Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 9
Temps de recherche: 0.0391s

humour

La réalité est la résultante temporaire des luttes continuelles entre gangs rivaux de programmeurs.

Auteur: Wilson Robert Anton

Info:

[ existence ] [ instable ] [ projectionnistes ]

 

Commentaires: 0

Ajouté à la BD par miguel

Loi-de-Murphy

Si les constructeurs faisaient les immeubles comme les programmeurs écrivent leurs programmes, le premier picvert venu détruirait la civilisation.

Auteur: Internet

Info:

[ Constats Murphyens classiques ]

 

Commentaires: 0

collaboration

Les magiciens sont généralement introvertis et n'ont pas tendance à travailler avec les autres. Je travaille avec des programmeurs de logiciels, des compositeurs, des créateurs, un groupe très diversifié donc et le résultat est toujours plus intéressant que ce que j'aurais pu faire par moi-même.

Auteur: Tempest Marco

Info:

[ synergie ]

 

Commentaires: 0

geek

Comme la plupart des jeux vidéos, Adventure avait été conçu et programmé par une seule personne, mais à l'époque Atari refusait de reconnaître le travail de ses programmeurs, c'est pourquoi le nom du concepteur ne figurait nulle part sur l'emballage. [...] Le type qui a conçu Adventure, un dénommé Warren Robinett, a donc décidé de dissimuler son nom au cœur même du jeu. Il a caché une clef dans un des labyrinthes. Celui qui trouvait cette clef, petit point gris de la taille d'un pixel, pouvait s'en servir pour ouvrir une chambre secrète où Robinett avait dissimulé son nom. [...] Voilà [...] le premier œuf de Pâques dissimulé dans un jeu vidéo. Robinett l'avait intégré au code du jeu sans rien dire à personne. Atari a donc fabriqué et distribué Adventure dans le monde entier, sans connaître l'existence de cette chambre secrète. Ils ne l'ont découverte que plusieurs mois plus tard, au même moment que des tas d'enfants dans le monde, dont votre serviteur. J'ai vécu l'une des expériences du jeu les plus cool de ma vie avec la découverte de l’œuf de Pâques de Robinett.

Auteur: Cline Ernest

Info: Player one

[ plaisir ] [ videogame ] [ anecdote ]

 

Commentaires: 0

intelligence artificielle

Une IA envoie 5 champions de Poker au tapis en même temps

Pluribus, c'est son nom, a réussi pour la première fois à battre 5 joueurs à la fois au Texas Hold'em no limit. Développé par Facebook et l'Université de Carnegie-Mellon à Pittsburgh en Pennsylvanie, cette IA réalise pour la première fois ce qu'aucune autre n'avait accompli jusqu'ici.

En 1997, et pour la toute première fois, une IA battait un champion du monde d'échecs... Depuis de l'eau a coulé sous les ponts puisqu'une IA a récemment réussi à vaincre cinq adversaires au Poker Texas Hold'em, faisant ainsi d'elle la première IA victorieuse dans un jeu multijoueurs.

Une configuration plutôt modeste
L'IA Pluribus s'est "formé" une stratégie globale en 8 jours de calcul sur un serveur doté de 64 cœurs et aura nécessité moins de 512 Go de RAM. C'est donc assez peu par rapport aux autres IAs déployées ces dernières années pour battre des humains au jeux.

Là où Pluribus fait encore plus fort, c'est que celle-ci ne s'est pas entraînée contre un humain, mais simplement contre elle-même, encore et encore jusqu'à atteindre son meilleur niveau.

Une manière de jouer très personnelle
Seule, pendant une semaine, l'IA à pratiqué ce que ses programmeurs ont appelé le Monte Carlo counterfactual regret minimization. Le principe du Monte Carlo repose sur le fait de réfléchir toujours selon trois possibilités et de construire trois schémas des jeux possibles en prévision des coups à venir, un peu comme un arbre. Regret minimization, quant à lui, est le fait de prédire ce qui peut être joué et de mettre en place celui qui créera le moins de regrets une fois la décision prise.

L'IA a donc montré sa supériorité en évitant les erreurs que pourraient faire d'autres systèmes de ce type, car en un contre un, il est facile de connaître la main de l'adversaire, mais cela se complique lorsque quatre autres personnes sont à prendre en compte.

La plupart des IA sont ainsi battues en répétant finalement une habitude que l'adversaire humain pourrait repérer et mettre à son avantage. De la même façon, Pluribus est capable de changer de tactique en moins d'une minute, passant de la relance au bluff, la rendant ainsi inlisible et imprévisible. C'est donc encore une victoire pour l'IA, reste à savoir quel sera le prochain défi que les chercheurs parviendront à lui faire relever.

Auteur: Internet

Info: https://www.clubic.com. Laura Léger, contributrice, 15 juillet 2019

[ informatique ]

 
Mis dans la chaine

Commentaires: 0

Ajouté à la BD par miguel

homme-machine

Quand la plupart des gens pensent aux risques potentiels de l'intelligence artificielle et du machine learning, leur esprit va immédiatement vers "Terminator" - cet avenir où les robots, selon une vision dystopique, marcheraient dans les rues en abattant tous les humains sur leur passage.

Mais en réalité, si l'IA a le potentiel de semer le chaos et la discorde, la manière dont cela peut se produire est moins excitante qu'un "Skynet" réel. Les réseaux d'IA qui peuvent créer de fausses images et de fausses vidéos - connues dans l'industrie sous le nom de "deepfakes" - impossibles à distinguer du réel, qui pourraient engendrer des risques.

Qui pourrait oublier cette vidéo du président Obama ? Inventée et produite par un logiciel d'intelligence artificielle, une vidéo quasi impossible à distinguer de vraies images.

Eh bien, dans une récente présentation des capacités de l'IA dans un avenir pas si lointain, un chroniqueur de TechCrunch a mis en avant une étude présentée à une conférence importante de l'industrie en 2017. Les chercheurs y expliquent comment un réseau d'opposition générationnelle (Generative Adversarial Network) - l'une des deux variétés courantes d'opérateur de machine learning - a résisté aux intentions de ses programmeurs et a commencé à produire des cartes synthétiques après avoir reçu l'ordre de faire correspondre des photographies aériennes aux cartes routières correspondantes.

L'objectif de l'étude était de créer un outil permettant d'adapter plus rapidement les images satellites aux cartes routières de Google. Mais au lieu d'apprendre à transformer les images aériennes en cartes, l'opérateur de machine learning a appris à coder les caractéristiques de la carte sur les données visuelles de la carte topographique.

L'objectif était de permettre à l'opérateur d'interpréter les caractéristiques de l'un ou l'autre type de carte et de les faire correspondre aux caractéristiques de l'autre. Mais ce sur quoi l'opérateur était noté (entre autres choses), c'était la proximité de correspondance d'une carte aérienne par rapport à l'original et la clarté de la carte topographique.

Il n'a donc pas appris à faire l'une à partir de l'autre. Il a appris à coder subtilement les caractéristiques de l'une dans les "modèles de bruit" de l'autre. Les détails de la carte aérienne sont secrètement inscrits dans les données visuelles réelles de la carte des rues : des milliers de petits changements de couleur que l'œil humain ne remarquera pas, mais que l'ordinateur peut facilement détecter.

En fait, l'ordinateur est si bon à glisser ces détails dans les plans qu'il a appris à encoder n'importe quelle carte aérienne dans n'importe quel plan de rues ! Il n'a même pas besoin de faire attention à la "vraie" carte routière - toutes les données nécessaires à la reconstitution de la photo aérienne peuvent être superposées sans danger à une carte routière complètement différente, comme l'ont confirmé les chercheurs :

Cette pratique d'encodage des données en images n'est pas nouvelle ; il s'agit d'une science établie appelée stéganographie, et elle est utilisée tout le temps pour, disons, filigraner des images ou ajouter des métadonnées comme les réglages de caméra. Mais un ordinateur qui crée sa propre méthode stéganographique pour éviter d'avoir à apprendre à exécuter la tâche à accomplir c'est plutôt nouveau.

Au lieu de trouver un moyen d'accomplir une tâche qui dépassait ses capacités, l'opérateur de machine learning a développé sa propre méthode pour tricher.

On pourrait facilement prendre cela comme un pas vers l'idée "les machines deviennent plus intelligentes", mais la vérité est que c'est presque le contraire. La machine, qui n'est pas assez intelligente pour faire le travail difficile de convertir ces types d'images sophistiqués les unes avec les autres, a trouvé un moyen de tricher que les humains ont de la peine à détecter. Cela pourrait être évité avec une évaluation plus rigoureuse des résultats de l'opérateur, et il ne fait aucun doute que les chercheurs vont poursuivre dans cette voie.

Et même si ces chercheurs sophistiqués ont failli ne pas le détecter, qu'en est-il de notre capacité à différencier les images authentiques de celles qui fabriquées par simulation informatique ?

Auteur: Internet

Info: Zero Hedges 4 janvier 2018

[ vrai du faux ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-machine

Sciences-Po vient d’interdire l’usage de ChatGPT, l’application qui permet à tous les empêchés de la plume ou du clavier de produire en un temps record des textes bourrés d’idées reçues — de crainte sans doute, que l’on ne distingue pas les produits de l’Intelligence Artificielle et ceux de nos futurs énarques.

David Cayla, un économiste qui ne dit pas que des âneries, s’est fendu d’un tweet ravageur dès qu’il a appris que Sciences-Po avait décidé d’interdire à ses élèves l’usage de ChatGPT. "La stricte interdiction de #ChatGPT à Sciences Po révèle que cette école se sent menacée par une IA qui est capable de construire de belles phrases à partir de tout sujet, sans comprendre de quoi elle parle, et en faisant régulièrement des erreurs grossières." Et toc.

Rappel des faits pour ceux qui sortent à peine de leur grotte d’hibernation. Chloé Woitier, journaliste Tech au Figaro, vous explique en direct live ce qu’est cette application : la capacité à générer du texte — sans grand souci d’originalité et avec une capacité réelle d’erreurs grandioses — à partir de cohortes de mots et de phrases mis en mémoire. En fait, il s’agit de ce que l’on appelle en rhétorique un texte-centon, fabriqué à partir de collages de citations. Vous en avez un joli exemple ici.

Une chance pour les tire-au-flanc

Rien de nouveau — si ce n’est la capacité à produire un résultat de façon quasi instantanée. Voilà qui nous arrange bien, se disent déjà les élèves peu besogneux qui s’aperçoivent à 7 heures du matin qu’ils ont une dissertation-maison à rendre à 10 heures. En gros, le résultat vaut une petite moyenne.

Laurence Plazanet, professeur de littérature à l’université de Clermont-Auvergne, note que "nourri de la vaste littérature disponible sur la toile, littérature qu’il remâche suivant des algorithmes statistiques et probabilistes aptes à se reprogrammer eux-mêmes, dit-on, selon des procédures que cessent de maîtriser leurs programmeurs initiaux, ChatGPT patauge dans le prêt-à-penser." Et d’ajouter : "Pas un instant ce robot éclairé ne pense."

Intelligence artificielle, un oxymore

Comprenons bien que ces deux mots, "intelligence artificielle", sont ce que l’on appelle en stylistique un oxymore — une contradiction en soi. Comme "obscure clarté", "nuit blanche", "homme fidèle" ou "femme intelligente"…  

(C’étaient les exemples que je citais en cours pour expliquer l’oxymore. Protestations immédiates des uns et des autres, comme vous l’imaginez, mais du coup, par l’exemple provocateur, la notion s’ancrait dans les mémoires.)

Ce qu’il y a d’intelligent dans la machine y a été mis par des hommes. Lorsqu’un ordinateur vous bat aux échecs, c’est que vous êtes moins fort que la cohorte de grands maîtres qui l’ont programmé — ce qui est assez logique.

Que Sciences-Pipeau s’en émeuve est en revanche très inquiétant — et très drôle : les grandes intelligences qui nourriront les ministères et parviendront peut-être un jour au sommet (pensez, François Hollande, Ségolène Royal, Dominique de Villepin appartenaient à la même promo de l’ENA) se sentent menacées par un robot qui mécaniquement débite des platitudes. "Faut vous dire, Monsieur, que chez ces gens-là, on n’pense pas, Monsieur, on n’pense pas", chantait Brel. La machine à débiter des lieux communs, dont Flaubert s’est si ardemment moqué dans le discours du sous-préfet (c’est dans Madame Bovary) vous est désormais accessible.

Des inquiétudes injustifiées

ChatGPT n’est pas capable de rédiger une dissertation crédible. Un enseignant un peu rodé repère immédiatement les copiés-collés que les étudiants pressés vont cueillir sur le Net (c’est simple, il n’y a soudain plus de fautes d’orthographe), et ne met pas cinq secondes pour en identifier la source.  

Il est encore moins capable de rédiger une thèse — le plus simple étant d’aller copier une thèse déjà écrite : en 2013 déjà une ministre allemande a été déchue de son doctorat (rendu 33 ans auparavant) parce qu’il avait été pompé sur un travail antérieur. Deux ans auparavant c’était le ministre de la Défense, Karl-Theodor zu Guttenberg, qui s’était vu dénoncé pour un plagiat similaire dans sa thèse de Droit. 

Et ChatGPT ne saurait pas non plus écrire un roman original. Ne vous avisez pas de le lui demander : au pire, il vous arrivera ce qui est arrivé jadis à Thierry Ardisson, dont le nègre indélicat est allé chercher un récit des années 1930 pour Pondichéry, un roman publié en 1994. Et les héritiers de l’auteur véritable ont porté plainte. Ardisson m’avait confié dans les coulisses d’une émission qu’il avait été "con" de ne pas vérifier. Mais en 1994 c’était moins facile qu’aujourd’hui, où tout se sait à la vitesse de la Toile.

La rumeur de la rue Saint-Guillaume

Que la rumeur d’un robot doué d’une vraie intelligence ait si vite enthousiasmé les commentateurs et effrayé les enseignants témoigne de notre candeur et de notre incapacité à comprendre ce qui fait l’originalité d’un travail. Ou, plus inquiétant, de notre aspiration à la paresse.

Rassurons-nous : HAL 9000 (ou Carl 500, dans la version française, pour Cerveau analytique de Recherche et de Liaison), l’ordinateur rebelle de 2001 l’Odyssée de l’espace, n’est pas pour demain.

Une preuve ? J’ai demandé à ChapGPT de répondre à cette question simple : l’IA va-t-elle remplacer l’intelligence humaine ? Et le robot m’a répondu : 

"Non, l’IA ne remplacera pas complètement l’intelligence humaine. L’IA est un outil qui peut être utilisé pour augmenter les capacités humaines et faciliter certaines tâches, mais elle ne peut pas remplacer la conscience, la créativité et l’empathie qui sont uniques à l’intelligence humaine." Plus plat, tu meurs. On dirait de l’Annie Ernaux. 

Et le fait est que si vous supprimez de votre conversation "la conscience, la créativité et l’empathie", vous êtes bon pour être un parfait étudiant de Sciences-Po, un parfait énarque en devenir, et très probablement un excellent président de la République. 

Auteur: Brighelli Jean-Paul

Info: https://www.causeur.fr, 31 janv 2023. ChatGPT, la Grande Peur de Sciences-Pipeau

[ vacheries ] [ bêtise inconstitutionnelle ] [ élites formatées ]

 

Commentaires: 0

Ajouté à la BD par miguel

subatomique

Des scientifiques font exploser des atomes avec un laser de Fibonacci pour créer une dimension temporelle "supplémentaire"

Cette technique pourrait être utilisée pour protéger les données des ordinateurs quantiques contre les erreurs.

(Photo avec ce texte : La nouvelle phase a été obtenue en tirant des lasers à 10 ions ytterbium à l'intérieur d'un ordinateur quantique.)

En envoyant une impulsion laser de Fibonacci à des atomes à l'intérieur d'un ordinateur quantique, des physiciens ont créé une phase de la matière totalement nouvelle et étrange, qui se comporte comme si elle avait deux dimensions temporelles.

Cette nouvelle phase de la matière, créée en utilisant des lasers pour agiter rythmiquement un brin de 10 ions d'ytterbium, permet aux scientifiques de stocker des informations d'une manière beaucoup mieux protégée contre les erreurs, ouvrant ainsi la voie à des ordinateurs quantiques capables de conserver des données pendant une longue période sans les déformer. Les chercheurs ont présenté leurs résultats dans un article publié le 20 juillet dans la revue Nature.

L'inclusion d'une dimension temporelle "supplémentaire" théorique "est une façon complètement différente de penser les phases de la matière", a déclaré dans un communiqué l'auteur principal, Philipp Dumitrescu, chercheur au Center for Computational Quantum Physics de l'Institut Flatiron, à New York. "Je travaille sur ces idées théoriques depuis plus de cinq ans, et les voir se concrétiser dans des expériences est passionnant.

Les physiciens n'ont pas cherché à créer une phase dotée d'une dimension temporelle supplémentaire théorique, ni à trouver une méthode permettant d'améliorer le stockage des données quantiques. Ils souhaitaient plutôt créer une nouvelle phase de la matière, une nouvelle forme sous laquelle la matière peut exister, au-delà des formes standard solide, liquide, gazeuse ou plasmatique.

Ils ont entrepris de construire cette nouvelle phase dans le processeur quantique H1 de la société Quantinuum, qui se compose de 10 ions d'ytterbium dans une chambre à vide, contrôlés avec précision par des lasers dans un dispositif connu sous le nom de piège à ions.

Les ordinateurs ordinaires utilisent des bits, c'est-à-dire des 0 et des 1, pour constituer la base de tous les calculs. Les ordinateurs quantiques sont conçus pour utiliser des qubits, qui peuvent également exister dans un état de 0 ou de 1. Mais les similitudes s'arrêtent là. Grâce aux lois étranges du monde quantique, les qubits peuvent exister dans une combinaison, ou superposition, des états 0 et 1 jusqu'au moment où ils sont mesurés, après quoi ils s'effondrent aléatoirement en 0 ou en 1.

Ce comportement étrange est la clé de la puissance de l'informatique quantique, car il permet aux qubits de se lier entre eux par l'intermédiaire de l'intrication quantique, un processus qu'Albert Einstein a baptisé d'"action magique à distance". L'intrication relie deux ou plusieurs qubits entre eux, connectant leurs propriétés de sorte que tout changement dans une particule entraîne un changement dans l'autre, même si elles sont séparées par de grandes distances. Les ordinateurs quantiques sont ainsi capables d'effectuer plusieurs calculs simultanément, ce qui augmente de manière exponentielle leur puissance de traitement par rapport à celle des appareils classiques.

Mais le développement des ordinateurs quantiques est freiné par un gros défaut : les Qubits ne se contentent pas d'interagir et de s'enchevêtrer les uns avec les autres ; comme ils ne peuvent être parfaitement isolés de l'environnement extérieur à l'ordinateur quantique, ils interagissent également avec l'environnement extérieur, ce qui leur fait perdre leurs propriétés quantiques et l'information qu'ils transportent, dans le cadre d'un processus appelé "décohérence".

"Même si tous les atomes sont étroitement contrôlés, ils peuvent perdre leur caractère quantique en communiquant avec leur environnement, en se réchauffant ou en interagissant avec des objets d'une manière imprévue", a déclaré M. Dumitrescu.

Pour contourner ces effets de décohérence gênants et créer une nouvelle phase stable, les physiciens se sont tournés vers un ensemble spécial de phases appelées phases topologiques. L'intrication quantique ne permet pas seulement aux dispositifs quantiques d'encoder des informations à travers les positions singulières et statiques des qubits, mais aussi de les tisser dans les mouvements dynamiques et les interactions de l'ensemble du matériau - dans la forme même, ou topologie, des états intriqués du matériau. Cela crée un qubit "topologique" qui code l'information dans la forme formée par de multiples parties plutôt que dans une seule partie, ce qui rend la phase beaucoup moins susceptible de perdre son information.

L'une des principales caractéristiques du passage d'une phase à une autre est la rupture des symétries physiques, c'est-à-dire l'idée que les lois de la physique sont les mêmes pour un objet en tout point du temps ou de l'espace. En tant que liquide, les molécules d'eau suivent les mêmes lois physiques en tout point de l'espace et dans toutes les directions. Mais si vous refroidissez suffisamment l'eau pour qu'elle se transforme en glace, ses molécules choisiront des points réguliers le long d'une structure cristalline, ou réseau, pour s'y disposer. Soudain, les molécules d'eau ont des points préférés à occuper dans l'espace et laissent les autres points vides ; la symétrie spatiale de l'eau a été spontanément brisée.

La création d'une nouvelle phase topologique à l'intérieur d'un ordinateur quantique repose également sur la rupture de symétrie, mais dans cette nouvelle phase, la symétrie n'est pas brisée dans l'espace, mais dans le temps.

En donnant à chaque ion de la chaîne une secousse périodique avec les lasers, les physiciens voulaient briser la symétrie temporelle continue des ions au repos et imposer leur propre symétrie temporelle - où les qubits restent les mêmes à travers certains intervalles de temps - qui créerait une phase topologique rythmique à travers le matériau.

Mais l'expérience a échoué. Au lieu d'induire une phase topologique à l'abri des effets de décohérence, les impulsions laser régulières ont amplifié le bruit provenant de l'extérieur du système, le détruisant moins d'une seconde et demie après sa mise en marche.

Après avoir reconsidéré l'expérience, les chercheurs ont réalisé que pour créer une phase topologique plus robuste, ils devaient nouer plus d'une symétrie temporelle dans le brin d'ion afin de réduire les risques de brouillage du système. Pour ce faire, ils ont décidé de trouver un modèle d'impulsion qui ne se répète pas de manière simple et régulière, mais qui présente néanmoins une sorte de symétrie supérieure dans le temps.

Cela les a conduits à la séquence de Fibonacci, dans laquelle le nombre suivant de la séquence est créé en additionnant les deux précédents. Alors qu'une simple impulsion laser périodique pourrait simplement alterner entre deux sources laser (A, B, A, B, A, B, etc.), leur nouveau train d'impulsions s'est déroulé en combinant les deux impulsions précédentes (A, AB, ABA, ABAAB, ABAABAB, ABAABABA, etc.).

Cette pulsation de Fibonacci a créé une symétrie temporelle qui, à l'instar d'un quasi-cristal dans l'espace, est ordonnée sans jamais se répéter. Et tout comme un quasi-cristal, les impulsions de Fibonacci écrasent également un motif de dimension supérieure sur une surface de dimension inférieure. Dans le cas d'un quasi-cristal spatial tel que le carrelage de Penrose, une tranche d'un treillis à cinq dimensions est projetée sur une surface à deux dimensions. Si l'on examine le motif des impulsions de Fibonacci, on constate que deux symétries temporelles théoriques sont aplaties en une seule symétrie physique.

"Le système bénéficie essentiellement d'une symétrie bonus provenant d'une dimension temporelle supplémentaire inexistante", écrivent les chercheurs dans leur déclaration. Le système apparaît comme un matériau qui existe dans une dimension supérieure avec deux dimensions de temps, même si c'est physiquement impossible dans la réalité.

Lorsque l'équipe l'a testé, la nouvelle impulsion quasi-périodique de Fibonacci a créé une phase topographique qui a protégé le système contre la perte de données pendant les 5,5 secondes du test. En effet, ils ont créé une phase immunisée contre la décohérence pendant beaucoup plus longtemps que les autres.

"Avec cette séquence quasi-périodique, il y a une évolution compliquée qui annule toutes les erreurs qui se produisent sur le bord", a déclaré Dumitrescu. "Grâce à cela, le bord reste cohérent d'un point de vue mécanique quantique beaucoup plus longtemps que ce à quoi on s'attendrait.

Bien que les physiciens aient atteint leur objectif, il reste un obstacle à franchir pour que leur phase devienne un outil utile pour les programmeurs quantiques : l'intégrer à l'aspect computationnel de l'informatique quantique afin qu'elle puisse être introduite dans les calculs.

"Nous avons cette application directe et alléchante, mais nous devons trouver un moyen de l'intégrer dans les calculs", a déclaré M. Dumitrescu. "C'est un problème ouvert sur lequel nous travaillons.

 

Auteur: Internet

Info: livesciences.com, Ben Turner, 17 août 2022

[ anions ] [ cations ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-machine

Un pas de géant pour une machine à jouer aux échecs

Le succès stupéfiant d’AlphaZero, un algorithme d’apprentissage profond, annonce une nouvelle ère de la compréhension – une ère qui, en ce qui concerne les humains, qui pourrait ne pas durer longtemps. Début décembre, des chercheurs de DeepMind, la société d’intelligence artificielle appartenant à la société mère de Google, Alphabet Inc. ont diffusé une dépêche depuis les zones avancées du monde des échecs.

Un an plus tôt, le 5 décembre 2017, l’équipe avait stupéfié ce monde des échecs en annonçant AlphaZero, un algorithme d’apprentissage machine qui maîtrisait non seulement les échecs mais aussi le shogi, ou échecs japonais, et le Go. L’algorithme a commencé sans aucune connaissance des jeux hormis leurs règles de base. Il a ensuite joué contre lui-même des millions de fois et a appris par essais et erreurs. Il a suffi de quelques heures pour que l’algorithme devienne le meilleur joueur, humain ou ordinateur, que le monde ait jamais vu.

Les détails des capacités d’AlphaZero et de son fonctionnement interne ont maintenant été officiellement examinés par des pairs et publiés dans la revue Science ce mois-ci. Le nouvel article aborde plusieurs critiques graves à l’égard de l’allégation initiale (entre autres choses, il était difficile de dire si AlphaZero jouait l’adversaire qu’il s’était choisi, une entité computationnelle nommée Stockfish, en toute équité). Considérez que ces soucis sont maintenant dissipés. AlphaZero ne s’est pas amélioré davantage au cours des douze derniers mois, mais la preuve de sa supériorité s’est bien renforcée. Il fait clairement montre d’un type d’intellect que les humains n’ont jamais vue auparavant, et que nous allons avoir à méditer encore longtemps.

Les échecs par ordinateur ont fait beaucoup de chemin au cours des vingt dernières années. En 1997, le programme de jeu d’échecs d’I.B.M., Deep Blue, a réussi à battre le champion du monde humain en titre, Garry Kasparov, dans un match en six parties. Rétrospectivement, il y avait peu de mystère dans cette réalisation. Deep Blue pouvait évaluer 200 millions de positions par seconde. Il ne s’est jamais senti fatigué, n’a jamais fait d’erreur de calcul et n’a jamais oublié ce qu’il pensait un instant auparavant.

Pour le meilleur et pour le pire, il a joué comme une machine, brutalement et matériellement. Il pouvait dépasser M. Kasparov par le calcul, mais il ne pouvait pas le dépasser sur le plan de la pensée elle-même. Dans la première partie de leur match, Deep Blue a accepté avec avidité le sacrifice d’une tour par M. Kasparov pour un fou, mais a perdu la partie 16 coups plus tard. La génération actuelle des programmes d’échecs les plus forts du monde, tels que Stockfish et Komodo, joue toujours dans ce style inhumain. Ils aiment à capturer les pièces de l’adversaire. Ils ont une défense d’acier. Mais bien qu’ils soient beaucoup plus forts que n’importe quel joueur humain, ces "moteurs" d’échecs n’ont aucune réelle compréhension du jeu. Ils doivent être instruits explicitement pour ce qui touche aux principes de base des échecs. Ces principes, qui ont été raffinés au fil de décennies d’expérience de grands maîtres humains, sont programmés dans les moteurs comme des fonctions d’év

aluation complexes qui indiquent ce qu’il faut rechercher dans une position et ce qu’il faut éviter : comment évaluer le degré de sécurité du roi, l’activité des pièces, la structure dessinée par les pions, le contrôle du centre de l’échiquier, et plus encore, comment trouver le meilleur compromis entre tous ces facteurs. Les moteurs d’échecs d’aujourd’hui, inconscients de façon innée de ces principes, apparaissent comme des brutes : extrêmement rapides et forts, mais sans aucune perspicacité.

Tout cela a changé avec l’essor du machine-learning. En jouant contre lui-même et en mettant à jour son réseau neuronal au fil de son apprentissage, AlphaZero a découvert les principes des échecs par lui-même et est rapidement devenu le meilleur joueur connu. Non seulement il aurait pu facilement vaincre tous les maîtres humains les plus forts – il n’a même pas pris la peine d’essayer – mais il a écrasé Stockfish, le champion du monde d’échecs en titre par ordinateur. Dans un match de cent parties contre un moteur véritablement impressionnant, AlphaZero a remporté vingt-huit victoires et fait soixante-douze matchs nuls. Il n’a pas perdu une seule partie.

Le plus troublant, c’est qu’AlphaZero semblait être perspicace. Il a joué comme aucun ordinateur ne l’a jamais fait, intuitivement et magnifiquement, avec un style romantique et offensif. Il acceptait de sacrifier des pions et prenait des risques. Dans certaines parties, cela paralysait Stockfish et il s’est joué de lui. Lors de son attaque dans la partie n°10, AlphaZero a replacé sa reine dans le coin du plateau de jeu de son propre côté, loin du roi de Stockfish, pas là où une reine à l’offensive devrait normalement être placée.

Et cependant, cette retraite inattendue s’avéra venimeuse : peu importe comment Stockfish y répondait, ses tentatives étaient vouées à l’échec. C’était presque comme si AlphaZero attendait que Stockfish se rende compte, après des milliards de calculs intensifs bruts, à quel point sa position était vraiment désespérée, pour que la bête abandonne toute résistance et expire paisiblement, comme un taureau vaincu devant un matador. Les grands maîtres n’avaient jamais rien vu de tel. AlphaZero avait la finesse d’un virtuose et la puissance d’une machine. Il s’agissait du premier regard posé par l’humanité sur un nouveau type prodigieux d’intelligence.

Lorsque AlphaZero fut dévoilé pour la première fois, certains observateurs se sont plaints que Stockfish avait été lobotomisé en ne lui donnant pas accès à son livre des ouvertures mémorisées. Cette fois-ci, même avec son livre, il a encore été écrasé. Et quand AlphaZero s’est handicapé en donnant dix fois plus de temps à Stockfish qu’à lui pour réfléchir, il a quand même démoli la bête.

Ce qui est révélateur, c’est qu’AlphaZero a gagné en pensant plus intelligemment, pas plus vite ; il n’a examiné que 60 000 positions par seconde, contre 60 millions pour Stockfish. Il était plus avisé, sachant ce à quoi on devait penser et ce qu’on pouvait ignorer. En découvrant les principes des échecs par lui-même, AlphaZero a développé un style de jeu qui "reflète la vérité profonde" du jeu plutôt que "les priorités et les préjugés des programmeurs", a expliqué M. Kasparov dans un commentaire qui accompagne et introduit l’article dans Science.

La question est maintenant de savoir si l’apprentissage automatique peut aider les humains à découvrir des vérités similaires sur les choses qui nous tiennent vraiment à coeur : les grands problèmes non résolus de la science et de la médecine, comme le cancer et la conscience ; les énigmes du système immunitaire, les mystères du génome.

Les premiers signes sont encourageants. En août dernier, deux articles parus dans Nature Medicine ont exploré comment l’apprentissage automatique pouvait être appliqué au diagnostic médical. Dans l’un d’entre eux, des chercheurs de DeepMind se sont associés à des cliniciens du Moorfields Eye Hospital de Londres pour mettre au point un algorithme d’apprentissage profond qui pourrait classer un large éventail de pathologies de la rétine aussi précisément que le font les experts humains (l’ophtalmologie souffre en effet d’une grave pénurie d’experts à même d’interpréter les millions de scans ophtalmologiques effectués chaque année en vue d’un diagnostic ; des assistants numériques intelligents pourraient apporter une aide énorme).

L’autre article concernait un algorithme d’apprentissage machine qui décide si un tomodensitogramme (CT scan) d’un patient admis en urgence montre des signes d’un accident vasculaire cérébral (AVC), ou d’une hémorragie intracrânienne ou encore d’un autre événement neurologique critique. Pour les victimes d’AVC, chaque minute compte ; plus le traitement tarde, plus le résultat clinique se dégrade. (Les neurologistes ont ce sombre dicton: "time is brain"). Le nouvel algorithme a étiqueté ces diagnostics et d’autres diagnostics critiques avec une précision comparable à celle des experts humains – mais il l’a fait 150 fois plus rapidement. Un diagnostic plus rapide pourrait permettre aux cas les plus urgents d’être aiguillés plus tôt, avec une vérification par un radiologiste humain.

Ce qui est frustrant à propos de l’apprentissage machine, cependant, c’est que les algorithmes ne peuvent pas exprimer ce qu’ils pensent. Nous ne savons pas pourquoi ils marchent, donc nous ne savons pas si on peut leur faire confiance. AlphaZero donne l’impression d’avoir découvert quelques principes importants sur les échecs, mais il ne peut pas partager cette compréhension avec nous. Pas encore, en tout cas. En tant qu’êtres humains, nous voulons plus que des réponses. Nous voulons de la perspicacité. Voilà qui va créer à partir de maintenant une source de tension dans nos interactions avec ces ordinateurs.

De fait, en mathématiques, c’est une chose qui s’est déjà produite depuis des années. Considérez le problème mathématique du "théorème des quatre couleurs", qui défie de longue date les cerveaux des mathématiciens. Il énonce que, sous certaines contraintes raisonnables, toute carte de pays contigus puisse toujours être coloriée avec seulement quatre couleurs, en n’ayant jamais deux fois la même couleur pour des pays adjacents.

Bien que le théorème des quatre couleurs ait été prouvé en 1977 avec l’aide d’un ordinateur, aucun humain ne pouvait vérifier toutes les étapes de la démonstration. Depuis lors, la preuve a été validée et simplifiée, mais il y a encore des parties qui impliquent un calcul de force brute, du genre de celui employé par les ancêtres informatiques d’AlphaZero qui jouent aux échecs. Ce développement a gêné de nombreux mathématiciens. Ils n’avaient pas besoin d’être rassurés que le théorème des quatre couleurs était vrai ; ils le croyaient déjà. Ils voulaient comprendre pourquoi c’était vrai, et cette démonstration ne les y a pas aidés.

Mais imaginez un jour, peut-être dans un avenir pas si lointain, où AlphaZero aura évolué vers un algorithme de résolution de problèmes plus général ; appelez-le AlphaInfinity. Comme son ancêtre, il aurait une perspicacité suprême : il pourrait trouver de belles démonstrations, aussi élégantes que les parties d’échecs qu’AlphaZero jouait contre Stockfish. Et chaque démonstration révélerait pourquoi un théorème était vrai ; l’AlphaInfinity ne vous l’enfoncerait pas juste dans la tête avec une démonstration moche et ardue.

Pour les mathématiciens et les scientifiques humains, ce jour marquerait l’aube d’une nouvelle ère de perspicacité. Mais ça ne durera peut-être pas. Alors que les machines deviennent de plus en plus rapides et que les humains restent en place avec leurs neurones fonctionnant à des échelles de temps de quelques millisecondes, un autre jour viendra où nous ne pourrons plus suivre. L’aube de la perspicacité humaine peut rapidement se transformer en crépuscule.

Supposons qu’il existe des régularités ou des modèles plus profonds à découvrir – dans la façon dont les gènes sont régulés ou dont le cancer progresse ; dans l’orchestration du système immunitaire ; dans la danse des particules subatomiques. Et supposons que ces schémas puissent être prédits, mais seulement par une intelligence bien supérieure à la nôtre. Si AlphaInfinity pouvait les identifier et les comprendre, cela nous semblerait être un oracle.

Nous nous assiérions à ses pieds et écouterions attentivement. Nous ne comprendrions pas pourquoi l’oracle a toujours raison, mais nous pourrions vérifier ses calculs et ses prédictions par rapport aux expériences et aux observations, et confirmer ses révélations. La science, cette entreprise de l’homme qui le caractérise par-dessus tout, aurait réduit notre rôle à celui de spectateurs, bouches bées dans l’émerveillement et la confusion.

Peut-être qu’un jour, notre manque de perspicacité ne nous dérangerait plus. Après tout, AlphaInfinity pourrait guérir toutes nos maladies, résoudre tous nos problèmes scientifiques et faire arriver tous nos autres trains intellectuels à l’heure avec succès. Nous nous sommes assez bien débrouillés sans trop de perspicacité pendant les quelque 300.000 premières années de notre existence en tant qu’Homo sapiens. Et nous ne manquerons pas de mémoire : nous nous souviendrons avec fierté de l’âge d’or de la perspicacité humaine, cet intermède glorieux, long de quelques milliers d’années, entre un passé où nous ne pouvions rien appréhender et un avenir où nous ne pourrons rien comprendre.

Auteur: Strogatz Steven

Info: Infinite Powers : How Calculus Reveals the Secrets of the Universe, dont cet essai est adapté sur le blog de Jorion

[ singularité ]

 
Mis dans la chaine

Commentaires: 0

Ajouté à la BD par miguel