Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 11
Temps de recherche: 0.0447s

mathématiques

Une connaissance complète de la nature d'une fonction analytique doit également inclure un aperçu de son comportement pour d'imaginaires valeurs des arguments. Cette condition est souvent indispensable même pour une appréciation correcte du comportement de la fonction avec des arguments réels. Il est donc essentiel que la détermination initiale du concept de fonction soit élargie à un domaine de grandeurs qui comprenne, sur un pied d'égalité, à la fois taille réelle et taille imaginaire, sous l'appellation de nombres complexes à désignation unique.

Auteur: Gauss Carl Friedrich

Info:

[ abstraction ] [ méthode ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-machine

L'intégration des mots ou vecteurs de mots est un moyen pour les ordinateurs de comprendre la signification des mots dans un texte écrit par des personnes. L'objectif est de représenter les mots comme des listes de nombres, où de petits changements dans les nombres représentent de petits changements dans la signification du mot. Cette technique permet de créer des algorithmes d'intelligence artificielle pour la compréhension du langage naturel. En utilisant les vecteurs de mots, l'algorithme peut comparer les mots en fonction de leur signification, et pas seulement de leur orthographe.

Auteur: Speer Robert

Info: less-stereotyped word vectors. Dans le traitement du langage naturel (NLP), vectorisation des mots concerne la représentation des mots pour l'analyse de texte, càd sous forme d'un vecteur à valeur réelle qui encode la signification du mot de telle sorte que les mots qui sont plus proches dans l'espace vectoriel sont censés avoir une signification similaire. L'intégration des mots peut être obtenue en utilisant un ensemble de techniques de modélisation du langage et d'apprentissage des caractéristiques où les mots ou les phrases du vocabulaire sont mis en correspondance avec des vecteurs de nombres réels.

[ intelligence artificielle ] [ métadonnées outils ] [ mots expressions abrégées ] [ abstraction mécanique ] [ sémantique industrielle ] [ nuances automatiques ]

 

Commentaires: 0

Ajouté à la BD par miguel

typologies informatiques

Le plus souvent, les classes d'objets rencontrées dans le monde physique réel n'ont pas de critères d'appartenance précisément définis. Par exemple, la classe des animaux inclut clairement les chiens, les chevaux, les oiseaux, etc. comme membres, et exclut clairement des objets tels que les roches, les fluides, les plantes, etc. Cependant, des objets tels que les étoiles de mer, les bactéries, etc. ont un statut ambigu par rapport à la classe des animaux. Le même type d'ambiguïté se présente dans le cas d'un nombre tel que 10 par rapport à la "classe" de tous les nombres réels qui sont beaucoup plus grands que 1.

Auteur: Zadeh Lotfi Aliasker

Info: Fuzzy sets (1965), p. 338

[ taxinomie ] [ désambiguïsation ] [ citation s'appliquant à ce logiciel ]

 
Ajouté à la BD par miguel

particules élémentaires

Ce que Born a compris, c'est que les symboles qu'Heisenberg manipulait dans ses équations étaient des objets mathématiques appelés matrices, et qu'il y avait tout un domaine des mathématiques qui leur était consacré, appelé algèbre matricielle. Par exemple, Heisenberg avait remarqué quelque chose d'étrange dans ses symboles : lorsque l'entité A était multipliée par l'entité B, ce n'était pas la même chose que B multiplié par A ; l'ordre de multiplication importait. Les nombres réels ne se comportent pas de cette façon. Mais les matrices, si. Une matrice est un arrangement d'éléments. Un arrangement peut être une seule ligne, une seule colonne, ou une combinaison de lignes et de colonnes. Heisenberg avait brillamment pressenti une façon de représenter le monde quantique et de poser des questions à son sujet en utilisant de tels symboles, tout en ignorant l'algèbre matricielle.  

Auteur: Ananthaswamy Anil

Info: Through Two Doors at Once: The Elegant Experiment That Captures the Enigma of Our Quantum Reality

[ historique ] [ codage conceptuel ]

 

Commentaires: 0

Ajouté à la BD par miguel

géométrie analytique

De toute évidence, la réflexion sur le continu mathématique engagée pour ce colloque est comme aimantée par deux grands événements de la science, ou plus généralement de la pensée : d'une part l'événement de la synthèse du modèle de Cantor-Dedekind, à la fin du siècle précédent et au début de celui-ci, événement qui nous a légué une image pleine et close du continu, d'autre part l'événement que nous avons le sentiment de vivre, et dont pour cette raison nous savons moins bien assigner l'origine et dire la nature, dont, à la limite, nous ne sommes pas sûrs, nous voulons parler de l'émergence d'une nouvelle "version", plus essentiellement finitaire, du continu.
Autant dire que la période glacière au cours de laquelle on pouvait croire le continu "domestiqué", une fois pour toutes assigné à résidence par sa théorie "moderne", s'est achevée.

Auteur: Salanskis Jean-Michel

Info: "Le destin du Modèle de Cantor-Dedekind", in "Le Labyrinthe du Continu", p. 190

[ héritage ] [ contemporanéité ] [ émancipation ] [ nombres réels ] [ logique cartésienne ]

 
Commentaires: 4
Ajouté à la BD par Benslama

mathématiques matricielles

En physique classique, la résolution d'une équation d'onde pour, disons, une onde sonore peut vous donner la pression de l'onde sonore à un certain point dans l'espace et le temps. En résolvant l'équation d'onde de Schrödinger, vous obtenez ce que l'on appelle une fonction d'onde. Cette fonction d'onde, désignée par la lettre grecque ψ (psi), est quelque chose d'assez étrange. Elle représente l'état quantique de la particule, mais l'état quantique n'est pas un nombre ou une quantité unique qui révèle, par exemple, que l'électron se trouve à cette position à ce moment et à cette position à un autre moment. Au contraire, ψ est lui-même une vague ondulante qui a, à tel ou tel moment donné, des valeurs différentes dans différentes positions. Plus étrange encore, ces valeurs ne sont pas des nombres réels ; il peut par exemple s'agir  de nombres complexes avec des parties imaginaires. Ainsi, la fonction d'onde à un moment donné n'est pas localisée dans une région de l'espace ; elle est plutôt étalée, elle est partout et a des composantes imaginaires. L'équation de Schrödinger permet donc de calculer comment l'état du système quantique, ψ, change avec le temps.  

Auteur: Ananthaswamy Anil

Info: Through Two Doors at Once: The Elegant Experiment That Captures the Enigma of Our Quantum Reality

[ particules élémentaires ] [ conflits d'ambivalences ]

 
Commentaires: 2
Ajouté à la BD par miguel

sciences

Intellectuellement Pythagore fut un des hommes les plus importants qui aient jamais vécu, autant lorsqu'il fut sage que dans ses  imprudences.

Les mathématiques, au sens de l'argumentation déductive démonstrative, commencent avec lui et, en lui, sont intimement liées à une forme particulière de mysticisme. L'influence des mathématiques sur la philosophie, en partie due à lui, aura été depuis son époque à la fois profonde et malencontreuse. 

A l'origine la plupart des sciences étaient liées à une certaine forme de fausse croyance, ce qui leur donnait une valeur fictive. L'astronomie était liée à l'astrologie, la chimie à l'alchimie alors que les mathématiques étaient associées à un type d'erreur plus raffiné. Les connaissances mathématiques apparaissaient certaines, exactes et applicables au monde réel; de plus, elles étaient obtenues par simple réflexion, sans avoir besoin d'observation. Par conséquent, on pensait qu'elles fournissaient un idéal, en rapport duquel les connaissances empiriques quotidiennes étaient  inférieures. On supposait, sur la base des mathématiques, que la pensée est supérieure au sens, l'intuition à l'observation.

Si le monde des sens ne convient pas aux mathématiques, tant pis pour le monde des sens.  On a alots, via moult méthodes, cherché à se rapprocher de l'idéal du mathématicien, et les suggestions qui en ont résulté furent la source de beaucoup d'erreurs dans la métaphysique et la théorie de la connaissance.

Cette forme de philosophie commence avec Pythagore. Pythagore, comme tout le monde le sait, a dit "tout est nombre". Cette déclaration, interprétée de manière moderne, est logiquement un non-sens, mais ce qu'il voulait dire n'était pas exactement un non-sens. Il avait découvert l'importance des nombres en musique, et le lien qu'il a établi entre la musique et l'arithmétique survit dans les termes mathématiques "moyenne harmonique" et "progression harmonique". Il considérait les nombres comme des formes, telles qu'elles apparaissent sur les dés ou sur les cartes à jouer. On parle encore de nombres au carrés et au cube, termes que nous lui devons. Il évoqua aussi des nombres oblongs, triangulaires, pyramidaux, etc. C'était le nombre de cailloux (ou, comme on devrait dire plus naturellement, de billes) nécessaires pour réaliser les formes en question. Il pensait vraisemblablement que le monde est atomique et que les corps sont constitués de molécules composées d'atomes disposés sous diverses formes.

Il espérait ainsi mettre de l'arithmétique au centre de l'étude fondamentale de la physique comme de l'esthétique.

La religion personnelle dérive de l'extase, la théologie des mathématiques ; et les deux se trouvent chez Pythagore. Les mathématiques sont, je crois, la principale source de la croyance en une vérité éternelle et exacte, ainsi qu'en un monde intelligible suprasensible. La géométrie traite de cercles exacts, mais aucun objet sensible n'est exactement circulaire ; quelle que soit le soin avec lequel nous utilisons nos boussoles, il y aura des imperfections et des irrégularités. Cela suggère l'idée que tout raisonnement exact s'applique aux objets idéaux par opposition aux objets sensibles; il est naturel d'aller plus loin et d'affirmer que la pensée est plus noble que le sens, et les objets de la pensée plus réels que ceux de la perception sensorielle. Les doctrines mystiques sur la relation entre le temps et l'éternité sont également renforcées par les mathématiques pures, car les objets mathématiques, tels que les nombres, s'ils sont réels, sont éternels et ne s'inscrivent pas dans le temps. Ces objets éternels peuvent être conçus comme les pensées de Dieu. 

D'où la doctrine de Platon selon laquelle Dieu est un géomètre et la croyance de Sir James Jeans selon laquelle il est accro à l'arithmétique. La religion rationaliste par opposition à la religion apocalyptique aura été, depuis Pythagore, et notamment depuis Platon, complètement dominée par les mathématiques et la méthode mathématique. La combinaison des mathématiques et de la théologie, qui a commencé avec Pythagore, a caractérisé la philosophie religieuse en Grèce, au Moyen Âge et dans les temps modernes jusqu'à Kant. L'orphisme avant Pythagore était analogue aux mystérieuse religions asiatiques.

Mais chez Platon, Saint Augustin, Thomas d'Aquin, Descartes, Spinoza et Kant, il y a un mélange intime de religion et de raisonnement, d'aspiration morale et d'admiration logique de ce qui est intemporel, qui vient de Pythagore et qui distingue la théologie intellectualisée de l'Europe du mysticisme plus direct de l'Asie. 

Ce n'est que très récemment qu'il a été possible de dire clairement en quoi Pythagore avait tort. Je ne connais personne qui ait eu autant d'influence que lui dans le domaine de la pensée. Je dis cela parce que ce qui apparaît comme du platonisme se révèle, après analyse, être essentiellement du pythagorisme. Toute la conception d'un monde éternel, révélé à l'intellect mais non aux sens, est dérivée de lui. Sans lui, les chrétiens n'auraient pas considéré le Christ comme le monde ; sans lui, les théologiens n'auraient pas cherché des preuves logiques de Dieu et de l'immortalité. Mais en lui, tout cela reste implicite.

Auteur: Russell Bertrand

Info: A History of Western Philosophy (1945), Book One. Ancient Philosophy, Part II. The Pre-Socratics, Ch. III: Pythagoras, p. 29 & pp. 34-37

[ historique ] [ Grèce antique ] [ langage ]

 

Commentaires: 0

Ajouté à la BD par miguel

perception humaine

Les schémas mathématiques secrets révélés par la musique de Bach

Le compositeur baroque allemand Jean Sébastien Bach a produit une musique si bien structurée qu'elle est souvent comparée aux maths. Bien que peu d'entre nous soient émotionnellement affectés par les mathématiques, les œuvres de Bach - et la musique en général - nous émeuvent. C'est plus que du son ; c'est un message. Désormais, grâce aux outils de la théorie de l'information, les chercheurs commencent à comprendre comment la musique de Bach fait passer ce message.

En faisant de ses partitions de simples réseaux de points, appelés nœuds, reliés par des lignes, nommeés bords, les scientifiques ont quantifié les informations véhiculées par des centaines de compositions de Bach. Analyse de ces réseaux musicaux publiée le 2 février dans Physical Review Research qui révèle que les nombreux styles musicaux de Bach, tels que les chorales et les toccatas, différaient considérablement dans la quantité d'informations qu'ils communiquaient - et que certains réseaux musicaux contenaient des structures qui pouvaient faciliter la compréhension de leurs messages par les auditeurs humains.

" Je trouve cette idée vraiment cool ", explique le physicien Suman Kulkarni de l’Université de Pennsylvanie, auteur principal de la nouvelle étude. " Nous avons utilisé des outils de la physique sans faire d’hypothèses sur les pièces musicales, en commençant par cette simple représentation et en voyant ce qui peut nous dire sur les informations qui sont transmises. "

Les chercheurs ont quantifié le contenu de toute cette information, des séquences simples aux réseaux enchevêtrés, utilisant le concept d'entropie de l'information, introduit par le mathématicien Claude Shannon en 1948.

Comme son nom l'indique, l'entropie de l'information est mathématiquement et conceptuellement liée à l'entropie thermodynamique. Elle peut être considérée comme une mesure du degré de surprise d'un message - "message" qui peut être tout ce qui transmet des informations, d'une séquence de nombres à un morceau de musique. Cette perspective peut sembler contre-intuitive, étant donné que, dans le langage courant, l'information est souvent assimilée à la certitude. Mais l'idée clé de l'entropie de l'information est qu'apprendre quelque chose que l'on sait déjà n'est pas apprendre du tout.

Une conversation avec une personne qui ne sait exprimer qu'une chose, comme le personnage Hodor dans la série télévisée Game of Thrones, qui dit seulement " Hodor ", sera prévisible mais pas informationelle. Une discussion avec Pikachu sera un peu meilleure ; le Pokémon ne peut dire que les syllabes de son nom, mais il peut les réarranger, contrairement à Hodor. De même, une pièce de musique ne comportant qu'une seule note sera relativement facile à "apprendre" par le cerveau, c'est-à-dire à reproduire avec précision sous la forme d'un modèle mental, mais le morceau aura du mal à faire passer un quelconque message. Regarder un jeu de pile ou face avec une pièce à deux têtes ne donnera aucune information.

Bien sûr, envoyer un message plein d'informations n'est pas très bon si le quelque chose - ou qui que ce soit - qui le reçoit ne peut  comprendre avec précision ces informations. Et quand il s'agit de messages musicaux, les chercheurs travaillent encore sur la façon dont nous apprenons ce que la musique essaie de nous dire.

" Il existe quelques théories différentes ", explique le cognitiviste Marcus Pearce de l’université Queen Mary de Londres, qui n’a pas participé à la récente étude de la recherche sur l’évaluation physique. " La principale, je pense, en ce moment, est basée sur l’apprentissage probabiliste. Dans ce cadre, "apprendre" la musique signifie construire des représentations mentales précises des sons réels que nous entendons - ce que les chercheurs appellent un modèle - par un jeu d'anticipation et de surprise. Nos modèles mentaux prédisent la probabilité qu'un son donné vienne ensuite, sur la base de ce qui a précédé. Ensuite, explique M. Pearce, " on découvre si la prédiction était juste ou fausse, et on peut alors mettre à jour son modèle en conséquence".

Kulkarni et ses collègues sont physiciens, pas musiciens. Ils voulaient utiliser les outils de la théorie de l'information pour explorer la musique à la recherche de structures d'information qui pourraient avoir quelque chose à voir avec la façon dont les humains glanent un sens de la mélodie.

Ainsi Kulkarni a transformé 337 compositions de Bach en bandes de nœuds interconnectés et calculé l'entropie de l'information des réseaux qui en résultent. Dans ces réseaux, chaque note de la partition d'origine est un noeud, et chaque transition entre notes est un pont. Par example, si une pièce inclut une note Mi suivie d'un Do et d'un Sol joués ensemble, le noeud représentant E sera relié aux noeuds représentant Do et Sol.

Les réseaux de ce notation transitions dans la musique de Bach ont générés plus de poinçon d'information que des réseaux de même taille générés aléatoirement - le résultat d'une plus grande variation dans les degrés nodaux des réseaux, c'est-à-dire le nombre d'arêtes connectées à chaque nœud. En outre, les scientifiques ont découvert des variations dans la structure de l'information et le contenu des nombreux styles de composition de Bach. Les chorals, hymnes destinés à être chanté, ont donné lieu à des réseaux relativement pauvres en informations, bien que plus riches en informations que les réseaux de même taille générés de manière aléatoire. Les toccatas et les préludes, styles musicaux souvent écrits pour des instruments à clavier tels que l'orgue, le clavecin et le piano, présentant une entropie de l'information plus élevée.

" J’ai été particulièrement excité par les niveaux plus élevés de surprises dans les toccatas que dans les œuvres chorales ", explique le co-auteur de l’étude et physicien Dani Bassett de l’Université de Pennsylvanie. " Ces deux types de pièces sonnent et résonnent différement dans mes os, et ça m'a passionné de voir que cette distinction se manifeste dans l'information de composition. "

Ces structures de réseau dans les compositions de Bach pourraient également permettre aux auditeurs humains d'apprendre plus facilement certaines choses. Les humains n'apprennent pas parfaitement les réseaux. Nous avons des préjugés, dit Bassett. " Nous ignorons en quelque sorte certaines des informations locales au profit de la vue d’une image plus grande de l’information sur l’ensemble du système ", ajoute-t-ils. En modélisant ce biais dans la façon dont nous construisons nos modèles mentaux de réseaux complexes, les chercheurs ont comparé l'ensemble des informations de chaque réseau musical à la quantité d'informations qu'un auditeur humain en tirerait.

Des réseaux musicaux contenaient des groupes de transitions de notes pourraient aider nos cerveaux biaisés " apprendre " la musique - à reproduire la structure informationnelle de la musique avec précision en tant que modèle mental - sans sacrifier beaucoup d'informations.

" La façon dont elles saisissent l’aptitude à l’apprentissage est assez intéressante ", déclare Peter Harrison de l’Université de Cambridge, qui n’a pas participé à l’étude. " C'est très réducteur dans un certain sens. Mais c'est tout à fait complémentaire avec d'autres théories que nous connaissons, et l'aptitude à apprendre est assez difficile à maîtriser ".

Ce type d'analyse de réseau n'est pas particulier à Bach et il pourrait fonctionner pour n'importe quel compositeur. Pearce dit qu'il sera  intéressant d'utiliser cette approche pour comparer différents compositeurs ou rechercher des tendances informatives à travers l'histoire de la musique. Pour sa part, Kulkarni est excité à l'idée d'analyser les propriétés d'information de partitions d'au-delà de la tradition musicale occidentale.

La musique n'est pas seulement une séquence de notes, note cependant Harrison. Le rythme, le volume, le timbre des instruments, ces éléments sont des aspects importants des messages musicaux qui n'ont pas été pris en compte dans cette étude. Kulkarni dit qu'il sera intéressé par l'inclusion de ces aspects de la musique dans ses réseaux. Le processus pourrait également fonctionner dans l'autre sens, ajoute M. Harrison : plutôt que réduire les caractéristiques musicales à un réseau, il sera intéressant de savoir comment les caractéristiques du réseau se traduisent par des éléments qu'un musicien reconnaîtrait.

Un musicien dira : " Quelles sont les règles musicales réelles, ou les caractéristiques musicales, qui en sont à l’origine ? Puis-je l’entendre sur un piano ? " précise Harrison.

Enfin, on ne sait pas encore exactement comment les modèles de réseaux identifiés dans la nouvelle étude se traduisent dans l'expérience vécue à l'écoute d'un morceau de Bach - ou de n'importe quelle musique, précise M. Pearce. La résolution de ce problème relèvera de la psychologie musicale, poursuit-il. Des expériences pourraient révéler "si, de fait, ce genre de choses est perceptible par les gens et quels sont leurs effets sur le plaisir que les gens éprouvent lorsqu'ils écoutent de la musique". De même Harrison se dit intéressé par des expériences visant à vérifier si les types d'erreurs d'apprentissage en réseau que les chercheurs ont modélisés dans cette étude sont réellement importants pour l'apprentissage de la musique.

"Le fait que les humains présentent ce type de perception imparfaite et biaisée de systèmes informationnels complexes est essentiel pour comprendre comment nous nous impliquons dans la musique", explique M. Bassett. "Comprendre la complexité informationnelle des compositions de Bach ouvre de nouvelles questions sur les processus cognitifs qui sous-tendent la manière dont nous apprécions les différents types de musique."

Auteur: Internet

Info: https://www.scientificamerican.com, 16 féb 2024. Elise Cutts - Secret Mathematical Patterns Revealed in Bach's Music

[ sentiment naturel ] [ approfondissement découverte ] [ dépaysement plaisir ] [ cybernétisation ] [ simple compliqué ] [ occulte harmonie ]

 
Commentaires: 1
Ajouté à la BD par Le sous-projectionniste

furtifs méta-moteurs

Découvrez les formes modulaires, la " cinquième opération fondamentale " des mathématiques

Les formes modulaires sont l’un des objets les plus beaux et les plus mystérieux des mathématiques. Quels sont-ils ?

" Il existe cinq opérations fondamentales en mathématiques ", aurait déclaré le mathématicien allemand Martin Eichler. " Addition, soustraction, multiplication, division et formes modulaires. "

Une partie du gag bien sûr, c’est que l’un d’entre eux n’est pas comme les autres. Les formes modulaires sont des fonctions beaucoup plus compliquées et énigmatiques, et les étudiants ne les rencontrent généralement pas avant leurs études supérieures. Mais " il y a probablement moins de domaines mathématiques où ils n'ont pas d'applications que là où ils en ont ", a déclaré Don Zagier , mathématicien à l'Institut de mathématiques Max Planck de Bonn, en Allemagne. Chaque semaine, de nouveaux articles étendent leur portée à la théorie des nombres, à la géométrie, à la combinatoire, à la topologie, à la cryptographie et même à la théorie des cordes.

Elles sont souvent décrites comme des fonctions qui satisfont des symétries si frappantes et si élaborées qu’elles ne devraient pas être possibles. Les propriétés associées à ces symétries rendent les formes modulaires extrêmement puissantes. C’est ce qui a fait d’elles des acteurs clés dans la preuve historique du dernier théorème de Fermat en 1994. C'est ce qui les a placés au cœur des travaux plus récents sur l'emballage des sphères . Et c'est ce qui les rend désormais cruciales pour le développement continu d'une " théorie mathématique du tout " Nommée programme de Langlands .

Mais que sont-elles ?

Symétries infinies

Pour comprendre une forme modulaire, il est utile de réfléchir d’abord à des symétries plus familières.

(...)

"Les formes modulaires ressemblent aux fonctions trigonométriques, mais sous stéroïdes", a-t-il ajouté. Ils satisfont une infinité de symétries " cachées ".

L'univers complexe

Les fonctions ne peuvent pas faire grand-chose lorsqu'elles sont définies en termes de nombres réels, c'est-à-dire des valeurs qui peuvent être exprimées sous forme décimale conventionnelle. En conséquence, les mathématiciens se tournent souvent vers les nombres complexes, qui peuvent être considérés comme des paires de nombres réels. Tout nombre complexe est décrit en termes de deux valeurs : une composante " réelle " et une composante " imaginaire ", qui est un nombre réel multiplié par la racine carrée de −1 (que les mathématiciens écrivent comme je).

Tout nombre complexe peut donc être représenté comme un point dans un plan à deux dimensions.

Il est difficile de visualiser les fonctions des nombres complexes, c’est pourquoi les mathématiciens se tournent souvent vers la couleur. Par exemple, vous pouvez colorer le plan complexe pour qu'il ressemble à une roue arc-en-ciel. La couleur de chaque point correspond à son angle en coordonnées polaires. Directement à droite du centre, là où les points ont un angle de 0 degré, vous obtenez du rouge. À 90 degrés, ou vers le haut, les points sont de couleur vert vif. Et ainsi de suite. Enfin, les courbes de niveau marquent les changements de taille ou d'ampleur, comme sur une carte topographique.

(...) (partie supprimée, voir pour plus sur le lien qui précède)

Le domaine fondamental

Pour ce faire, il est utile d’essayer de simplifier la façon dont nous envisageons ces fonctions complexes.

En raison des symétries de la forme modulaire, vous pouvez calculer la fonction entière sur la base d'un seul petit groupe d'entrées, situé dans une région du plan appelée domaine fondamental. Cette région ressemble à une bande montant à partir de l’axe horizontal avec un trou semi-circulaire découpé dans son fond.

Si vous savez comment la fonction se comporte là-bas, vous saurez ce qu'elle fait partout ailleurs. Voici comment:

Des transformations spéciales copient un fragment du plan complexe, appelé domaine fondamental, dans une infinité d’autres régions. Puisqu’une forme modulaire est définie en termes de ces transformations, si vous savez comment elle se comporte dans le domaine fondamental, vous pouvez facilement comprendre comment elle se comporte

(...) (partie supprimée, voir liens précédents pour plus). 

Espaces contrôlés

Dans les années 1920 et 1930, le mathématicien allemand Erich Hecke a développé une théorie plus approfondie autour des formes modulaires. Surtout, il s’est rendu compte qu’elles existaient dans certains espaces – des espaces avec des dimensions spécifiques et d’autres propriétés. Il a compris comment décrire concrètement ces espaces et les utiliser pour relier différentes formes modulaires entre elles.

Cette prise de conscience a inspiré de nombreuses mathématiques des XXe et XXIe siècles.

Pour comprendre comment, considérons d’abord une vieille question : de combien de façons peut-on écrire un entier donné comme la somme de quatre carrés ? Il n’y a qu’une seule façon d’écrire zéro, par exemple, alors qu’il existe huit façons d’exprimer 1, 24 façons d’exprimer 2 et 32 ​​façons d’exprimer 3. Pour étudier cette séquence — 1, 8, 24, 32 et ainsi de suite — les mathématiciens l'ont codé dans une somme infinie appelée fonction génératrice :

1+8q+24q2+32q3+24q4+48q5+…

Il n'existait pas nécessairement de moyen de connaître le coefficient de, disons, q174 devrait être – c’était précisément la question à laquelle ils essayaient de répondre. Mais en convertissant la séquence en fonction génératrice, les mathématiciens pourraient appliquer des outils issus du calcul et d’autres domaines pour en déduire des informations. Ils pourraient, par exemple, trouver un moyen d’approcher la valeur de n’importe quel coefficient.

Mais il s’avère que si la fonction génératrice est une forme modulaire, vous pouvez faire bien mieux : vous pouvez mettre la main sur une formule exacte pour chaque coefficient.

"Si vous savez qu'il s'agit d'une forme modulaire, alors vous savez tout", a déclaré Jan Bruinier de l'Université technique de Darmstadt en Allemagne.

En effet, les symétries infinies de la forme modulaire ne sont pas seulement belles à regarder : " elles sont si contraignantes ", a déclaré Larry Rolen de l'Université Vanderbilt, qu'elles peuvent être transformées en " un outil pour prouver automatiquement les congruences et les identités entre des choses. "

Les mathématiciens et les physiciens codent souvent des questions intéressantes en générant des fonctions. Ils voudront peut-être compter le nombre de points sur des courbes spéciales ou le nombre d’états dans certains systèmes physiques. "Si nous avons de la chance, alors ce sera une forme modulaire", a déclaré Claudia Alfes-Neumann , mathématicienne à l'université de Bielefeld en Allemagne. Cela peut être très difficile à prouver, mais si vous le pouvez, alors " la théorie des formes modulaires est si riche qu’elle vous offre des tonnes de possibilités pour étudier ces coefficients [de séries] ".

Blocs de construction

Toute forme modulaire va paraître très compliquée. Certaines des plus simples – qui sont utilisées comme éléments de base pour d’autres formes modulaires – sont appelées séries Eisenstein.

Vous pouvez considérer une série d’Eisenstein comme une somme infinie de fonctions. Pour déterminer chacune de ces fonctions, utilisez les points sur une grille 2D infinie :

(...) (partie images et schémas supprimée, voir liens pour plus. )

Le jeu continue

L'étude des formes modulaires a conduit à un flot de triomphes mathématiques. Par exemple, des travaux récents sur l'empilement de sphères, pour lesquels la mathématicienne ukrainienne Maryna Viazovska a remporté la médaille Fields l'année dernière , ont utilisé des formes modulaires. " Quand j'ai vu ça, j'ai été assez surprise ", a déclaré Bruinier. " Mais d'une manière ou d'une autre, ça marche. "

Les formes modulaires se sont révélées liées à un objet algébrique important appelé groupe de monstres. Elles ont été utilisées pour construire des types spéciaux de réseaux appelés graphes d'expansion, qui apparaissent en informatique, en théorie des communications et dans d'autres applications. Ils ont permis d'étudier des modèles potentiels d'interactions de particules en théorie des cordes et en physique quantique.

Le plus célèbre peut-être est que la preuve du dernier théorème de Fermat de 1994 reposait sur des formes modulaires. Le théorème, largement considéré comme l'un des problèmes les plus importants de la théorie des nombres, stipule qu'il n'existe pas trois entiers non nuls a , b et c qui satisfont à l'équation an+bn=cn si est un nombre entier supérieur à 2. Le mathématicien Andrew Wiles l'a prouvé en supposant le contraire – qu'une solution à l'équation existe – puis en utilisant des formes modulaires pour montrer qu'une telle hypothèse doit conduire à une contradiction.

Il a d’abord utilisé sa solution supposée pour construire un objet mathématique appelé courbe elliptique. Il a ensuite montré qu'on peut toujours associer une forme modulaire unique à une telle courbe. Cependant, la théorie des formes modulaires dictait que dans ce cas, cette forme modulaire ne pouvait pas exister. "C'est trop beau pour être vrai", a déclaré Voight. Ce qui signifiait, à son tour, que la solution supposée ne pouvait pas exister – confirmant ainsi le dernier théorème de Fermat.

Non seulement cela a résolu un problème vieux de plusieurs siècles ; cela a également permis de mieux comprendre les courbes elliptiques, qui peuvent être difficiles à étudier directement (et qui jouent un rôle important dans la cryptographie et les codes correcteurs d'erreurs).

Cette démonstration a également mis en lumière un pont entre la géométrie et la théorie des nombres. Ce pont a depuis été élargi dans le programme Langlands,  un plus grand ensemble de connexions entre les deux domaines – et sujet d'un des efforts de recherche centraux des mathématiques contemporaines. Les formes modulaires ont également été généralisées dans d'autres domaines, où leurs applications potentielles commencent tout juste à être reconnues.

Elles continuent d’apparaître partout en mathématiques et en physique, parfois de manière assez mystérieuse. "Je regarde dans un article sur les trous noirs", a déclaré Steve Kudla de l'Université de Toronto, "et j'y trouve des formes modulaires qui sont mes amies. Mais je ne sais pas pourquoi elles  sont là.

"D'une manière ou d'une autre", a-t-il ajouté, "les formes modulaires capturent certaines des symétries les plus fondamentales du monde".



 

Auteur: Internet

Info: https://www.quantamagazine.org, Jordana Cepelewicz, 21 septembre 2023

[ ultracomplexité ]

 
Commentaires: 1
Ajouté à la BD par miguel

symphonie des équations

Des " murmurations " de courbe elliptique découvertes grâce à l'IA prennent leur envol

Les mathématiciens s’efforcent d’expliquer pleinement les comportements inhabituels découverts grâce à l’intelligence artificielle.

(photo - sous le bon angle les courbes elliptiques peuvent se rassembler comme les grands essaims d'oiseaux.)

Les courbes elliptiques font partie des objets les plus séduisants des mathématiques modernes. Elle ne semblent pas compliqués, mais  forment une voie express entre les mathématiques que beaucoup de gens apprennent au lycée et les mathématiques de recherche dans leur forme la plus abstruse. Elles étaient au cœur de la célèbre preuve du dernier théorème de Fermat réalisée par Andrew Wiles dans les années 1990. Ce sont des outils clés de la cryptographie moderne. Et en 2000, le Clay Mathematics Institute a désigné une conjecture sur les statistiques des courbes elliptiques comme l'un des sept " problèmes du prix du millénaire ", chacun d'entre eux étant récompensé d'un million de dollars pour sa solution. Cette hypothèse, formulée pour la première fois par Bryan Birch et Peter Swinnerton-Dyer dans les années 1960, n'a toujours pas été prouvée.

Comprendre les courbes elliptiques est une entreprise aux enjeux élevés qui est au cœur des mathématiques. Ainsi, en 2022, lorsqu’une collaboration transatlantique a utilisé des techniques statistiques et l’intelligence artificielle pour découvrir des modèles complètement inattendus dans les courbes elliptiques, cela a été une contribution bienvenue, bien qu’inattendue. "Ce n'était qu'une question de temps avant que l'apprentissage automatique arrive à notre porte avec quelque chose d'intéressant", a déclaré Peter Sarnak , mathématicien à l'Institute for Advanced Study et à l'Université de Princeton. Au départ, personne ne pouvait expliquer pourquoi les modèles nouvellement découverts existaient. Depuis lors, dans une série d’articles récents, les mathématiciens ont commencé à élucider les raisons derrière ces modèles, surnommés " murmures " en raison de leur ressemblance avec les formes fluides des étourneaux en troupeaux, et ont commencé à prouver qu’ils ne doivent pas se produire uniquement dans des cas particuliers. exemples examinés en 2022, mais dans les courbes elliptiques plus généralement.

L'importance d'être elliptique

Pour comprendre ces modèles, il faut jeter les bases de ce que sont les courbes elliptiques et de la façon dont les mathématiciens les catégorisent.

Une courbe elliptique relie le carré d'une variable, communément écrite comme y , à la troisième puissance d'une autre, communément écrite comme x : 2  =  3  + Ax + B , pour une paire de nombres A et B , tant que A et B remplissent quelques conditions simples. Cette équation définit une courbe qui peut être représentée graphiquement sur le plan, comme indiqué ci-dessous. (Photo : malgré la similitude des noms, une ellipse n'est pas une courbe elliptique.)

Introduction

Bien qu’elles semblent simples, les courbes elliptiques s’avèrent être des outils incroyablement puissants pour les théoriciens des nombres – les mathématiciens qui recherchent des modèles dans les nombres entiers. Au lieu de laisser les variables x et y s'étendre sur tous les nombres, les mathématiciens aiment les limiter à différents systèmes numériques, ce qu'ils appellent définir une courbe " sur " un système numérique donné. Les courbes elliptiques limitées aux nombres rationnels – nombres qui peuvent être écrits sous forme de fractions – sont particulièrement utiles. "Les courbes elliptiques sur les nombres réels ou complexes sont assez ennuyeuses", a déclaré Sarnak. "Seuls les nombres rationnels sont profonds."

Voici une façon qui est vraie. Si vous tracez une ligne droite entre deux points rationnels sur une courbe elliptique, l’endroit où cette ligne coupe à nouveau la courbe sera également rationnel. Vous pouvez utiliser ce fait pour définir " addition " dans une courbe elliptique, comme indiqué ci-dessous. 

(Photo -  Tracez une ligne entre P et Q . Cette ligne coupera la courbe en un troisième point, R . (Les mathématiciens ont une astuce spéciale pour gérer le cas où la ligne ne coupe pas la courbe en ajoutant un " point à l'infini ".) La réflexion de R sur l' axe des x est votre somme P + Q . Avec cette opération d'addition, toutes les solutions de la courbe forment un objet mathématique appelé groupe.)

Les mathématiciens l'utilisent pour définir le " rang " d'une courbe. Le rang d'une courbe est lié au nombre de solutions rationnelles dont elle dispose. Les courbes de rang 0 ont un nombre fini de solutions. Les courbes de rang supérieur ont un nombre infini de solutions dont la relation les unes avec les autres à l'aide de l'opération d'addition est décrite par le rang.

Les classements (rankings) ne sont pas bien compris ; les mathématiciens n'ont pas toujours le moyen de les calculer et ne savent pas quelle taille ils peuvent atteindre. (Le plus grand rang exact connu pour une courbe spécifique est 20.) Des courbes d'apparence similaire peuvent avoir des rangs complètement différents.

Les courbes elliptiques ont aussi beaucoup à voir avec les nombres premiers, qui ne sont divisibles que par 1 et par eux-mêmes. En particulier, les mathématiciens examinent les courbes sur des corps finis – des systèmes d’arithmétique cyclique définis pour chaque nombre premier. Un corps fini est comme une horloge dont le nombre d'heures est égal au nombre premier : si vous continuez à compter vers le haut, les nombres recommencent. Dans le corps fini de 7, par exemple, 5 plus 2 est égal à zéro et 5 plus 3 est égal à 1.

(Photo : Les motifs formés par des milliers de courbes elliptiques présentent une similitude frappante avec les murmures des étourneaux.)

Une courbe elliptique est associée à une séquence de nombres, appelée a p , qui se rapporte au nombre de solutions qu'il existe à la courbe dans le corps fini défini par le nombre premier p . Un p plus petit signifie plus de solutions ; un p plus grand signifie moins de solutions. Bien que le rang soit difficile à calculer, la séquence a p est beaucoup plus simple.

Sur la base de nombreux calculs effectués sur l'un des tout premiers ordinateurs, Birch et Swinnerton-Dyer ont conjecturé une relation entre le rang d'une courbe elliptique et la séquence a p . Quiconque peut prouver qu’il avait raison gagnera un million de dollars et l’immortalité mathématique.

Un modèle surprise émerge

Après le début de la pandémie, Yang-Hui He , chercheur au London Institute for Mathematical Sciences, a décidé de relever de nouveaux défis. Il avait étudié la physique à l'université et avait obtenu son doctorat en physique mathématique du Massachusetts Institute of Technology. Mais il s'intéressait de plus en plus à la théorie des nombres et, étant donné les capacités croissantes de l'intelligence artificielle, il pensait essayer d'utiliser l'IA comme un outil permettant de trouver des modèles inattendus dans les nombres. (Il avait déjà utilisé l'apprentissage automatique pour classifier les variétés de Calabi-Yau , des structures mathématiques largement utilisées en théorie des cordes.

(Photo ) Lorsque Kyu-Hwan Lee (à gauche) et Thomas Oliver (au centre) ont commencé à travailler avec Yang-Hui He (à droite) pour utiliser l'intelligence artificielle afin de trouver des modèles mathématiques, ils s'attendaient à ce que ce soit une plaisanterie plutôt qu'un effort qui mènerait à de nouveaux découvertes. De gauche à droite : Grace Lee ; Sophie Olivier ; gracieuseté de Yang-Hui He.

En août 2020, alors que la pandémie s'aggravait, l'Université de Nottingham l'a accueilli pour une conférence en ligne . Il était pessimiste quant à ses progrès et quant à la possibilité même d’utiliser l’apprentissage automatique pour découvrir de nouvelles mathématiques. "Son récit était que la théorie des nombres était difficile parce qu'on ne pouvait pas apprendre automatiquement des choses en théorie des nombres", a déclaré Thomas Oliver , un mathématicien de l'Université de Westminster, présent dans le public. Comme il se souvient : " Je n'ai rien trouvé parce que je n'étais pas un expert. Je n’utilisais même pas les bons éléments pour examiner cela."

Oliver et Kyu-Hwan Lee , mathématicien à l'Université du Connecticut, ont commencé à travailler avec He. "Nous avons décidé de faire cela simplement pour apprendre ce qu'était l'apprentissage automatique, plutôt que pour étudier sérieusement les mathématiques", a déclaré Oliver. "Mais nous avons rapidement découvert qu'il était possible d'apprendre beaucoup de choses par machine."

Oliver et Lee lui ont suggéré d'appliquer ses techniques pour examiner les fonctions L , des séries infinies étroitement liées aux courbes elliptiques à travers la séquence a p . Ils pourraient utiliser une base de données en ligne de courbes elliptiques et de leurs fonctions L associées , appelée LMFDB , pour former leurs classificateurs d'apprentissage automatique. À l’époque, la base de données contenait un peu plus de 3 millions de courbes elliptiques sur les rationnels. En octobre 2020, ils avaient publié un article utilisant les informations glanées à partir des fonctions L pour prédire une propriété particulière des courbes elliptiques. En novembre, ils ont partagé un autre article utilisant l’apprentissage automatique pour classer d’autres objets en théorie des nombres. En décembre, ils étaient capables de prédire les rangs des courbes elliptiques avec une grande précision.

Mais ils ne savaient pas vraiment pourquoi leurs algorithmes d’apprentissage automatique fonctionnaient si bien. Lee a demandé à son étudiant de premier cycle Alexey Pozdnyakov de voir s'il pouvait comprendre ce qui se passait. En l’occurrence, la LMFDB trie les courbes elliptiques en fonction d’une quantité appelée conducteur, qui résume les informations sur les nombres premiers pour lesquels une courbe ne se comporte pas correctement. Pozdnyakov a donc essayé d’examiner simultanément un grand nombre de courbes comportant des conducteurs similaires – disons toutes les courbes comportant entre 7 500 et 10 000 conducteurs.

Cela représente environ 10 000 courbes au total. Environ la moitié d'entre eux avaient le rang 0 et l'autre moitié le rang 1. (Les rangs supérieurs sont extrêmement rares.) Il a ensuite fait la moyenne des valeurs de a p pour toutes les courbes de rang 0, a fait la moyenne séparément de a p pour toutes les courbes de rang 1 et a tracé la résultats. Les deux ensembles de points formaient deux vagues distinctes et facilement discernables. C’est pourquoi les classificateurs d’apprentissage automatique ont été capables de déterminer correctement le rang de courbes particulières.

" Au début, j'étais simplement heureux d'avoir terminé ma mission", a déclaré Pozdnyakov. "Mais Kyu-Hwan a immédiatement reconnu que ce schéma était surprenant, et c'est à ce moment-là qu'il est devenu vraiment excitant."

Lee et Oliver étaient captivés. "Alexey nous a montré la photo et j'ai dit qu'elle ressemblait à ce que font les oiseaux", a déclaré Oliver. "Et puis Kyu-Hwan l'a recherché et a dit que cela s'appelait une murmuration, puis Yang a dit que nous devrions appeler le journal ' Murmurations de courbes elliptiques '."

Ils ont mis en ligne leur article en avril 2022 et l’ont transmis à une poignée d’autres mathématiciens, s’attendant nerveusement à se faire dire que leur soi-disant « découverte » était bien connue. Oliver a déclaré que la relation était si visible qu'elle aurait dû être remarquée depuis longtemps.

Presque immédiatement, la prépublication a suscité l'intérêt, en particulier de la part d' Andrew Sutherland , chercheur scientifique au MIT et l'un des rédacteurs en chef de la LMFDB. Sutherland s'est rendu compte que 3 millions de courbes elliptiques n'étaient pas suffisantes pour atteindre ses objectifs. Il voulait examiner des gammes de conducteurs beaucoup plus larges pour voir à quel point les murmures étaient robustes. Il a extrait des données d’un autre immense référentiel d’environ 150 millions de courbes elliptiques. Toujours insatisfait, il a ensuite extrait les données d'un autre référentiel contenant 300 millions de courbes.

"Mais même cela ne suffisait pas, j'ai donc calculé un nouvel ensemble de données de plus d'un milliard de courbes elliptiques, et c'est ce que j'ai utilisé pour calculer les images à très haute résolution", a déclaré Sutherland. Les murmures indiquaient s'il effectuait en moyenne plus de 15 000 courbes elliptiques à la fois ou un million à la fois. La forme est restée la même alors qu’il observait les courbes sur des nombres premiers de plus en plus grands, un phénomène appelé invariance d’échelle. Sutherland s'est également rendu compte que les murmures ne sont pas propres aux courbes elliptiques, mais apparaissent également dans des fonctions L plus générales . Il a écrit une lettre résumant ses découvertes et l'a envoyée à Sarnak et Michael Rubinstein de l'Université de Waterloo.

"S'il existe une explication connue, j'espère que vous la connaîtrez", a écrit Sutherland.

Ils ne l'ont pas fait.

Expliquer le modèle

Lee, He et Oliver ont organisé un atelier sur les murmurations en août 2023 à l'Institut de recherche informatique et expérimentale en mathématiques (ICERM) de l'Université Brown. Sarnak et Rubinstein sont venus, tout comme l'étudiante de Sarnak, Nina Zubrilina .

LA THÉORIE DU NOMBRE

Zubrilina a présenté ses recherches sur les modèles de murmuration dans des formes modulaires , des fonctions complexes spéciales qui, comme les courbes elliptiques, sont associées à des fonctions L. Dans les formes modulaires dotées de grands conducteurs, les murmurations convergent vers une courbe nettement définie, plutôt que de former un motif perceptible mais dispersé. Dans un article publié le 11 octobre 2023, Zubrilina a prouvé que ce type de murmuration suit une formule explicite qu'elle a découverte.

" La grande réussite de Nina est qu'elle lui a donné une formule pour cela ; Je l’appelle la formule de densité de murmuration Zubrilina ", a déclaré Sarnak. "En utilisant des mathématiques très sophistiquées, elle a prouvé une formule exacte qui correspond parfaitement aux données."

Sa formule est compliquée, mais Sarnak la salue comme un nouveau type de fonction important, comparable aux fonctions d'Airy qui définissent des solutions aux équations différentielles utilisées dans divers contextes en physique, allant de l'optique à la mécanique quantique.

Bien que la formule de Zubrilina ait été la première, d'autres ont suivi. "Chaque semaine maintenant, un nouvel article sort", a déclaré Sarnak, "utilisant principalement les outils de Zubrilina, expliquant d'autres aspects des murmurations."

(Photo - Nina Zubrilina, qui est sur le point de terminer son doctorat à Princeton, a prouvé une formule qui explique les schémas de murmuration.)

Jonathan Bober , Andrew Booker et Min Lee de l'Université de Bristol, ainsi que David Lowry-Duda de l'ICERM, ont prouvé l'existence d'un type différent de murmuration sous des formes modulaires dans un autre article d'octobre . Et Kyu-Hwan Lee, Oliver et Pozdnyakov ont prouvé l'existence de murmures dans des objets appelés caractères de Dirichlet qui sont étroitement liés aux fonctions L.

Sutherland a été impressionné par la dose considérable de chance qui a conduit à la découverte des murmurations. Si les données de la courbe elliptique n'avaient pas été classées par conducteur, les murmures auraient disparu. "Ils ont eu la chance de récupérer les données de la LMFDB, qui étaient pré-triées selon le chef d'orchestre", a-t-il déclaré. « C'est ce qui relie une courbe elliptique à la forme modulaire correspondante, mais ce n'est pas du tout évident. … Deux courbes dont les équations semblent très similaires peuvent avoir des conducteurs très différents. Par exemple, Sutherland a noté que 2 = 3 – 11 x + 6 a un conducteur 17, mais en retournant le signe moins en signe plus, 2 = 3  + 11 x + 6 a un conducteur 100 736.

Même alors, les murmures n'ont été découverts qu'en raison de l'inexpérience de Pozdniakov. "Je ne pense pas que nous l'aurions trouvé sans lui", a déclaré Oliver, "parce que les experts normalisent traditionnellement a p pour avoir une valeur absolue de 1. Mais il ne les a pas normalisés… donc les oscillations étaient très importantes et visibles."

Les modèles statistiques que les algorithmes d’IA utilisent pour trier les courbes elliptiques par rang existent dans un espace de paramètres comportant des centaines de dimensions – trop nombreuses pour que les gens puissent les trier dans leur esprit, et encore moins les visualiser, a noté Oliver. Mais même si l’apprentissage automatique a découvert les oscillations cachées, " ce n’est que plus tard que nous avons compris qu’il s’agissait de murmures ".



 

Auteur: Internet

Info: Paul Chaikin pour Quanta Magazine, 5 mars 2024 - https://www.quantamagazine.org/elliptic-curve-murmurations-found-with-ai-take-flight-20240305/?mc_cid=797b7d1aad&mc_eid=78bedba296

[ résonance des algorithmes ] [ statistiques en mouvement ] [ chants des fractales ] [ bancs de poissons ]

 

Commentaires: 0

Ajouté à la BD par miguel