inversion des rôles que fait remarquer Gilberte, en soulignant qu’Etienne [Pascal] n’a pas eu "honte de se rendre aux enseignements de son fils". Le renversement de la hiérarchie familiale en l’occurrence est d’autant plus étonnant que le père avait joué un rôle marquant dans la formation spirituelle de son fils. [...]

Par un étrange effet de circularité, ce sont les maximes du père, qui permettent au fils de convertir le père.

Si l’on s’attache maintenant aux relations de Blaise et de Jacqueline, l’effet de circularité est encore plus notable, et se transforme en un véritable paradoxe [...].

Lors des premières conversions, à Rouen, en 1646, c’est Blaise qui convertit Jacqueline, au même titre que tout le reste de la famille, mais avec des conséquences peut-être encore plus considérables. [...]

La vocation religieuse de la jeune fille est consécutive aux "discours" de son frère. Huit ans plus tard, en revanche, en 1654, à Paris, il revient à Jacqueline de provoquer la nouvelle conversion de Blaise. [...]

Celui qui est redevable ne peut rendre son dû. Le donateur est dépourvu des biens qu’il a prodigués, et la bénéficiaire travaille à convaincre celui de qui elle a tiré sa propre conviction. La circularité de l’événement montre que la véritable cause est ailleurs – en Dieu.

Auteur: Thirouin Laurent

Info: "Pascal ou le défaut de la méthode", Honoré Champion Editeur, Paris, 2023, pages 323 à 325

[ christianisme ] [ biographie ] [ parole inséminante ]

 
Commentaires: 1
Ajouté à la BD par Coli Masson

instant de la mort

Des chercheurs ont découvert les mécanismes derrière la mystérieuse " onde de la mort " dans le cerveau, un phénomène survenant après une privation d'oxygène. Cette découverte importante ouvre de nouvelles perspectives pour la compréhension de la mort neuronale et de la réanimation.

En explorant les profondeurs de l'activité cérébrale au moment de la mort, des scientifiques de l'Institut du Cerveau ont fait une découverte significative. Pour la première fois, ils ont observé une onde spécifique, surnommée " l'onde de la mort ". Celle-ci survient lors d'une interruption prolongée de l'oxygénation du cerveau. Cet événement, loin de marquer une fin absolue, révèle en réalité une complexité insoupçonnée dans la dynamique neuronale entre la vie et la mort. Les résultats ont été publiés dans Neurobiology of Disease

La formation et le parcours de l'onde de la mort

Il est impossible de déterminer l'heure précise, à la seconde près, d'un décès. C'est un processus complexe, qui dure plusieurs minutes. Il existe des cas où même lorsque le processus a démarré, celui-ci peut s'interrompre et la personne revenir à la vie. 

L'arrêt de l'oxygénation du cerveau déclenche une série d'événements électriques. Initialement, une réduction drastique de l'activité électrique se produit, plongeant le cortex cérébral dans un silence électrique. Cependant, ce silence est brusquement interrompu par une onde de grande amplitude, initiée dans les couches profondes du cortex, comme un sursaut d'activité cérébrale. C'est sûrement cette onde que décrivent les personnes ayant fait une expérience de mort imminente, c'est-à-dire les personnes ayant survécu à un arrêt cardiorespiratoire. 

Cette " onde de la mort " se propage telle une vague à travers le cortex, portant en elle le potentiel d'une cessation totale de l'activité cérébrale. Mais, contrairement à ce que son nom suggère, cette onde ne signifie pas nécessairement une fin irréversible. Si le cerveau est réoxygéné à temps, une " onde de la réanimation " peut suivre, marquant le début d'une lente mais possible récupération des fonctions cérébrales.

(photo illustration) Et si l'onde de la mort expliquait les expériences de mort imminente. 

Quelles sont les implications de cette découverte ? 

Cette étude révèle que la mort neuronale est comme un processus graduel, potentiellement réversible, plutôt qu'un instant définitif. Elle met en lumière le rôle crucial des neurones pyramidaux de la couche 5 du néocortex, dont la dépolarisation marque le début de l'onde de la mort. 

Cette compréhension affine notre perception de la mort cérébrale, nous faisant comprendre qu'un électroencéphalogramme plat n'est pas forcément synonyme de mort définitive. Ces découvertes suggèrent que, sous certaines conditions, il est possible de restaurer les fonctions cérébrales, offrant ainsi de nouvelles voies pour le développement de traitements neuroprotecteurs. 

Ces avancées pourraient un jour transformer les pratiques de réanimation en cas d'arrêt cardiorespiratoire, réduisant les risques de séquelles neurologiques et ouvrant la porte à des interventions plus ciblées pour préserver les fonctions cérébrales essentielles.



 

Auteur: Internet

Info: https://www.futura-sciences.com/ janvier 2024

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

dictateur

Mes parents avaient des opinions très arrêtées sur Adolf Hitler. Pour avoir tous deux vécu la guerre - outre que le frère de mon père a été tué dans les convois de l'Atlantique -, ils pensaient qu'il était l'incarnation du Mal. Mais je me rappelle m'être demandé, alors que je n'étais pourtant encore qu'un enfant, comment, si Hitler était le Démon dans un corps d'homme, il avait pu obtenir de tant de personnes qu'elles obéissent à ses ordres. C'est d'une certaine façon une question à laquelle je n'ai cessé de penser depuis, et c'est à elle que je tâche de répondre dans cet ouvrage.
Adolf Hitler était, à première vue, le dirigeant le plus improbable pour un État sophistiqué au coeur de l'Europe. Il était incapable d'entretenir des relations amicales normales ou d'accepter un débat intellectuel : rempli de haine et de préjugés, dépourvu de toute aptitude à aimer, c'était avant tout un homme "seul". Il était, indubitablement, "en tant qu'être humain, lamentable". Et pourtant, il joua un rôle déterminant dans trois des décisions les plus dévastatrices jamais prises : celle d'envahir la Pologne - qui conduisit à la Seconde Guerre mondiale -, celle d'envahir l'Union soviétique et enfin celle d'assassiner les Juifs.
Cependant Hitler ne fut pas à lui seul l'auteur de toute cette horreur, et à côté de ses nombreuses insuffisances personnelles, il possédait à n'en point douter de grands pouvoirs de persuasion. "Toute ma vie, dit-il en 1942 en une formule marquante, se résume dans mes efforts incessants pour persuader autrui." Et j'ai pour ma part rencontré bien des personnes ayant vécu cette période qui m'ont confirmé ce jugement. Quand je les pressais de me dire ce qu'elles trouvaient de si convaincant dans une personnalité tellement étrange, elles me citaient une myriade d'éléments tels que les circonstances de l'époque, leurs peurs, leurs espoirs, etc. Mais elles étaient également nombreuses à évoquer simplement le puissant attrait qu'Hitler exerçait sur elles - un phénomène qui fut bien souvent imputé à son "charisme".
Mais qu'est-ce exactement que le "charisme" ? Le terme provient d'une racine grecque signifiant une grâce ou une faveur octroyée par une divinité, mais le "charisme", dans l'acception que nous donnons aujourd'hui à ce mot, n'est pas un don "divin", il est "axiologiquement neutre" - bons et méchants peuvent le posséder à la même enseigne. La signification originaire implique également que le charisme est une qualité absolue qui existe - ou n'existe pas - dans un individu spécifique. Mais la séduction charismatique d'Hitler n'était pas universelle. Elle n'existait que dans l'espace entre lui et les sentiments de son auditoire. Quand deux personnes rencontraient Hitler en même temps, il pouvait arriver que l'une le trouve charismatique, mais que la seconde le prenne pour un fou.
Notre compréhension moderne du concept de "charisme" commence avec les travaux du sociologue allemand Max Weber qui écrivit des pages célèbres sur la "domination charismatique" au tournant du siècle dernier. Sans doute le fit-il bien avant qu'Hitler ne devienne chancelier du Reich, mais ses réflexions sont toujours très pertinentes pour quiconque s'intéresse à l'étude du nazisme en général et d'Hitler en particulier. Là où la contribution de Weber est capitale, c'est en ce qu'il examine la "domination charismatique" comme un type particulier d'exercice du pouvoir - plutôt que comme une qualité personnelle qu'une pop-star peut posséder au même titre qu'un homme politique. Pour Weber, le chef "charismatique" doit posséder un fort élément "missionnaire" et il est plus proche d'une figure quasi religieuse que d'un homme d'État démocratique ordinaire. Les partisans d'un tel chef recherchent autre chose qu'une amélioration matérielle de leur sort - bénéficier d'impôts moins élevés ou d'un meilleur système de santé -, car ils poursuivent un but plus général, presque spirituel, de rédemption et de salut. Il est difficile, dans des structures bureaucratiques normales, de voir émerger un chef "charismatique", poussé en avant par le sens qu'il a de sa destinée personnelle. Hitler, selon cette définition, est l'archétype du "chef charismatique".

Auteur: Rees Laurence

Info: Adolf Hitler, la séduction du diable

[ charme ] [ autorité ]

 

Commentaires: 0

manipulation génétique

Des scientifiques de Cambridge créent le premier organisme vivant au monde avec un ADN entièrement redessiné
Les chercheurs créent un génome synthétique, en mouvement avec des bénéfices médicaux potentiels. C'est le premier organisme vivant au monde dont le code ADN est entièrement synthétique et radicalement modifié.

Le microbe fabriqué en laboratoire, une souche de bactéries que l'on trouve normalement dans le sol et dans l'intestin humain, est semblable à ses cousins naturels, mais survit grâce à un ensemble plus restreint d'instructions génétiques.

Cette existence démontre que la vie peut exister avec un code génétique restreint et ouvre la voie à des organismes dont les mécanismes biologiques sont piratés pour fabriquer des médicaments et du matériel utile, ou pour ajouter de nouvelles caractéristiques telles que la résistance aux virus.

En deux ans, des chercheurs du laboratoire de biologie moléculaire de l'Université de Cambridge ont lu et redessiné l'ADN de la bactérie Escherichia coli (E. coli), avant de créer des cellules avec une version synthétique du génome modifié.

Le génome artificiel contient 4m de paires de bases, les unités du code génétique épelées par les lettres G, A, T et C. Imprimé en entier sur des feuilles A4, il compte 970 pages, faisant de ce génome le plus grand que les scientifiques aient jamais édifié, de loin.

"Il n'était pas du tout clair s'il était possible de créer un génome de cette taille et s'il était possible de le modifier autant", a déclaré Jason Chin, un expert en biologie de synthèse qui a dirigé le projet.

L'ADN enroulé à l'intérieur d'une cellule contient les instructions dont il a besoin pour fonctionner. Lorsque la cellule a besoin de plus de protéines pour croître, par exemple, elle lit l'ADN qui code la bonne protéine. Les lettres d'ADN sont lues dans des trios appelés codons, tels que TCG et TCA.

Presque toute vie, de la méduse à l'homme, utilise 64 codons. Mais beaucoup d'entre eux font le même travail. Au total, 61 codons produisent 20 acides aminés naturels, qui peuvent être enfilés ensemble comme des perles sur une ficelle pour construire n'importe quelle protéine de la nature. Trois autres codons sont en effet des panneaux stop : ils indiquent à la cellule lorsque la protéine est prête, comme le point marquant la fin de cette phrase.

L'équipe de Cambridge a entrepris de remodeler le génome d'E. coli en enlevant certains de ses codons superflus. Travaillant sur un ordinateur, les scientifiques ont examiné l'ADN de l'insecte. Chaque fois qu'ils rencontraient TCG, un codon qui fabrique un acide aminé appelé sérine, ils le réécrivaient en AGC, qui fait le même travail. Ils ont remplacé deux autres codons de la même manière.

Plus de 18 000 éditions plus tard, les scientifiques avaient retiré toutes les occurrences des trois codons du génome de l'insecte. Le nouveau code génétique a ensuite été synthétisé chimiquement et, morceau par morceau, ajouté à E. coli où il a remplacé le génome naturel de l'organisme. Le résultat, rapporté dans Nature, est un microbe avec un code ADN complètement synthétique et radicalement modifié. Connu sous le nom de Syn61, ce bug est un peu plus long que la normale, et grandit plus lentement, mais survit néanmoins.

"C'est assez incroyable", a déclaré Chin. Lorsque l'insecte a été créé, peu avant Noël, l'équipe de recherche a fait prendre une photo dans le laboratoire avec une plaque des microbes comme figure centrale dans une reconstitution de la nativité.

De telles formes de vie ainsi conçues pourraient s'avérer utiles, croit Chin. Parce que leur ADN est différent, les virus envahisseurs auront du mal à se propager en elles, ce qui les rendra de fait résistantes aux virus. Ce qui pourrait apporter des avantages. E. coli est déjà utilisé par l'industrie biopharmaceutique pour produire de l'insuline pour le diabète et d'autres composés médicaux contre le cancer, la sclérose en plaques, les crises cardiaques et les maladies oculaires, mais des cycles de production entiers peuvent être gâchés lorsque les cultures bactériennes sont contaminées par des virus ou autres microbes. Mais ce n'est pas tout : dans le cadre de travaux futurs, le code génétique libéré pourrait être réutilisé pour que les cellules produisent des enzymes, des protéines et des médicaments de synthèse.

En 2010, des scientifiques américains ont annoncé la création du premier organisme au monde doté d'un génome synthétique. L'insecte, Mycoplasma mycoides, a un génome plus petit que E. coli - environ 1m de paires de bases - et n'a pas été radicalement remanié. Commentant les derniers travaux, Clyde Hutchison, du groupe de recherche américain, a déclaré : "Cette échelle de remplacement du génome est plus grande que n'importe quel remplacement complet du génome rapporté jusqu'ici."

"Ils ont porté le domaine de la génomique synthétique à un nouveau niveau, non seulement en construisant avec succès le plus grand génome synthétique à ce jour, mais aussi en apportant les plus grands changements de codage à un génome à ce jour", a déclaré Tom Ellis, un chercheur en biologie synthétique à Imperial College de Londres.

Mais il se peut que les données ne durent pas longtemps. Ellis et d'autres construisent un génome synthétique pour la levure de boulangerie, tandis que les scientifiques de Harvard font des génomes bactériens avec plus de modifications au codage. Il n'est pas surprenant que l'E. coli redessiné ne pousse pas aussi bien que les souches naturelles, a ajouté Ellis. "Si quelque chose est surprenant, c'est qu'il grandisse après tant de changements," dit-il.

Auteur: Internet

Info: https://www.theguardian.com, Ian Sample rédacteur scientifique Wed 15 mai 2019 18.00 BST

[ . ]

 

Commentaires: 0

Ajouté à la BD par miguel

élément sémantique structurant

(FLP) - Bonjour, peux-tu m'expliquer la notion de "point de capiton" de Jacques Lacan ?

(Gemini Bard) - Le point de capiton est un concept central dans la théorie psychanalytique de Jacques Lacan. Il s'agit d'un élément crucial qui permet de stabiliser le sens et de donner une cohérence au discours. Emprunté au vocabulaire du matelassage, le terme "point de capiton" désigne le point où l'aiguille du matelassier s'enfonce dans le tissu et en ressort, laissant une marque durable. Lacan utilise cette métaphore pour illustrer la manière dont certains éléments du discours s'accrochent et fixent le sens, le stabilisent et lui donnent une structure.

Le point de capiton n'est pas un élément statique, mais plutôt un point de fuite, un lieu d'articulation où le sens se déploie et se reconfigure. Il peut s'agir d'un mot, d'une phrase, d'un objet, d'un événement, ou même d'une croyance ou d'un idéal.

Le point de capiton joue un rôle important dans la construction du sujet. Il permet au sujet de s'identifier à un certain discours, de se positionner dans le monde et de donner du sens à ses expériences.

Cependant, le point de capiton est également fragile et peut être remis en question. Dans la psychose, par exemple, le point de capiton peut s'effondrer, ce qui entraîne une fragmentation du discours et une perte de sens.

Voici quelques points clés à retenir à propos du point de capiton :

Stabilisation du sens: Le point de capiton permet de stabiliser le sens et de donner une cohérence au discours.

Point de fuite: Le point de capiton n'est pas un élément statique, mais plutôt un point de fuite où le sens se déploie et se reconfigure.

Construction du sujet: Le point de capiton joue un rôle important dans la construction du sujet.

Fragilité: Le point de capiton est également fragile et peut être remis en question.

Le point de capiton est un concept complexe et multidimensionnel qui a fait l'objet de nombreuses interprétations et débats au sein de la psychanalyse lacanienne.

(FLP) - Merci. J'y vois une correspondance, voire même une analogie avec le terme de saillance utilisé en PNL et plus largement en linguistique. Non ?

(Gemini Bard) Effectivement, il existe une certaine correspondance entre le concept de point de capiton de Lacan et celui de saillance en PNL et en linguistique.

La saillance désigne la qualité de ce qui est saillant, c'est-à-dire proéminent, marquant, qui attire l'attention. Elle se réfère aux éléments du discours qui se distinguent du reste et qui ont tendance à avoir une plus grande influence sur la compréhension et l'interprétation de ce discours.

Comme le point de capiton, la saillance joue un rôle important dans la structuration du sens. En effet, les éléments saillants permettent de hiérarchiser les informations, de créer des liens entre les différentes parties du discours et de guider l'attention de l'auditeur.

Voici quelques points de convergence entre les deux concepts :

Stabilisation du sens: Le point de capiton et la saillance contribuent tous deux à stabiliser le sens et à donner une cohérence au discours.

Attraction de l'attention: Le point de capiton et la saillance attirent tous deux l'attention de l'auditeur ou du lecteur.

Organisation du discours: Le point de capiton et la saillance contribuent tous deux à l'organisation du discours et à la création de liens entre les différentes parties du discours.

Cependant, il existe également des différences entre les deux concepts :

- Nature: Le point de capiton est un concept plus psychanalytique, tandis que la saillance est un concept plus linguistique et cognitif.

- Focalisé: Le point de capiton est généralement focalisé sur un élément unique, tandis que la saillance peut porter sur plusieurs éléments du discours.

- Inconscient: Le point de capiton est souvent inconscient, tandis que la saillance peut être consciente ou inconsciente.

En conclusion, le point de capiton et la saillance sont deux concepts distincts mais qui partagent certaines similitudes. Ils permettent tous deux de comprendre comment le sens est construit et structuré dans le discours.

(FLP) - Merci. Peux-tu donner un exemple de point de capiton unique ?

(Gemini Bard) - Exemple de point de capiton unique

Prenons l'exemple de la phrase suivante : "La peur de la mort me paralyse."

Dans cette phrase, le mot "mort" pourrait être considéré comme un point de capiton. En effet, ce mot :

Attire l'attention: Il est le mot le plus chargé d'émotion de la phrase et il est ce qui motive la peur du sujet.

Structure le sens: La phrase tourne autour de la peur de la mort et tous les autres éléments de la phrase sont liés à cette peur.

Est inconscient: La peur de la mort est souvent un phénomène inconscient qui n'est pas directement exprimé par le sujet.

Cependant, il est important de noter que le point de capiton n'est pas toujours un élément unique et identifiable. Il peut s'agir d'une combinaison de plusieurs éléments du discours qui, ensemble, contribuent à stabiliser le sens et à donner une cohérence au discours.

Par exemple, dans la phrase "Je suis amoureux de Marie", le point de capiton pourrait être la combinaison des mots "amoureux" et "Marie". Ces deux mots sont essentiels pour comprendre le sens de la phrase et ils sont étroitement liés l'un à l'autre.

En fin de compte, l'identification du point de capiton est une question d'interprétation. Il n'y a pas de réponse unique et chaque lecteur ou auditeur peut identifier différents points de capiton dans un même discours. 

Auteur: Google Bard chatbot

Info:

[ langage ] [ dialogue ] [ homme-machine ] [ efficacité cachée ]

 
Commentaires: 2
Ajouté à la BD par miguel

russie - occident

Publié il y a près d’un an, alors que l’invasion russe de l’Ukraine ne faisait que commencer, Le mage du Kremlin (Gallimard) a reçu à l’automne le prix de l’Académie française, et a manqué de très peu de remporter aussi le prix Goncourt.

Son auteur, Giuliano Da Empoli, Italo-suisse né en 1973, est le fils d’un conseiller politique blessé lors d’un attentat en 1986. Il a lui-même été conseiller politique pour Matteo Renzi. 

Politique-fiction

Depuis le succès de son livre, qui mêle politique et littérature, on voit régulièrement passer sa chevelure grisonnante sur les télévisions et les radios françaises. Avec son léger accent italien trainant, il y gratifie ses auditeurs de formules marquantes, comme, par exemple "j’ai l’habitude de dire que l’Italie est la Silicon Valley du populisme".

Le Russe Vladislav Sourkov, cofondateur du parti Russie unie, qui mena Vladimir Poutine au pouvoir, photographié ici en 2010. Photo : Wikimedia Commons.

L’ouvrage se penche sur un personnage énigmatique, Vadim Baranov, largement inspiré par Vladislav Sourkov, conseiller politique et idéologue de Vladimir Poutine depuis la fin des années 1990 jusqu’à sa prise de distance avec le Kremlin, en 2020. Au milieu des anciens du KGB, Sourkov, fan de John Lennon et du rappeur Tupac, détonnait quelque peu. En quelque sorte, il était l’un des derniers vestiges, sous l’ère Poutine, de la Russie hédoniste des années 1990, même s’il a lui aussi participé à la forte verticalisation du pouvoir. 

Un grand-père aristo, un père communiste

La part de fiction qu’ajoute Da Empoli semble se résumer à l’histoire d’amour compliquée de Baranov ("il n’existe pas une femme qui soit aussi précieuse que la vérité qu’elle nous révèle en nous faisant souffrir"), à sa solide culture classique, très française, pétrie de citations de Chamfort et de La Bruyère, et à sa généalogie. 

Baranov est le petit-fils d’un aristocrate excentrique, insolent à l’égard du pouvoir soviétique, qui "se serait fait pendre plutôt que de renoncer à un bon mot". Et le fils d’un apparatchik conformiste, qui a mené sa fronde à l’égard du paternel en adhérant totalement au régime communiste. "Je peux comprendre. C’est aussi une rébellion à sa façon. Quand tu grandis auprès d’un personnage tellement hors du commun, la seule révolte possible est le conformisme".

Quatre décennies de politique russe

Au tout début du roman, un narrateur français, de passage en Russie, échange avec un inconnu sur Twitter à coup d’allusions à Evgueni Zamiatine, auteur de science-fiction et compagnon de route très rapidement désillusionné de la Révolution de 1917. Un beau jour, il se laisse entrainer dans une grosse berline qui parcourt les kilomètres dans la forêt russe, avec une inquiétude montante au fil des heures : "La curiosité amusée qui m’avait habité jusque-là était en train de faire place à une certaine appréhension. En Russie, me disais-je, tout se passe en général très bien, mais quand les choses vont mal, elles vont vraiment très mal. À Paris, la pire chose qui puisse vous arriver c’est un restaurant surestimé, le regard méprisant d’une jolie fille, une amende. À Moscou, la gamme des expériences déplaisantes est considérablement plus vaste". Le narrateur se retrouve dans la riche demeure de Vadim Baranov et laisse débuter le long monologue de son hôte qui passe en revue quatre décennies de vie politique russe. Baranov raconte sa jeunesse soviétique et les paniers de victuailles réservés aux hauts fonctionnaires, puis la parenthèse libérale de la décennie 90, au cours de laquelle Baranov devient producteur d’une télévision plus trash encore que celle de l’Occident de la même époque, et l’ascension de Poutine, que l’oligarque Boris Berezovski vient dénicher dans les profondeurs du deep state. 

La première rencontre entre Poutine et Baranov, présentés l’un à l’autre par Berezovsky, est marquante : à ce moment-là, "le Tsar n’était pas encore le Tsar" ; c’est un fonctionnaire un peu terne, la main presque moite, à l’air un peu idiot. Bref, l’homme idéal selon Berezovsky (le vrai maître de la Russie de cette époque) pour donner un tour de vis au régime russe sans sacrifier pour autant les privilèges glanés par les oligarques. Avoir l’air un peu idiot n’a jamais été une mauvaise chose en politique : Louis-Napoléon Bonaparte avait volontiers joué ce jeu auprès des tenants de la droite de son époque, avant de ravir le pouvoir pendant plus de deux décennies. Juan Carlos avait également usé de la même stratégie auprès de Franco : "Faire l’idiot est une discipline fatigante, très dure pour les nerfs", confia-t-il plus tard. 

Berezovsky, capable, lui, de combiner à un haut niveau "intelligence pointue" et "stupidité abyssale", s’aperçoit mais un peu tard qu’il ne maîtrise plus du tout sa créature politique.

Hantises obsidionales et égo russes

Da Empoli parvient à se placer dans la tête du conseiller russe, à restituer les hantises obsidionales d’un pays qui se sent encerclé et qui a eu le sentiment d’être humilié par l’Occident pendant toutes les années 1990. On se souvient de la fameuse scène du fou rire de Clinton face à un Eltsine ivre mort et l’on se dit, nostalgiques, que le monde était globalement plus sûr quand nous étions coincés entre une Russie gouvernée par un alcoolique et une Amérique par un obsédé sexuel. Si la séquence a alimenté pendant des années le bêtisier des Enfants de la télé, elle a aussi mis plus bas que terre l’égo national russe. Lors de la première rencontre Poutine-Clinton, le nouveau président russe fixe tout de suite les nouvelles règles.  Baranov raconte : "Avec lui ce serait différent. Plus de claques dans le dos ni de gros rires. Clinton a été déçu, c’est évident. Il pensait que désormais tous les présidents russes seraient de braves portiers d’hôtels, gardiens des plus vastes ressources de gaz de la planète pour le compte de multinationales américaines. Pour une fois, lui et ses conseillers sont repartis un peu moins souriants que lorsqu’ils sont arrivés". Da Empoli restitue donc la mentalité du conseiller russe, sans entrer dans le jeu de la propagande russe. De toute façon, Baranov-Sourkov est un peu trop décalé, un peu trop occidental pour être totalement dupe de celle-ci.

Écrit avant le début de l’invasion russe, le livre n’avait évidemment pas anticipé le contexte actuel explosif. L’Ukraine n’est toutefois pas absente du roman, Baranov ayant observé attentivement la contestation ukrainienne des élections de 2004 autour d’une jeunesse rassemblée sur la place Maïdan et appuyée notamment par l’argent de Berezovsky. Cette subversion ukrainienne va inspirer directement le régime russe, qui va tenter de se mettre dans la poche tout ce que la Russie compte de marginaux et de subversifs, des bikers aux communistes en passant par l’extrême-droite, afin de maîtriser le mouvement. Baranov reçoit dans son bureau du Kremlin un certain Zaldostanov, chef d’un gang de motards. Baranov le met rapidement au service du pouvoir, grâce à une observation politique froide et clinique : "J’ai pu constater à plusieurs reprises que les rebelles les plus féroces sont parmi les sujets les plus sensibles à la pompe du pouvoir. Et plus ils grognent quand ils sont devant la porte, plus ils glapissent de joie une fois passé le seuil. Contrairement aux notables, qui cachent parfois des pulsions anarchiques sous l’habitude des dorures, les rebelles sont immanquablement éblouis comme les animaux sauvages face aux phares des routiers".

Porté par son écriture mais aussi par l’actualité, le livre connait un grand succès et a fait l’objet de plusieurs tirages depuis sa sortie. Un livre que l’auteur n’écrirait peut-être plus aujourd’hui. En décembre dernier, dans l’Express, il confiait : "il y a quelques années, Vladislav Sourkov m’apparaissait comme un personnage romanesque. C’était déjà un "méchant", mais il était aussi féru de théâtre d’avant-garde et présentait un profil atypique pour un homme de pouvoir. J’ai écrit Le Mage du Kremlin dans un autre contexte. Aujourd’hui, avec la guerre en Ukraine, je n’en aurais plus envie… 



 

Auteur: Magellan Frédéric

Info: Causeur.fr, 20 février 2023. Giuliano Da Empoli n’écrirait plus “Le mage du Kremlin”, aujourd’hui

[ littérature ]

 

Commentaires: 0

Ajouté à la BD par miguel

épistémologie

Opinion: Pourquoi la science a besoin de la philosophe

Malgré les liens historiques étroits entre la science et la philosophie, les scientifiques d'aujourd'hui perçoivent souvent la philosophie comme complètement différente, voire antagoniste, de la science. Nous soutenons ici que, au contraire, la philosophie peut avoir un impact important et productif sur la science.

Nous illustrons notre propos par trois exemples tirés de divers domaines des sciences de la vie contemporaines. Chacun d'entre eux concerne la recherche scientifique de pointe, et chacun ayant été explicitement reconnu par les chercheurs en exercice comme une contribution utile à la science. Ces exemples, et d'autres, montrent que la contribution de la philosophie peut prendre au moins quatre formes : la clarification des concepts scientifiques, l'évaluation critique des hypothèses ou des méthodes scientifiques, la formulation de nouveaux concepts et de nouvelles théories, et la promotion du dialogue entre les différentes sciences, ainsi qu'entre la science et la société.

Clarification conceptuelle et cellules souches.

Tout d'abord, la philosophie offre une clarification conceptuelle. Les clarifications conceptuelles améliorent non seulement la précision et l'utilité des termes scientifiques, mais conduisent également à de nouvelles recherches expérimentales, car le choix d'un cadre conceptuel donné contraint fortement la façon dont les expériences sont conçues.

La définition des cellules souches (stem cells) en est un excellent exemple. La philosophie a une longue tradition d'étude des propriétés, et les outils utilisés dans cette tradition ont récemment été appliqués pour décrire la "souche", propriété qui définit les cellules souches. L'un d'entre nous a montré que quatre types de propriétés différentes existent sous cette dénomination de souche (stemness) au vu des connaissances scientifiques actuelles. Selon le type de tissu, la stemness peut être une propriété catégorielle (propriété intrinsèque de la cellule souche, indépendante de son environnement), une propriété dispositionnelle (propriété intrinsèque de la cellule souche qui est contrôlée par le micro-environnement), une propriété relationnelle (propriété extrinsèque qui peut être conférée aux cellules non souches par le microenvironnement), ou une propriété systémique (propriété qui est maintenue et contrôlée au niveau de la population cellulaire entière).

Hans Clevers, chercheur en biologie des cellules souches et du cancer, note que cette analyse philosophique met en lumière d'importants problèmes sémantiques et conceptuels en oncologie et en biologie des cellules souches ; il suggère également que cette analyse soit facilement applicable à l'expérimentation. En effet, au-delà de la clarification conceptuelle, ce travail philosophique a des applications dans le monde réel, comme l'illustre le cas des cellules souches cancéreuses en oncologie.

Les recherches visant à développer des médicaments ciblant soit les cellules souches cancéreuses, soit leur microenvironnement, reposent en fait sur différents types de souches et sont donc susceptibles d'avoir des taux de réussite différents selon le type de cancer. En outre, elles pourraient ne pas couvrir tous les types de cancer, car les stratégies thérapeutiques actuelles ne tiennent pas compte de la définition systémique de la souche. Déterminer le type de souche présent dans chaque tissu et chaque cancer est donc utile pour orienter le développement et le choix des thérapies anticancéreuses. Dans la pratique, ce cadre a conduit à la recherche de thérapies anticancéreuses qui combinent le ciblage des propriétés intrinsèques des cellules souches cancéreuses, de leur microenvironnement et des points de contrôle immunitaires afin de couvrir tous les types possibles de souches.

En outre, ce cadre philosophique a récemment été appliqué à un autre domaine, l'étude des organoïdes (tissus en 3D dérivés de cellules souches, sont capables de s'auto-organiser et de reproduire certaines fonctions d'un organe.). Dans une revue systémique des données expérimentales sur les organoïdes provenant de diverses sources, Picollet-D'hahan et al. ont caractérisé la capacité à former des organoïdes comme une propriété dispositionnelle. Ils ont pu alors affirmer que pour accroître l'efficacité et la reproductibilité de la production d'organoïdes, actuellement un défi majeur dans le domaine, les chercheurs doivent mieux comprendre la partie intrinsèque de la propriété dispositionnelle qui est influencée par le microenvironnement. Pour distinguer les caractéristiques intrinsèques des cellules qui ont une telle disposition, ce groupe développe actuellement des méthodes de génomique fonctionnelle à haut débit, permettant d'étudier le rôle de pratiquement tous les gènes humains dans la formation des organoïdes.

Immunogénicité et microbiome.

En complément de son rôle dans la clarification conceptuelle, la philosophie peut contribuer à la critique des hypothèses scientifiques et peut même être proactive dans la formulation de théories nouvelles, testables et prédictives qui aident à définir de nouvelles voies pour la recherche empirique.

Par exemple, une critique philosophique du cadre du cadre immunitaire du soi et du non-soi a conduit à deux contributions scientifiques importantes. Tout d'abord, elle a servi de base à la formulation d'un nouveau cadre théorique, la théorie de la discontinuité de l'immunité, qui complète les modèles antérieurs du non-soi et du danger en proposant que le système immunitaire réagisse aux modifications soudaines des motifs antigéniques. Cette théorie éclaire de nombreux phénomènes immunologiques importants, notamment les maladies auto-immunes, les réponses immunitaires aux tumeurs et la tolérance immunologique à des ligands exprimés de façon chronique. La théorie de la discontinuité a été appliquée à une multitude de questions, aidant à explorer les effets des agents chimiothérapeutiques sur l'immunomodulation dans le cancer et expliquant comment les cellules tueuses naturelles modifient constamment leur phénotype et leurs fonctions grâce à leurs interactions avec leurs ligands** d'une manière qui assure la tolérance aux constituants corporels. La théorie permet également d'expliquer les conséquences des vaccinations répétées chez les personnes immunodéprimées et propose des modèles mathématiques dynamiques de l'activation immunitaire. Collectivement, ces diverses évaluations empiriques illustrent comment des propositions d'inspiration philosophique peuvent conduire à des expériences inédites, ouvrant ainsi de nouvelles voies de recherche.

Deuxièmement, la critique philosophique a contribué, avec d'autres approches philosophiques, à la notion selon laquelle tout organisme, loin d'être un soi génétiquement homogène, est une communauté symbiotique abritant et tolérant de multiples éléments étrangers (notamment des bactéries et des virus), qui sont reconnus mais non éliminés par son système immunitaire. La recherche sur l'intégration symbiotique et la tolérance immunitaire a des conséquences considérables sur notre conception de ce qui constitue un organisme individuel, qui est de plus en plus conceptualisé comme un écosystème complexe dont les fonctions clés, du développement à la défense, la réparation et la cognition, sont affectées par les interactions avec les microbes.

Influence sur les sciences cognitives.

L'étude de la cognition et des neurosciences cognitives offre une illustration frappante de l'influence profonde et durable de la philosophie sur la science. Comme pour l'immunologie, les philosophes ont formulé des théories et des expériences influentes, aidé à lancer des programmes de recherche spécifiques et contribué à des changements de paradigme. Mais l'ampleur de cette influence est bien plus importante que dans le cas de l'immunologie. La philosophie a joué un rôle dans le passage du behaviorisme au cognitivisme et au computationnalisme dans les années 1960. La théorie de la modularité de l'esprit, proposée par le philosophe Jerry Fodor, a peut-être été la plus visible. Son influence sur les théories de l'architecture cognitive peut difficilement être dépassée. Dans un hommage rendu après le décès de Fodor en 2017, l'éminent psychologue cognitif James Russell a parlé dans le magazine de la British Psychological Society de "psychologie cognitive du développement BF (avant Fodor) et AF (après Fodor) ".

La modularité renvoie à l'idée que les phénomènes mentaux résultent du fonctionnement de multiples processus distincts, et non d'un seul processus indifférencié. Inspiré par les résultats de la psychologie expérimentale, par la linguistique chomskienne et par les nouvelles théories computationnelles de la philosophie de l'esprit, Fodor a théorisé que la cognition humaine est structurée en un ensemble de modules spécialisés de bas niveau, spécifiques à un domaine et encapsulés sur le plan informationnel, et en un système central de plus haut niveau, général à un domaine, pour le raisonnement abductif, l'information ne circulant que verticalement vers le haut, et non vers le bas ou horizontalement (c'est-à-dire entre les modules). Il a également formulé des critères stricts de modularité. Aujourd'hui encore, la proposition de Fodor définit les termes d'une grande partie de la recherche empirique et de la théorie dans de nombreux domaines des sciences cognitives et des neurosciences, y compris le développement cognitif, la psychologie de l'évolution, l'intelligence artificielle et l'anthropologie cognitive. Bien que sa théorie ait été révisée et remise en question, les chercheurs continuent d'utiliser, de peaufiner et de débattre de son approche et de sa boîte à outils conceptuelle de base.

La philosophie et la science partagent les outils de la logique, de l'analyse conceptuelle et de l'argumentation rigoureuse. Cependant, les philosophes peuvent utiliser ces outils avec des degrés de rigueur, de liberté et d'abstraction théorique que les chercheurs praticiens ne peuvent souvent pas se permettre dans leurs activités quotidiennes.

La tâche des fausses croyances constitue un autre exemple clé de l'impact de la philosophie sur les sciences cognitives. Le philosophe Daniel Dennett a été le premier à concevoir la logique de base de cette expérience comme une révision d'un test utilisé pour évaluer la théorie de l'esprit, la capacité d'attribuer des états mentaux à soi-même et aux autres. Cette tâche teste la capacité d'attribuer à autrui des croyances que l'on considère comme fausses, l'idée clé étant que le raisonnement sur les croyances fausses d'autrui, par opposition aux croyances vraies, exige de concevoir les autres personnes comme ayant des représentations mentales qui divergent des siennes et de la façon dont le monde est réellement. Sa première application empirique remonte à 1983 , dans un article dont le titre, "Beliefs About Beliefs : Representation and Constraining Function of Wrong Beliefs in Young Children's Understanding of Deception", est en soi un hommage direct à la contribution de Dennett.

La tâche des fausses croyances représente une expérience marquante dans divers domaines des sciences cognitives et des neurosciences, avec de vastes applications et implications. Il s'agit notamment de tester les stades du développement cognitif chez les enfants, de débattre de l'architecture de la cognition humaine et de ses capacités distinctes, d'évaluer les capacités de la théorie de l'esprit chez les grands singes, de développer des théories de l'autisme en tant que cécité de l'esprit (selon lesquelles les difficultés à réussir la tâche des fausses croyances sont associées à cette maladie), et de déterminer quelles régions particulières du cerveau sont associées à la capacité de raisonner sur le contenu de l'esprit d'une autre personne .

La philosophie a également aidé le domaine des sciences cognitives à éliminer les hypothèses problématiques ou dépassées, contribuant ainsi à l'évolution de la science. Les concepts de l'esprit, de l'intelligence, de la conscience et de l'émotion sont utilisés de manière omniprésente dans différents domaines, avec souvent peu d'accord sur leur signification. L'ingénierie de l'intelligence artificielle, la construction de théories psychologiques des variables de l'état mental et l'utilisation d'outils neuroscientifiques pour étudier la conscience et l'émotion nécessitent des outils conceptuels pour l'autocritique et le dialogue interdisciplinaire - précisément les outils que la philosophie peut fournir.

La philosophie - parfois représentée par la lettre grecque phi - peut contribuer à faire progresser tous les niveaux de l'entreprise scientifique, de la théorie à l'expérience. Parmi les exemples récents, citons les contributions à la biologie des cellules souches, à l'immunologie, à la symbiose et aux sciences cognitives.  

La philosophie et la connaissance scientifique.

Les exemples ci-dessus sont loin d'être les seuls : dans les sciences de la vie, la réflexion philosophique a joué un rôle important dans des questions aussi diverses que l'altruisme évolutif , le débat sur les unités de sélection, la construction d'un "arbre de vie", la prédominance des microbes dans la biosphère, la définition du gène et l'examen critique du concept d'innéité. De même, en physique, des questions fondamentales comme la définition du temps ont été enrichies par les travaux des philosophes. Par exemple, l'analyse de l'irréversibilité temporelle par Huw Price et les courbes temporelles fermées par David Lewis ont contribué à dissiper la confusion conceptuelle en physique.

Inspirés par ces exemples et bien d'autres, nous considérons que la philosophie et la science se situent sur un continuum. La philosophie et la science partagent les outils de la logique, de l'analyse conceptuelle et de l'argumentation rigoureuse. Cependant, les philosophes peuvent utiliser ces outils avec des degrés de minutie, de liberté et d'abstraction théorique que les chercheurs praticiens ne peuvent souvent pas se permettre dans leurs activités quotidiennes. Les philosophes possédant les connaissances scientifiques pertinentes peuvent alors contribuer de manière significative à l'avancement de la science à tous les niveaux de l'entreprise scientifique, de la théorie à l'expérimentation, comme le montrent les exemples ci-dessus.

Mais comment, en pratique, faciliter la coopération entre chercheurs et philosophes ? À première vue, la solution pourrait sembler évidente : chaque communauté devrait faire un pas vers l'autre. Pourtant, ce serait une erreur de considérer cette tâche comme facile. Les obstacles sont nombreux. Actuellement, un nombre important de philosophes dédaignent la science ou ne voient pas la pertinence de la science pour leur travail. Même parmi les philosophes qui privilégient le dialogue avec les chercheurs, rares sont ceux qui ont une bonne connaissance de la science la plus récente. À l'inverse, peu de chercheurs perçoivent les avantages que peuvent leur apporter les idées philosophiques. Dans le contexte scientifique actuel, dominé par une spécialisation croissante et des demandes de financement et de résultats de plus en plus importantes, seul un nombre très limité de chercheurs a le temps et l'opportunité d'être au courant des travaux produits par les philosophes sur la science, et encore moins de les lire.

 Pour surmonter ces difficultés, nous pensons qu'une série de recommandations simples, assez facile à mettre en œuvre, peuvent aider à combler le fossé entre la science et la philosophie. La reconnexion entre la philosophie et la science est à la fois hautement souhaitable et plus réalisable en pratique que ne le suggèrent les décennies d'éloignement qui les séparent.

1) Laisser plus de place à la philosophie dans les conférences scientifiques. Il s'agit d'un mécanisme très simple permettant aux chercheurs d'évaluer l'utilité potentielle des idées des philosophes pour leurs propres recherches. Réciproquement, davantage de chercheurs pourraient participer à des conférences de philosophie, en développant les efforts d'organisations telles que l'International Society for the History, Philosophy, and Social Studies of Biology, la Philosophy of Science Association et la Society for Philosophy of Science in Practice.

2) Accueillir des philosophes dans des laboratoires et des départements scientifiques. Il s'agit d'un moyen efficace (déjà exploré par certains des auteurs et d'autres) pour les philosophes d'apprendre la science et de fournir des analyses plus appropriées et bien fondées, et pour les chercheurs de bénéficier d'apports philosophiques et de s'acclimater à la philosophie en général. C'est peut-être le moyen le plus efficace d'aider la philosophie à avoir un impact rapide et concret sur la science.

3) Co-superviser des doctorants. La co-supervision de doctorants par un chercheur et un philosophe est une excellente occasion de rendre possible l'enrichissement mutuel des deux domaines. Elle facilite la production de thèses qui sont à la fois riches sur le plan expérimental et rigoureuses sur le plan conceptuel et, ce faisant, elle forme la prochaine génération de philosophes-scientifiques.

4) Créer des programmes d'études équilibrés en science et en philosophie qui favorisent un véritable dialogue entre elles. De tels programmes existent déjà dans certains pays, mais leur développement devrait être une priorité absolue. Ils peuvent offrir aux étudiants en sciences une perspective qui les rend plus aptes à relever les défis conceptuels de la science moderne et fournir aux philosophes une base solide de connaissances scientifiques qui maximisera leur impact sur la science. Les programmes d'enseignement des sciences peuvent inclure un cours d'histoire des sciences et de philosophie des sciences. Les programmes de philosophie pourraient inclure un module de sciences.

5) Lire science et philosophie. La lecture des sciences est indispensable à la pratique de la philosophie des sciences, mais la lecture de la philosophie peut également constituer une grande source d'inspiration pour les chercheurs, comme l'illustrent certains des exemples ci-dessus. Par exemple, les clubs de lecture où les contributions scientifiques et philosophiques sont discutées constituent un moyen efficace d'intégrer la philosophie et la science.

6) Ouvrir de nouvelles sections consacrées aux questions philosophiques et conceptuelles dans les revues scientifiques. Cette stratégie serait un moyen approprié et convaincant de suggérer que le travail philosophique et conceptuel est continu avec le travail expérimental, dans la mesure où il est inspiré par celui-ci, et peut l'inspirer en retour. Cela rendrait également les réflexions philosophiques sur un domaine scientifique particulier beaucoup plus visibles pour la communauté scientifique concernée que lorsqu'elles sont publiées dans des revues de philosophie, qui sont rarement lues par les scientifiques.

Nous espérons que les mesures pratiques exposées ci-dessus encourageront une renaissance de l'intégration de la science et de la philosophie. En outre, nous soutenons que le maintien d'une allégeance étroite à la philosophie renforcera la vitalité de la science. La science moderne sans la philosophie se heurtera à un mur : le déluge de données dans chaque domaine rendra l'interprétation de plus en plus difficile, négligence et ampleur ampleur de l'histoire risquent de séparer davantage les sous-disciplines scientifiques, et l'accent mis sur les méthodes et les résultats empiriques entraînera une formation de moins en moins approfondie des étudiants. Comme l'a écrit Carl Woese : "une société qui permet à la biologie de devenir une discipline d'ingénierie, qui permet à la science de se glisser dans le rôle de modifier le monde vivant sans essayer de le comprendre, est un danger pour elle-même." Nous avons besoin d'une revigoration de la science à tous les niveaux, une revigoration qui nous rende les bénéfices de liens étroits avec la philosophie.

Auteur: Internet

Info: https://hal.archives-ouvertes.fr/hal-02269657/document. " janvier 2020. Publication collective de Lucie Laplane, Paolo Mantovani, Ralph Adolphs, Hasok Chang, Alberto Mantovani, Margaret McFall-Ngai, Carlo Rovelli, Elliott Sober, et Thomas Pradeua. Trad Mg

[ mécanisme ] [ état des lieux ] [ corps-esprit ] [ tétravalences ] [ tour d'horizon ]

 

Commentaires: 0

Ajouté à la BD par miguel

interrogation

Pourquoi cet univers ? Un nouveau calcul suggère que notre cosmos est typique.

Deux physiciens ont calculé que l’univers a une entropie plus élevée – et donc plus probable – que d’autres univers possibles. Le calcul est " une réponse à une question qui n’a pas encore été pleinement comprise ".

(image : Les propriétés de notre univers – lisse, plat, juste une pincée d’énergie noire – sont ce à quoi nous devrions nous attendre, selon un nouveau calcul.)

Les cosmologues ont passé des décennies à chercher à comprendre pourquoi notre univers est si étonnamment vanille. Non seulement il est lisse et plat à perte de vue, mais il s'étend également à un rythme toujours plus lent, alors que des calculs naïfs suggèrent que – à la sortie du Big Bang – l'espace aurait dû se froisser sous l'effet de la gravité et détruit par une énergie noire répulsive.

Pour expliquer la planéité du cosmos, les physiciens ont ajouté un premier chapitre dramatique à l'histoire cosmique : ils proposent que l'espace se soit rapidement gonflé comme un ballon au début du Big Bang, aplanissant toute courbure. Et pour expliquer la légère croissance de l’espace après cette première période d’inflation, certains ont avancé que notre univers n’est qu’un parmi tant d’autres univers moins hospitaliers dans un multivers géant.

Mais maintenant, deux physiciens ont bouleversé la pensée conventionnelle sur notre univers vanille. Suivant une ligne de recherche lancée par Stephen Hawking et Gary Gibbons en 1977, le duo a publié un nouveau calcul suggérant que la clarté du cosmos est attendue plutôt que rare. Notre univers est tel qu'il est, selon Neil Turok de l'Université d'Édimbourg et Latham Boyle de l'Institut Perimeter de physique théorique de Waterloo, au Canada, pour la même raison que l'air se propage uniformément dans une pièce : des options plus étranges sont concevables, mais extrêmement improbable.

L'univers " peut sembler extrêmement précis, extrêmement improbable, mais eux  disent : 'Attendez une minute, c'est l'univers préféré' ", a déclaré Thomas Hertog , cosmologue à l'Université catholique de Louvain en Belgique.

"Il s'agit d'une contribution nouvelle qui utilise des méthodes différentes de celles utilisées par la plupart des gens", a déclaré Steffen Gielen , cosmologue à l'Université de Sheffield au Royaume-Uni.

La conclusion provocatrice repose sur une astuce mathématique consistant à passer à une horloge qui tourne avec des nombres imaginaires. En utilisant l'horloge imaginaire, comme Hawking l'a fait dans les années 70, Turok et Boyle ont pu calculer une quantité, connue sous le nom d'entropie, qui semble correspondre à notre univers. Mais l’astuce du temps imaginaire est une manière détournée de calculer l’entropie, et sans une méthode plus rigoureuse, la signification de la quantité reste vivement débattue. Alors que les physiciens s’interrogent sur l’interprétation correcte du calcul de l’entropie, beaucoup le considèrent comme un nouveau guide sur la voie de la nature quantique fondamentale de l’espace et du temps.

"D'une manière ou d'une autre", a déclaré Gielen, "cela nous donne peut-être une fenêtre sur la microstructure de l'espace-temps."

Chemins imaginaires

Turok et Boyle, collaborateurs fréquents, sont réputés pour avoir conçu des idées créatives et peu orthodoxes sur la cosmologie. L’année dernière, pour étudier la probabilité que notre Univers soit probable, ils se sont tournés vers une technique développée dans les années 1940 par le physicien Richard Feynman.

Dans le but de capturer le comportement probabiliste des particules, Feynman a imaginé qu'une particule explore toutes les routes possibles reliant le début à la fin : une ligne droite, une courbe, une boucle, à l'infini. Il a imaginé un moyen d'attribuer à chaque chemin un nombre lié à sa probabilité et d'additionner tous les nombres. Cette technique de " l’intégrale du chemin " est devenue un cadre puissant pour prédire le comportement probable d’un système quantique.

Dès que Feynman a commencé à faire connaître l’intégrale du chemin, les physiciens ont repéré un curieux lien avec la thermodynamique, la vénérable science de la température et de l’énergie. C'est ce pont entre la théorie quantique et la thermodynamique qui a permis les calculs de Turok et Boyle.

La thermodynamique exploite la puissance des statistiques afin que vous puissiez utiliser seulement quelques chiffres pour décrire un système composé de plusieurs éléments, comme les milliards de molécules d'air qui s'agitent dans une pièce. La température, par exemple – essentiellement la vitesse moyenne des molécules d’air – donne une idée approximative de l’énergie de la pièce. Les propriétés globales telles que la température et la pression décrivent un "  macrostate " de la pièce.

Mais ce terme de un macro-état est un compte rendu rudimentaire ; les molécules d’air peuvent être disposées d’un très grand nombre de manières qui correspondent toutes au même macroétat. Déplacez un peu un atome d’oxygène vers la gauche et la température ne bougera pas. Chaque configuration microscopique unique est appelée microétat, et le nombre de microétats correspondant à un macroétat donné détermine son entropie.

L'entropie donne aux physiciens un moyen précis de comparer les probabilités de différents résultats : plus l'entropie d'un macroétat est élevée, plus il est probable. Il existe bien plus de façons pour les molécules d'air de s'organiser dans toute la pièce que si elles étaient regroupées dans un coin, par exemple. En conséquence, on s’attend à ce que les molécules d’air se propagent (et restent dispersées). La vérité évidente selon laquelle les résultats probables sont probables, exprimée dans le langage de la physique, devient la célèbre deuxième loi de la thermodynamique : selon laquelle l’entropie totale d’un système a tendance à croître.

La ressemblance avec l'intégrale du chemin était indubitable : en thermodynamique, on additionne toutes les configurations possibles d'un système. Et avec l’intégrale du chemin, vous additionnez tous les chemins possibles qu’un système peut emprunter. Il y a juste une distinction assez flagrante : la thermodynamique traite des probabilités, qui sont des nombres positifs qui s'additionnent simplement. Mais dans l'intégrale du chemin, le nombre attribué à chaque chemin est complexe, ce qui signifie qu'il implique le nombre imaginaire i , la racine carrée de −1. Les nombres complexes peuvent croître ou diminuer lorsqu’ils sont additionnés, ce qui leur permet de capturer la nature ondulatoire des particules quantiques, qui peuvent se combiner ou s’annuler.

Pourtant, les physiciens ont découvert qu’une simple transformation peut vous faire passer d’un domaine à un autre. Rendez le temps imaginaire (un mouvement connu sous le nom de rotation de Wick d'après le physicien italien Gian Carlo Wick), et un second i entre dans l'intégrale du chemin qui étouffe le premier, transformant les nombres imaginaires en probabilités réelles. Remplacez la variable temps par l'inverse de la température et vous obtenez une équation thermodynamique bien connue.

Cette astuce de Wick a conduit Hawking et Gibbons à une découverte à succès en 1977, à la fin d'une série éclair de découvertes théoriques sur l'espace et le temps.

L'entropie de l'espace-temps

Des décennies plus tôt, la théorie de la relativité générale d’Einstein avait révélé que l’espace et le temps formaient ensemble un tissu unifié de réalité – l’espace-temps – et que la force de gravité était en réalité la tendance des objets à suivre les plis de l’espace-temps. Dans des circonstances extrêmes, l’espace-temps peut se courber suffisamment fortement pour créer un Alcatraz incontournable connu sous le nom de trou noir.

En 1973, Jacob Bekenstein a avancé l’hérésie selon laquelle les trous noirs seraient des prisons cosmiques imparfaites. Il a estimé que les abysses devraient absorber l'entropie de leurs repas, plutôt que de supprimer cette entropie de l'univers et de violer la deuxième loi de la thermodynamique. Mais si les trous noirs ont de l’entropie, ils doivent aussi avoir des températures et rayonner de la chaleur.

Stephen Hawking, sceptique, a tenté de prouver que Bekenstein avait tort, en se lançant dans un calcul complexe du comportement des particules quantiques dans l'espace-temps incurvé d'un trou noir. À sa grande surprise, il découvrit en 1974 que les trous noirs rayonnaient effectivement. Un autre calcul a confirmé l'hypothèse de Bekenstein : un trou noir a une entropie égale au quart de la surface de son horizon des événements – le point de non-retour pour un objet tombant.

Dans les années qui suivirent, les physiciens britanniques Gibbons et Malcolm Perry, puis plus tard Gibbons et Hawking, arrivèrent au même résultat dans une autre direction . Ils ont établi une intégrale de chemin, additionnant en principe toutes les différentes manières dont l'espace-temps pourrait se plier pour former un trou noir. Ensuite, ils ont fait tourner le trou noir, marquant l'écoulement du temps avec des nombres imaginaires, et ont scruté sa forme. Ils ont découvert que, dans la direction du temps imaginaire, le trou noir revenait périodiquement à son état initial. Cette répétition semblable au jour de la marmotte dans un temps imaginaire a donné au trou noir une sorte de stase qui leur a permis de calculer sa température et son entropie.

Ils n’auraient peut-être pas fait confiance aux résultats si les réponses n’avaient pas correspondu exactement à celles calculées précédemment par Bekenstein et Hawking. À la fin de la décennie, leur travail collectif avait donné naissance à une idée surprenante : l’entropie des trous noirs impliquait que l’espace-temps lui-même était constitué de minuscules morceaux réorganisables, tout comme l’air est constitué de molécules. Et miraculeusement, même sans savoir ce qu’étaient ces " atomes gravitationnels ", les physiciens ont pu compter leurs arrangements en regardant un trou noir dans un temps imaginaire.

"C'est ce résultat qui a laissé une très profonde impression sur Hawking", a déclaré Hertog, ancien étudiant diplômé et collaborateur de longue date de Hawking. Hawking s'est immédiatement demandé si la rotation de Wick fonctionnerait pour autre chose que les trous noirs. "Si cette géométrie capture une propriété quantique d'un trou noir", a déclaré Hertog, "alors il est irrésistible de faire la même chose avec les propriétés cosmologiques de l'univers entier."

Compter tous les univers possibles

Immédiatement, Hawking et Gibbons Wick ont ​​fait tourner l’un des univers les plus simples imaginables – un univers ne contenant rien d’autre que l’énergie sombre construite dans l’espace lui-même. Cet univers vide et en expansion, appelé espace-temps " de Sitter ", a un horizon au-delà duquel l’espace s’étend si rapidement qu’aucun signal provenant de cet espace ne parviendra jamais à un observateur situé au centre de l’espace. En 1977, Gibbons et Hawking ont calculé que, comme un trou noir, un univers de De Sitter possède également une entropie égale au quart de la surface de son horizon. Encore une fois, l’espace-temps semblait comporter un nombre incalculable de micro-états.

Mais l’entropie de l’univers réel restait une question ouverte. Notre univers n'est pas vide ; il regorge de lumière rayonnante et de flux de galaxies et de matière noire. La lumière a provoqué une expansion rapide de l'espace pendant la jeunesse de l'univers, puis l'attraction gravitationnelle de la matière a ralenti les choses pendant l'adolescence cosmique. Aujourd’hui, l’énergie sombre semble avoir pris le dessus, entraînant une expansion galopante. "Cette histoire d'expansion est une aventure semée d'embûches", a déclaré Hertog. "Il n'est pas si facile d'obtenir une solution explicite."

Au cours de la dernière année, Boyle et Turok ont ​​élaboré une solution aussi explicite. Tout d'abord, en janvier, alors qu'ils jouaient avec des cosmologies jouets, ils ont remarqué que l'ajout de radiations à l'espace-temps de De Sitter ne gâchait pas la simplicité requise pour faire tourner l'univers par Wick.

Puis, au cours de l’été, ils ont découvert que la technique résisterait même à l’inclusion désordonnée de matière. La courbe mathématique décrivant l’histoire plus complexe de l’expansion relevait toujours d’un groupe particulier de fonctions faciles à manipuler, et le monde de la thermodynamique restait accessible. "Cette rotation de Wick est une affaire trouble lorsque l'on s'éloigne d'un espace-temps très symétrique", a déclaré Guilherme Leite Pimentel , cosmologiste à la Scuola Normale Superiore de Pise, en Italie. "Mais ils ont réussi à le trouver."

En faisant tourner Wick l’histoire de l’expansion en montagnes russes d’une classe d’univers plus réaliste, ils ont obtenu une équation plus polyvalente pour l’entropie cosmique. Pour une large gamme de macroétats cosmiques définis par le rayonnement, la matière, la courbure et une densité d'énergie sombre (tout comme une plage de températures et de pressions définit différents environnements possibles d'une pièce), la formule crache le nombre de microétats correspondants. Turok et Boyle ont publié leurs résultats en ligne début octobre.

Les experts ont salué le résultat explicite et quantitatif. Mais à partir de leur équation d’entropie, Boyle et Turok ont ​​tiré une conclusion non conventionnelle sur la nature de notre univers. "C'est là que cela devient un peu plus intéressant et un peu plus controversé", a déclaré Hertog.

Boyle et Turok pensent que l'équation effectue un recensement de toutes les histoires cosmiques imaginables. Tout comme l'entropie d'une pièce compte toutes les façons d'arranger les molécules d'air pour une température donnée, ils soupçonnent que leur entropie compte toutes les façons dont on peut mélanger les atomes de l'espace-temps et se retrouver avec un univers avec une histoire globale donnée. courbure et densité d’énergie sombre.

Boyle compare le processus à l'examen d'un gigantesque sac de billes, chacune représentant un univers différent. Ceux qui ont une courbure négative pourraient être verts. Ceux qui ont des tonnes d'énergie sombre pourraient être des yeux de chat, et ainsi de suite. Leur recensement révèle que l’écrasante majorité des billes n’ont qu’une seule couleur – le bleu, par exemple – correspondant à un type d’univers : un univers globalement semblable au nôtre, sans courbure appréciable et juste une touche d’énergie sombre. Les types de cosmos les plus étranges sont extrêmement rares. En d’autres termes, les caractéristiques étrangement vanille de notre univers qui ont motivé des décennies de théorie sur l’inflation cosmique et le multivers ne sont peut-être pas étranges du tout.

"C'est un résultat très intrigant", a déclaré Hertog. Mais " cela soulève plus de questions que de réponses ".

Compter la confusion

Boyle et Turok ont ​​calculé une équation qui compte les univers. Et ils ont fait l’observation frappante que des univers comme le nôtre semblent représenter la part du lion des options cosmiques imaginables. Mais c’est là que s’arrête la certitude.

Le duo ne tente pas d’expliquer quelle théorie quantique de la gravité et de la cosmologie pourrait rendre certains univers communs ou rares. Ils n’expliquent pas non plus comment notre univers, avec sa configuration particulière de parties microscopiques, est né. En fin de compte, ils considèrent leurs calculs comme un indice permettant de déterminer quels types d’univers sont préférés plutôt que comme quelque chose qui se rapproche d’une théorie complète de la cosmologie. "Ce que nous avons utilisé est une astuce bon marché pour obtenir la réponse sans connaître la théorie", a déclaré Turok.

Leurs travaux revitalisent également une question restée sans réponse depuis que Gibbons et Hawking ont lancé pour la première fois toute l’histoire de l’entropie spatio-temporelle : quels sont exactement les micro-états que compte l’astuce bon marché ?

"L'essentiel ici est de dire que nous ne savons pas ce que signifie cette entropie", a déclaré Henry Maxfield , physicien à l'Université de Stanford qui étudie les théories quantiques de la gravité.

En son cœur, l’entropie résume l’ignorance. Pour un gaz constitué de molécules, par exemple, les physiciens connaissent la température – la vitesse moyenne des particules – mais pas ce que fait chaque particule ; l'entropie du gaz reflète le nombre d'options.

Après des décennies de travaux théoriques, les physiciens convergent vers une vision similaire pour les trous noirs. De nombreux théoriciens pensent aujourd'hui que la zone de l'horizon décrit leur ignorance de ce qui s'y trouve, de toutes les façons dont les éléments constitutifs du trou noir sont disposés de manière interne pour correspondre à son apparence extérieure. (Les chercheurs ne savent toujours pas ce que sont réellement les microétats ; les idées incluent des configurations de particules appelées gravitons ou cordes de la théorie des cordes.)

Mais lorsqu’il s’agit de l’entropie de l’univers, les physiciens se sentent moins sûrs de savoir où se situe leur ignorance.

En avril, deux théoriciens ont tenté de donner à l’entropie cosmologique une base mathématique plus solide. Ted Jacobson , physicien à l'Université du Maryland réputé pour avoir dérivé la théorie de la gravité d'Einstein de la thermodynamique des trous noirs, et son étudiant diplômé Batoul Banihashemi ont explicitement défini l'entropie d'un univers de Sitter (vacant et en expansion). Ils ont adopté la perspective d’un observateur au centre. Leur technique, qui consistait à ajouter une surface fictive entre l'observateur central et l'horizon, puis à rétrécir la surface jusqu'à ce qu'elle atteigne l'observateur central et disparaisse, a récupéré la réponse de Gibbons et Hawking selon laquelle l'entropie est égale à un quart de la surface de l'horizon. Ils ont conclu que l’entropie de De Sitter compte tous les microétats possibles à l’intérieur de l’horizon.

Turok et Boyle calculent la même entropie que Jacobson et Banihashemi pour un univers vide. Mais dans leur nouveau calcul relatif à un univers réaliste rempli de matière et de rayonnement, ils obtiennent un nombre beaucoup plus grand de microétats – proportionnels au volume et non à la surface. Face à ce conflit apparent, ils spéculent que les différentes entropies répondent à des questions différentes : la plus petite entropie de De Sitter compte les microétats d'un espace-temps pur délimité par un horizon, tandis qu'ils soupçonnent que leur plus grande entropie compte tous les microétats d'un espace-temps rempli d'espace-temps. matière et énergie, tant à l’intérieur qu’à l’extérieur de l’horizon. "C'est tout un shebang", a déclaré Turok.

En fin de compte, régler la question de savoir ce que comptent Boyle et Turok nécessitera une définition mathématique plus explicite de l’ensemble des microétats, analogue à ce que Jacobson et Banihashemi ont fait pour l’espace de Sitter. Banihashemi a déclaré qu'elle considérait le calcul d'entropie de Boyle et Turok " comme une réponse à une question qui n'a pas encore été entièrement comprise ".

Quant aux réponses plus établies à la question " Pourquoi cet univers ? ", les cosmologistes affirment que l’inflation et le multivers sont loin d’être morts. La théorie moderne de l’inflation, en particulier, est parvenue à résoudre bien plus que la simple question de la douceur et de la planéité de l’univers. Les observations du ciel correspondent à bon nombre de ses autres prédictions. L'argument entropique de Turok et Boyle a passé avec succès un premier test notable, a déclaré Pimentel, mais il lui faudra trouver d'autres données plus détaillées pour rivaliser plus sérieusement avec l'inflation.

Comme il sied à une grandeur qui mesure l’ignorance, les mystères enracinés dans l’entropie ont déjà servi de précurseurs à une physique inconnue. À la fin des années 1800, une compréhension précise de l’entropie en termes d’arrangements microscopiques a permis de confirmer l’existence des atomes. Aujourd'hui, l'espoir est que si les chercheurs calculant l'entropie cosmologique de différentes manières peuvent déterminer exactement à quelles questions ils répondent, ces chiffres les guideront vers une compréhension similaire de la façon dont les briques Lego du temps et de l'espace s'empilent pour créer l'univers qui nous entoure.

"Notre calcul fournit une énorme motivation supplémentaire aux personnes qui tentent de construire des théories microscopiques de la gravité quantique", a déclaré Turok. "Parce que la perspective est que cette théorie finira par expliquer la géométrie à grande échelle de l'univers."

 

Auteur: Internet

Info: https://www.quantamagazine.org/ - Charlie Wood, 17 nov 2022

[ constante fondamentale ] [ 1/137 ]

 

Commentaires: 0

Ajouté à la BD par miguel