Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 912
Temps de recherche: 0.0422s

exobiologie

Les extraterrestres sont-ils là sous nos yeux ?

Difficile de détecter quelque chose sans avoir aucune idée de ce que c'est.

Cette année, plusieurs missions sont en quête de vie sur la planète rouge. Mais reconnaîtrions-nous des extraterrestres si nous les trouvions ? En juillet, trois missions non habitées se sont envolées vers Mars : de Chine (Tianwen-1), depuis les États-Unis (Mars 2020 Perseverance Rover de la Nasa) et des Émirats arabes unis (Hope). Les missions chinoise et américaine sont équipées d'atterrisseurs qui rechercheront des signes de vie actuelle ou passée sur Mars. La Nasa prévoit également d'envoyer sa sonde Europa Clipper sur la lune de Jupiter, Europa, et l'atterrisseur robotisé Dragonfly sur la lune de Saturne, Titan. Ces deux lunes sont considérées comme des terrains de chasse prometteurs pour la vie dans notre système solaire, tout comme les océans souterrains d'Encelade, la lune glacée de Saturne.

En attendant, nous pouvons désormais entrevoir la composition chimique des atmosphères des planètes qui orbitent autour d'autres étoiles (exoplanètes), dont plus de 4 000 sont aujourd'hui connues. Certains espèrent que ces études pourraient révéler d'éventuelles signatures de vie.

Mais ces recherches peuvent-elles être efficaces si nous n'avons pas une idée claire de ce qu'est la "vie" ? La définition officieuse de la Nasa est la suivante : "système chimique autonome capable d'évolution darwinienne". "La Nasa a besoin d'une définition de la vie pour savoir comment construire des détecteurs et quels types d'instruments utiliser lors de ses missions", explique le zoologiste Arik Kershenbaum, de l'université de Cambridge. Mais tout le monde ne pense pas qu'elle utilise la bonne définition.

L'astrobiologiste Lynn Rothschild, du centre de recherche Ames de la Nasa en Californie, voit une mise en garde dans l'histoire de Winnie l'ourson d'AA Milne, dans laquelle Pooh et Piglet chassent un Woozle sans savoir à quoi il ressemble et confondent leurs propres empreintes avec ses traces. "On ne peut chasser quelque chose sans avoir aucune idée de ce que c'est", dit-elle.

Le problème de la définition de la vie hante les planétologues depuis que les deux atterrisseurs Viking de la Nasa se sont posés sur Mars en 1976. Depuis, les rovers ont parcouru des dizaines de kilomètres sur les plaines martiennes mais n'ont trouvé aucun signe de vie. Mais saurions-nous la reconnaître si nous la voyions ?

Certains astrobiologistes - scientifiques qui étudient la possibilité de vie sur d'autres mondes - pensent que notre vision est trop étroite. Nous ne connaissons qu'un seul type de vie : la vie terrestre. Tous les êtres vivants sur Terre sont constitués de cellules adaptées à un environnement aquatique, utilisant une machinerie moléculaire construite à partir de protéines et codée sous forme de gènes dans l'ADN. Peu de scientifiques pensent que la vie extraterrestre - si tant est qu'elle existe - repose sur les mêmes éléments chimiques. "Il serait erroné de supposer que la biochimie qui nous est familière est celle que nous allons trouver sur d'autres planètes", déclare Kershenbaum. La surface de Titan, par exemple, est trop froide (moins 179 °C) pour contenir de l'eau liquide, mais la mission de l'atterrisseur Huygens en 2005 a révélé la présence de lacs d'un autre type, constitués d'hydrocarbures comme ceux de l'essence, principalement du méthane et de l'éthane.

Rothschild pense que les règles universelles de la chimie réduisent certaines des options. "J'ai du mal à imaginer une autre forme de vie qui ne soit pas basée sur le carbone", dit-elle. Il est donc logique de concevoir les missions planétaires de recherche de la vie en gardant cela à l'esprit. L'eau présente également "une tonne d'avantages" en tant que solvant de la vie. Même si des réactions chimiques intéressantes se produisaient dans les lacs de méthane de Titan, elles seraient fortement ralenties par les températures glaciales. La vie pourrait-elle se dérouler à un rythme aussi glacial ? Le planétologue Stuart Bartlett, de l'Institut de technologie de Californie à Pasadena, garde l'esprit ouvert. "Il pourrait y avoir des organismes flottant dans l'atmosphère de Titan qui boivent essentiellement de l'essence pour se maintenir", dit-il.

On a longtemps pensé que toute entité méritant d'être qualifiée de vivante possède des attributs qui ne dépendent pas de sa composition chimique précise. Il est toutefois très difficile de définir ces qualités générales. Les systèmes vivants - même les bactéries - sont extrêmement complexes, maintenus par des informations qui passent (dans notre cas via les gènes) entre les générations et créent une organisation. Mais il ne s'agit pas de l'ordre froid et mort des cristaux, où les atomes sont empilés selon des motifs réguliers. Il s'agit plutôt de l'ordre dynamique d'une ville ou d'une formation nuageuse, que les scientifiques qualifient de "déséquilibré" : il est constamment alimenté en énergie et ne s'installe pas dans un état statique.

Bartlett et Wong proposent une catégorie plus large appelée "lyfe", dont la vie telle que nous la connaissons n'est qu'une variante.

Lorsque James Lovelock, aujourd'hui connu pour l'hypothèse Gaia qui propose que notre planète entière soit assimilée à une entité vivante, participa à la conception des atterrisseurs Viking dans les années 1970, il suggéra de rechercher un tel déséquilibre chimique dans l'environnement - que seule la vie pourrait éventuellement maintenir sur des échelles de temps géologiques. Il s'agit plutôt de l'ordre dynamique d'une ville ou d'une formation nuageuse, que les scientifiques qualifient de "déséquilibré" : Les deux étant constamment alimentés en énergie et ne s'installent pas dans un état statique.  Mais des états de "déséquilibre ordonné" peuvent également être trouvés dans des systèmes non vivants, comme des liquides fluides, de sorte que ce seul critère ne permet pas d'identifier la vie.

Bartlett, en collaboration avec l'astrobiologiste Michael Wong de l'Université de Washington à Seattle, soutient que nous devons échapper au carcan de la pensée terrestre sur la vie. Ils proposent d'introduire une catégorie plus large appelée "lyfe" (prononcé, d'une façon étrangement typique du West Country, comme "loif"), dont la vie telle que nous la connaissons n'est qu'une variation. "Notre proposition tente de se libérer de certains des préjugés potentiels dus au fait que nous faisons partie de cette seule instanciation de lyfe", explique Bartlett. Ils suggèrent quatre critères pour la lyfe :

1. Elle puise dans les sources d'énergie de son environnement qui l'empêchent de devenir uniforme et immuable.

2. Elle connaît une croissance exponentielle (par exemple par réplication).

3. Elle peut se réguler pour rester stable dans un environnement changeant.

4. Elle apprend et se souvient des informations sur cet environnement. L'évolution darwinienne est un exemple de cet apprentissage sur des échelles de temps très longues : les gènes préservent les adaptations utiles à des circonstances particulières.

Les deux chercheurs affirment qu'il existe des systèmes "sublyfe" qui ne répondent qu'à certains de ces critères, et peut-être aussi des "superlyfe" qui en remplissent d'autres : des formes lyfe qui ont des capacités supérieures aux nôtres et qui pourraient nous regarder comme nous regardons des processus complexes mais non vivants tels que la croissance des cristaux.

"Nous espérons cette définition libère suffisamment notre imagination pour que nous ne passions pas à côté de formes de lyfe qui pourraient se cacher à la vue de tous", déclare Bartlett. Lui et Wong suggèrent que certains organismes lytiques pourraient utiliser des sources d'énergie inexploitées ici sur Terre, comme les champs magnétiques ou l'énergie cinétique, l'énergie du mouvement. "Il n'existe aucune forme de vie connue qui exploite directement l'énergie cinétique dans son métabolisme", déclare Bartlett.

Selon eux, il pourrait y avoir d'autres moyens de stocker des informations que dans des brins génétiques comme l'ADN. Les scientifiques ont, par exemple, déjà imaginé des moyens artificiels de stocker et de traiter l'information en utilisant des réseaux bidimensionnels de molécules synthétiques, comme des réseaux en damier ou des abaques. Selon Bartlett, la distinction entre "alyfe" et "non-lyfe" pourrait être floue : être "alyve" pourrait être une question de degré. Après tout, les scientifiques se disputent déjà sur la question de savoir si les virus peuvent être considérés comme tels, même si personne ne doute de leur capacité à détruire la vie.

Il est sceptique quant à la notion de la définition de travail de la Nasa selon laquelle la vie ne peut apparaître et se développer que par l'évolution darwinienne. Il affirme que même les organismes terrestres peuvent façonner leur comportement d'une manière qui ne dépend pas d'un mécanisme Darwinien, à savoir des mutations aléatoires couplées à une compétition pour les ressources qui sélectionne les mutations avantageuses. "L'évolution darwinienne existe bien sûr, mais je pense qu'elle doit être complétée par une vision plus large de l'apprentissage biologique", déclare-t-il.

L'astrobiologiste et physicienne Sara Walker, de l'Arizona State University, partage cet avis. "Il se peut que certains systèmes possèdent de nombreux attributs de la vie mais ne franchissent jamais le seuil de la vie darwinienne", dit-elle. Mais dans son nouveau livre The Zoologist's Guide to the Galaxy, Kershenbaum affirme qu'il est difficile d'imaginer un autre processus susceptible de produire des systèmes chimiques complexes dignes d'être considérés comme vivants (ou alyves). L'évolution par sélection naturelle, dit-il, suit "des principes bien définis dont nous savons qu'ils s'appliqueront non seulement sur Terre mais aussi ailleurs dans l'univers" - et il est "très confiant dans le fait qu'elle sera à l'origine de la diversité de la vie sur les planètes extraterrestres". Si c'est le cas, affirme-t-il, nous pouvons faire des hypothèses raisonnables sur d'autres attributs de ces planètes : par exemple, la vie aura un processus comme la photosynthèse pour récolter l'énergie de l'étoile mère.

Bartlett et Wong se demandent également si les choses vivantes doivent avoir des frontières physiques bien définies.

Après tout, alors que nous pourrions imaginer n'être que tout ce qui se trouve à l'intérieur de notre peau, nous dépendons d'autres organismes en nous : le micro-biote des bactéries dans nos intestins par exemple. Et certains philosophes soutiennent que notre esprit s'étend au-delà de notre cerveau et de notre corps, par exemple dans nos appareils technologiques. "Nous pensons que la vie est un processus qui se déroule probablement à l'échelle de planètes entières", déclare Bartlett. Walker convient que "la seule limite naturelle des processus vivants est la planète", ce qui rappelle l'hypothèse Gaia de Lovelock.

Mais en l'absence d'une limite pour les ingrédients moléculaires, dit Rothschild, tous les composants d'un système vivant se dilueraient dans son environnement, comme des gouttelettes d'encre dans l'eau. Et Kershenbaum affirme que des organismes distincts et délimités sont nécessaires si l'évolution est darwinienne, car ce n'est qu'alors qu'il y a quelque chose d'autre à concurrencer.

Walker pense qu'en fait Bartlett et Wong ne vont pas assez loin dans leur tentative de libérer les idées quant à une vie terracentrique. Leur notion de lyfe, dit-elle, "fait table rase de bon nombre des problèmes omniprésents dans les définitions actuelles de la vie en proposant une définition plus large basée sur les définitions existantes. Les problèmes de base restent les mêmes. Nous n'avons pas besoin de nouvelles définitions de la vie. Ce dont nous avons besoin, c'est de nouvelles théories qui s'attaquent aux principes sous-jacents qui régissent la physique du vivant dans notre univers."

Une autre possibilité d'élargir notre vision de ce que pourrait être la vie est que nous devenions capables de créer de toutes pièces, en laboratoire, des systèmes vivants totalement différents de ceux que nous connaissons. "Nous en sommes beaucoup plus proches que vous ne le pensez", déclare M. Rothschild. En fait, cela s'est peut-être déjà produit et nous ne nous en sommes pas rendu compte, ajoute-t-elle, en plaisantant à moitié. Si nous ne savons pas ce que nous cherchons, un chercheur a peut-être déjà créé une nouvelle forme de vie - et l'a jetée dans l'évier.

En fin de compte, nous ne devrions peut-être pas être trop sûrs que la vie corresponde à une quelconque définition naturelle, estime M. Rothschild. "Je crois que ce que nous avons actuellement, ce sont des définitions non naturelles de la vie, parce que nous n'avons qu'un seul point de données. Je me demande si la vie n'est pas simplement ce que nous définissons."

"Nous pourrions découvrir des systèmes si bizarres et inattendus qu'il serait ompossible de décider s'ils sont vivants ou non", dit Kershenbaum. "Mais si nous découvrons quelque chose de vraiment intéressant et complexe qui ne correspond pas tout à fait à la définition de la vie, cela restera une avancée passionnante. Nous n'allons pas l'ignorer parce que ça ne correspond pas à notre définition !"

Auteur: Ball Philip

Info: The Guardian, 5 Septembre 2020 - Are aliens hiding in plain sight?

[ dépassement conceptuel ] [ spéculations ] [ changement de paradigme ] [ révolution scientifique ] [ monade planétaire ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-animal

La conscience du Dauphin
Bien entendu, les modèles du monde ne manqueront pas de différer selon le degré où les systèmes sensoriels périphériques diffèrent.
Le travail du cerveau est en effet, au moins en partie, de construire une réalité cohérente à partir de données sensorielles spécifiques, réalité qui constitue d’ailleurs la seule connue par celui qui l’expérimente au détriment de toutes les autres.
Dans le cas du dauphin, le système nerveux est celui d’un herbivore retourné à la mer, il y a quelques millions d’années, et ne diffère donc pas fondamentalement de celui de n’importe quel autre grand mammifère.
Le monde physique en revanche, au sein duquel il évolue, nous poserait à nous, humains, d’impossibles défis. C’est pourquoi les cétacés ont développé tout à la fois des formes physiques mieux adaptées au milieu marin mais surtout tout un outillage sensoriel susceptible des les aider à survivre dans un monde humide, froid et obscur, où règnent de fortes pressions.
Faire l’expérience d’une telle subjectivité est par définition une tâche impossible. Même entre époux, entre amis, entre enfants et parents, cette connaissance ne peut s’acquérir que par le biais maladroit du discours mais jamais nous ne pourrons accéder au "goût du monde" d’une autre espèce que la nôtre.
Il se fait heureusement que nos organes sensoriels et nos structures cérébrales sont des outils communs à tous les êtres humains, ce qui nous permet de fonder l’illusion d’un univers de formes stables et tangibles, dont l’existence fait l’unanimité mais que nous sommes les seuls à percevoir comme telles.
En revanche, nous sommes génétiquement incapables de nous figurer un monde filtré par d’autres sens que les nôtres, de la même manière qu’il nous est impossible de visualiser un cube en quatre dimensions ou simplement le monde des abeilles….
"Pouvez-vous imaginer l’expérience que représente le fait d’être sans cesse corrélé à une boussole solaire ?" nous demande le neurologue H.Jerison à ce propos "L’information consiste en la triangulation des objets externes relativement à un observateur (le je) et au soleil comme point de référence. Si cette réaction devait être représentée en terme de perception, on pourrait dire que l’abeille ou la fourmi ressent de manière constante l’existence des points cardinaux au sein d’un monde tridimensionnel de type euclidien. Si notre système sensoriel était celui des hyménoptères, c’est cela la seule réalité que nous pourrions percevoir.
L’intégration de deux points de référence, le soi et le soleil, plutôt qu’un seul soi unitaire en tant qu’origine et centre d’un monde périphérique, doit certainement mener à d’autres perspectives sur les dimensions fondamentales de la réalité. Il est intéressant d’imaginer les catégories additionnelles que Kant aurait pu reconnaître en tant qu’à priori si nous avions été équipés d’un tel système de navigation!"
Les expériences de Louis Herman nous apprennent que les dauphins partagent tout de même les mêmes dimensions que nous : le haut, le bas, la gauche la droite, devant, derrière, tout cela existe chez eux mais il semble qu’ils ignorent la nuance entre les adjectifs "grand" et "petit" et qu’ils construisent leurs phrases selon un mode syntaxique particulier. Ces expériences, profondément anthropocentristes, n’offrent qu’un pâle reflet d’un monde mental autrement plus riche et foisonnant en liberté, comme le montre avec bien plus d’éclat le très étrange langage delphinien mis à jour par le chercheur russe Vladimir Markov, mais elles sont à tout le moins significatives de la nature d’une conscience "autre" qui ne s’appuie pas sur nos paramètres.
Les sens et l’Umwelt
Imaginons un instant ce que pourrait être "l’Umwelt" d’un dauphin.
Au centre d’un réseau d’informations sensorielles qu’il ré-organise sans cesse en tant qu’images du monde, pulse un noyau de conscience conscient de lui-même.
La vision
Le monde visuel du dauphin peut être comparé à celui des espèces-proies, non prédatrices, comme le lapin ou le chevreuil, en ce sens que les champs visuels de ses yeux latéraux couvrent ensemble 360° mais qu’ils ne se chevauchent pas ou très peu.
L’absence de fibres non-croisées dans le chiasma optique suggère une plus large indépendance dans le contrôle des yeux et dans l’usage de l’information qu’ils fournissent, par rapport à ce que l’on observe chez les autres mammifères. Chacun des yeux est capable de mouvements propres, indépendants de ceux de l’autre œil et une certaine focalisation frontale peut donc être obtenue.
On peine cependant à imaginer un monde dans lequel le Soi se trouve ainsi de manière constante au centre d’un champ visuel circulaire de 360°.
Le nôtre, comme on le sait, se réduit à un cône de 120°.
Notre Soi se place juste derrière le front et les yeux, en vis-à-vis de l’objet focalisé par notre regard binoculaire et dans la ligne de fuite du cône, c’est-à-dire à peu près sur la glande pinéale. On comprend mieux dès lors la fausse intuition de René Descartes.
Incapables de distinguer le vert du rouge, les yeux des dauphins n’en sont pas moins d’une sensibilité extrême à l’instar des yeux de chat, percent l’obscurité et peuvent, d’une simple torsion de la rétine, adapter leur vision aux fonds marins ou à l’air libre. Par contre, le sens du relief leur est impossible, puisqu’ils ne sont pas binoculaires.
La "quasi-olfaction"
Le goût et l’odorat sont absents en tant que tels, remplacés par la "quasi-olfaction" qui consiste à filtrer une certaine quantité d’eau au travers de l’évent et à en goûter le parfum. Un tel sens est fondamental : le dauphin s’en sert pour repérer les femelles en rut autant que pour sentir les fèces de son groupe, nuage diffus de couleur foncée expulsé de manière régulière et qui donne à l’ensemble social une "odeur" propre.
Le toucher et le sens proprioceptif
Quiconque a jamais caressé la peau satinée d’un tursiops sait à quel point ce tissu est sensible, doux et fragile. Le sens du toucher joue lui aussi un rôle essentiel dans la vie de ces mammifères nus, qui n’aiment rien tant que de rester collés les uns contre les autres et d’échanger les caresses les plus voluptueuses.
Au niveau plus profond du sens proprioceptif, la différence avec nos perceptions s’accroît cependant encore davantage : "L’Umwelt des dauphins se fonde comme tout autre sur les caractéristiques de leur environnement" déclare Jerison, "et cet univers mental représente très certainement une adaptation cognitive optimale aux exigences environnementales du monde aquatique. A cet égard, l’un des traits principaux de cet univers marin – considéré depuis notre point de vue – est notamment l’absence d’une plate-forme stable tel que les mammifères l’éprouvent en se tenant sur la terre ferme".
Ce point est important, car le sol sur lequel nous nous tenons, le rôle essentiel de la gravité dans les adaptations anatomiques de la plupart des mammifères occupe une place centrale au plan biologique mais ne sont que rarement notées au niveau de la conscience vigile. Notre intuition s’épuise en revanche lorsque nous tentons d’imaginer les adaptations perceptuelles chez certaines espèces dont les données sensorielles sont profondément différentes des nôtres, et cela d’autant plus que nous ne sommes même pas conscients de notre propre spécificité sensorielle. Les informations relatives aux forces gravitationnelles qui s’exercent sur nos corps jouent également un rôle-clé chez le dauphin, mais d’une autre manière.
Celui-ci s’oriente en effet en "s’informant" régulièrement de la position de son corps par rapport aux fonds marins, à la surface de l’eau ou à la place du soleil au moment de l’observation.
Bien que les dauphins ne disposent d’aucun sol référentiel en guise de plate-forme fixe, mais qu’ils possèdent en revanche un degré de liberté dans les trois dimensions plus important que le nôtre, le sens de l’orientation spatiale est certainement fondamental pour eux. On peut imaginer ce que les cétacés ressentent en pensant à ces appareils d’entraînement destinés aux astronautes afin de les préparer à l’apesanteur.
Ces instruments sont de gigantesques balançoires, disposant de six degrés de liberté et permettant aux candidats pour l’espace de contrôler au mieux les diverses rotations possibles de leur axe corporel aussi bien que les mouvements de propulsion linéaire.
Si nous étions dauphins, nous nous trouverions dans un monde un peu semblable à celui d’un vol spatial à gravité zéro. Il est intéressant de noter à ce propos que l’expérience de l’apesanteur a crée chez les astronautes divers problèmes liés à cet environnement, telles que nausées, vertiges, migraines, etc. mais qu’elles n’ont cependant jamais altéré leur perception "juste" des choses.
Rappelons aussi, sans nous y étendre, à quel point la gestuelle constitue un mode de communication privilégié chez les dauphins : les degrés de liberté dont leur corps dispose leur a permis d’élaborer un véritable vocabulaire d’attitudes : ventre en l’air, en oblique, corps groupés par faisceaux, rostre au sol, caudale haute, inclinée, etc., le tout agrémenté ou non d’émissions de bulles et de vocalisations.
L’audition
Mais de tous les sens dont dispose le dauphin, c’est certainement l’audition qui est le plus développé et qui atteint des capacités discriminatoires sans aucun équivalent connu. Ce système sensoriel s’est transformé au cours des millénaires en écholocation, tout à la fois outil de connaissance (le monde externe "vu" par le son) et moyen de communication (le monde interne transmis par le langage). Cette convergence fonctionnelle ne manque pas d’entraîner des conséquences étonnantes !
D’après Harry J. Jerison : "Si le spectre auditif des dauphins est plus large que le nôtre de plusieurs octaves dans les fréquences les plus élevées, la caractéristique principale de ce système auditif est bien évidemment l’écholocation. Celle-ci pourrait contribuer à conférer au monde des dauphins une dimension inhabituelle, dépassant largement les perceptions élémentaires relatives aux événements survenant à distance. En tant qu’adaptation sensori-motrice, l’écholocation partage en effet certaines caractéristiques similaires à celles du langage humain".
Rappelons brièvement en quoi consiste cette vision acoustique d’un type inusité. Le dauphin émet en permanence – dès lors qu’il se déplace et cherche sa route activement – une série de "sons explosés" extrêmement brefs (moins d’une seconde d’émission continue). Ces "clicks" ne sont pas des sons purs mais des "bruits", d’inextricables petits paquets d’ondes situés sur des fréquences de 120 à 130 Khz et d’une puissance frisant parfois les 220 décibels. Ils retentissent sous l’eau comme une grêle de minuscules coups secs et nets enchaînés l’un à l’autre en de courtes séquences.
Les clicks sont émis sous forme d’un large faisceau, qui balaie par intermittence le sol sablonneux à la façon d’un projecteur. On peut donc dire que la nuit ou sous une certaine profondeur, le dauphin ne voit que lorsqu’il éclaire le paysage de ses éclairs sonores. Les informations reçues, assez grossières, concernent l’aspect du fond marin ou une masse importante, bateau ou autre cétacé.
Supposons à présent qu’un poisson soit repéré dans ce champ de vision "stroboscopique". Puisqu’il fait nuit, l’œil ne peut confirmer l’image en mode visuel.
Lorsque la chasse commence, le dauphin resserre alors le rayon de son biosonar et le dédouble en deux faisceaux.
Plus précis, mieux ciblés les trains de click bombardent le poisson sous tous ses angles et peuvent même pénétrer dans son corps en renvoyant l’image de ses organes internes.
Les deux trains de clicks sont produits presque simultanément, l’un à 20° à gauche de la ligne du rostre et l’autre à 20° sur la droite. Les deux rayons se chevauchent au point focal (0°) et fournissent une "visiaudition" de type, cette fois, binoculaire.
Un intervalle de 80 millièmes de seconde sépare l’émission de chacun des faisceaux, de sorte qu’en calculant le léger retard d’un écho par rapport à l’autre, le dauphin peut estimer la profondeur de champ et la distance qui le sépare de chaque élément de l’objet observé.
Se rapprochant de sa proie à toute vitesse, le dauphin n’a de cesse que de conserver le contact avec elle et multiplie la fréquence et l’intensité de ses trains de clicks, comme pour maintenir le "projecteur" allumé presque en continu.
Les ondes à haute fréquence ont une portée plus courte mais fournissent en revanche une bien meilleure définition des détails. En nageant, le dauphin opère un mouvement de balayage avec la tête avant d’obtenir une image complète de sa cible, que ses organes visuels conforteront par ailleurs.
S’il veut obtenir davantage de détails encore sur son contenu, le dauphin la bombardera alors sa cible à bout portant, d’un faisceau de clicks aussi fin et précis qu’un rayon laser.
Celui-ci pénètre la matière et en estime la densité avec une incroyable précision : la nature d’un métal (zinc plutôt que cuivre) ou des variations de l’épaisseur d’un tube de l’ordre d’un millième de millimètres sont alors parfaitement perçus par cette échographie biologique.
Une telle "vision acoustique" nous sera à tout jamais inimaginable, comme la couleur rouge l’est pour l’aveugle. Néanmoins, au prix d’une comparaison grossière, on peut mettre en parallèle la pluie d’échos que perçoivent les cétacés avec les pixels que l’œil humain perçoit sur un écran de télévision. Les pixels dessinent très rapidement une image en se succédant l’un à l’autre et laissent sur la rétine du téléspectateur une série de rémanences qui figurent le mouvement et les formes. Une scène visuelle est ainsi décodée à partir d’une séquence de taches ultra rapides surgissant sur l’écran. De la même manière, une expérience éidétique similaire est sans doute générée par les données discrètes de l’écholocation (clicks).
L’information pourrait être alors parfaitement comparable à celle que l’on obtient grâce au bombardement de photons dans le système visuel, à ceci près qu’elle parviendrait par un autre canal, en l’occurrence le canal auditif.

Auteur: Internet

Info: http://www.dauphinlibre.be/dauphins-cerveau-intelligence-et-conscience-exotiques

[ comparaisons ]

 

Commentaires: 0

univers protonique

À l’intérieur du Proton, " la chose la plus complexe qu'on puisse imaginer "

La particule chargée positivement au cœur de l’atome est un objet d’une complexité indescriptible, qui change d’apparence en fonction de la manière dont elle est sondée. Nous avons tenté de relier les nombreuses faces du proton pour former l'image la plus complète à ce jour.

(image : Des chercheurs ont récemment découvert que le proton comprend parfois un quark charmé et un antiquark charmé, particules colossales puisqeu chacune est plus lourde que le proton lui-même.)

Plus d’un siècle après qu’Ernest Rutherford ait découvert la particule chargée positivement au cœur de chaque atome, les physiciens ont encore du mal à comprendre pleinement le proton.

Les professeurs de physique des lycées les décrivent comme des boules sans relief contenant chacune une unité de charge électrique positive – des feuilles parfaites pour les électrons chargés négativement qui bourdonnent autour d’elles. Les étudiants apprennent que la boule est en réalité un ensemble de trois particules élémentaires appelées quarks. Mais des décennies de recherche ont révélé une vérité plus profonde, trop bizarre pour être pleinement saisie avec des mots ou des images.

"C'est la chose la plus compliquée que l'on puisse imaginer", a déclaré Mike Williams, physicien au Massachusetts Institute of Technology. "En fait, on ne peut même pas imaginer à quel point c'est compliqué."

Le proton est un objet de mécanique quantique qui existe sous la forme d’un brouillard de probabilités jusqu’à ce qu’une expérience l’oblige à prendre une forme concrète. Et ses formes diffèrent radicalement selon la manière dont les chercheurs mettent en place leur expérience. Relier les nombreux visages de la particule a été l’œuvre de plusieurs générations. "Nous commençons tout juste à comprendre ce système de manière complète", a déclaré Richard Milner , physicien nucléaire au MIT.

Alors que la poursuite se poursuit, les secrets du proton ne cessent de se dévoiler. Plus récemment, une analyse monumentale de données publiée en août a révélé que le proton contient des traces de particules appelées quarks charmés, plus lourdes que le proton lui-même.

Le proton " a été une leçon d’humilité pour les humains ", a déclaré Williams. " Chaque fois qu'on pense pouvoir maîtriser le sujet, il nous envoie des balles à trajectoires courbées (en référence aux Pitchers du baseball)

Récemment, Milner, en collaboration avec Rolf Ent du Jefferson Lab, les cinéastes du MIT Chris Boebel et Joe McMaster et l'animateur James LaPlante, ont entrepris de transformer un ensemble d'intrigues obscures qui compilent les résultats de centaines d'expériences en une série d'animations de la forme -changement de proton. Nous avons intégré leurs animations dans notre propre tentative de dévoiler ses secrets.

Ouvrir le proton

La preuve que le proton contient de telles multitudes est venue du Stanford Linear Accelerator Center (SLAC) en 1967. Dans des expériences antérieures, les chercheurs l'avaient bombardé d'électrons et les avaient regardés ricocher comme des boules de billard. Mais le SLAC pouvait projeter des électrons avec plus de force, et les chercheurs ont constaté qu'ils rebondissaient différemment. Les électrons frappaient le proton assez fort pour le briser – un processus appelé diffusion inélastique profonde – et rebondissaient sur des fragments ponctuels du proton appelés quarks. "Ce fut la première preuve de l'existence réelle des quarks", a déclaré Xiaochao Zheng , physicien à l'Université de Virginie.

Après la découverte du SLAC, qui remporta le prix Nobel de physique en 1990, l'examen minutieux du proton s'est intensifié. Les physiciens ont réalisé à ce jour des centaines d’expériences de diffusion. Ils déduisent divers aspects de l'intérieur de l'objet en ajustant la force avec laquelle ils le bombardent et en choisissant les particules dispersées qu'ils collectent par la suite.

En utilisant des électrons de plus haute énergie, les physiciens peuvent découvrir des caractéristiques plus fines du proton cible. De cette manière, l’énergie électronique définit le pouvoir de résolution maximal d’une expérience de diffusion profondément inélastique. Des collisionneurs de particules plus puissants offrent une vision plus nette du proton.

Les collisionneurs à plus haute énergie produisent également un plus large éventail de résultats de collision, permettant aux chercheurs de choisir différents sous-ensembles d'électrons sortants à analyser. Cette flexibilité s'est avérée essentielle pour comprendre les quarks, qui se déplacent à l'intérieur du proton avec différentes impulsions.

En mesurant l'énergie et la trajectoire de chaque électron diffusé, les chercheurs peuvent déterminer s'il a heurté un quark transportant une grande partie de l'impulsion totale du proton ou juste une infime partie. Grâce à des collisions répétées, ils peuvent effectuer quelque chose comme un recensement, déterminant si l'impulsion du proton est principalement liée à quelques quarks ou répartie sur plusieurs.

(Illustration qui montre les apparences du proton en fonction des types de collisions)

Même les collisions de division de protons du SLAC étaient douces par rapport aux normes actuelles. Lors de ces événements de diffusion, les électrons jaillissaient souvent d'une manière suggérant qu'ils s'étaient écrasés sur des quarks transportant un tiers de l'impulsion totale du proton. Cette découverte correspond à une théorie de Murray Gell-Mann et George Zweig, qui affirmaient en 1964 qu'un proton était constitué de trois quarks.

Le " modèle des quarks " de Gell-Mann et Zweig reste une façon élégante d'imaginer le proton. Il possède deux quarks " up " avec des charges électriques de +2/3 chacun et un quark " down " avec une charge de −1/3, pour une charge totale de protons de +1.

(Image mobile : Trois quarks sont présents dans cette animation basée sur les données.)

Mais le modèle avec des quarks est une simplification excessive qui présente de sérieuses lacunes.

Qui échoue, par exemple, lorsqu'il s'agit du spin d'un proton, une propriété quantique analogue au moment cinétique. Le proton possède une demi-unité de spin, tout comme chacun de ses quarks up et down. Les physiciens ont initialement supposé que — dans un calcul faisant écho à la simple arithmétique de charge — les demi-unités des deux quarks up moins celle du quark down devaient être égales à une demi-unité pour le proton dans son ensemble. Mais en 1988, la Collaboration européenne sur les muons a rapporté que la somme des spins des quarks était bien inférieure à la moitié. De même, les masses de deux quarks up et d’un quark down ne représentent qu’environ 1 % de la masse totale du proton. Ces déficits ont fait ressortir un point que les physiciens commençaient déjà à comprendre : le proton est bien plus que trois quarks.

Beaucoup plus que trois quarks

L'accélérateur annulaire de hadrons et d'électrons (HERA), qui a fonctionné à Hambourg, en Allemagne, de 1992 à 2007, a projeté des électrons sur des protons avec une force environ mille fois supérieure à celle du SLAC. Dans les expériences HERA, les physiciens ont pu sélectionner les électrons qui avaient rebondi sur des quarks à impulsion extrêmement faible, y compris ceux transportant aussi peu que 0,005 % de l'impulsion totale du proton. Et ils les ont détectés : Les électrons d'HERA ont rebondi sur un maelström de quarks à faible dynamique et de leurs contreparties d'antimatière, les antiquarks.

(Photo image animée : De nombreux quarks et antiquarks bouillonnent dans une " mer " de particules bouillonnantes."

Les résultats ont confirmé une théorie sophistiquée et farfelue qui avait alors remplacé le modèle des quarks de Gell-Mann et Zweig. Développée dans les années 1970, il s’agissait d’une théorie quantique de la " force forte " qui agit entre les quarks. La théorie décrit les quarks comme étant liés par des particules porteuses de force appelées gluons. Chaque quark et chaque gluon possède l'un des trois types de charges "colorées ", étiquetées rouge, verte et bleue ; ces particules chargées de couleur se tirent naturellement les unes sur les autres et forment un groupe – tel qu’un proton – dont les couleurs s’additionnent pour former un blanc neutre. La théorie colorée est devenue connue sous le nom de chromodynamique quantique, ou QCD.

Selon cette QCD, les gluons peuvent capter des pics d’énergie momentanés. Avec cette énergie, un gluon se divise en un quark et un antiquark – chacun portant juste un tout petit peu d’impulsion – avant que la paire ne s’annihile et ne disparaisse. C'est cette " mer " de gluons, de quarks et d'antiquarks transitoires qu'HERA, avec sa plus grande sensibilité aux particules de faible impulsion, a détecté de première main.

HERA a également recueilli des indices sur ce à quoi ressemblerait le proton dans des collisionneurs plus puissants. Alors que les physiciens ajustaient HERA pour rechercher des quarks à faible impulsion, ces quarks – qui proviennent des gluons – sont apparus en nombre de plus en plus grand. Les résultats suggèrent que dans des collisions à énergie encore plus élevée, le proton apparaîtrait comme un nuage composé presque entièrement de gluons. (Image)

Les gluons abondent sous une forme semblable à un nuage.

Ce pissenlit de gluon est exactement ce que prédit la QCD. "Les données HERA sont une preuve expérimentale directe que la QCD décrit la nature", a déclaré Milner.

Mais la victoire de la jeune théorie s'est accompagnée d'une pilule amère : alors que la QCD décrivait magnifiquement la danse des quarks et des gluons à durée de vie courte révélée par les collisions extrêmes d'HERA, la théorie est inutile pour comprendre les trois quarks à longue durée de vie observés suite à un plus léger bombardement du SLAC.

Les prédictions de QCD ne sont faciles à comprendre que lorsque la force forte est relativement faible. Et la force forte ne s'affaiblit que lorsque les quarks sont extrêmement proches les uns des autres, comme c'est le cas dans les paires quark-antiquark de courte durée. Frank Wilczek, David Gross et David Politzer ont identifié cette caractéristique déterminante de la QCD en 1973, remportant le prix Nobel 31 ans plus tard.

Mais pour des collisions plus douces comme celle du SLAC, où le proton agit comme trois quarks qui gardent mutuellement leurs distances, ces quarks s'attirent suffisamment fortement les uns les autres pour que les calculs de QCD deviennent impossibles. Ainsi, la tâche de démystifier plus loin une vision du proton à trois quarks incombe en grande partie aux expérimentateurs. (Les chercheurs qui mènent des " expériences numériques ", dans lesquelles les prédictions QCD sont simulées sur des superordinateurs, ont également apporté des contributions clés .) Et c'est dans ce genre d' images à basse résolution que les physiciens continuent de trouver des surprises.

Une charmante nouvelle approche

Récemment, une équipe dirigée par Juan Rojo de l'Institut national de physique subatomique des Pays-Bas et de l'Université VU d'Amsterdam a analysé plus de 5 000 instantanés de protons pris au cours des 50 dernières années, en utilisant l'apprentissage automatique pour déduire les mouvements des quarks et des gluons à l'intérieur du proton via une procédure qui évite les conjectures théoriques.

Ce nouvel examen a détecté un flou en arrière-plan dans les images qui avait échappé aux chercheurs antérieurs. Dans des collisions relativement douces, juste capables d'ouvrir à peine le proton, la majeure partie de l'impulsion était enfermée dans les trois quarks habituels : deux ups et un down. Mais une petite quantité d’impulsion semble provenir d’un quark " charmé " et d’un antiquark charmé – particules élémentaires colossales dont chacune dépasse de plus d’un tiers le proton entier.

(Image mobie : Le proton agit parfois comme une " molécule " de cinq quarks.)

Ces charmés de courte durée apparaissent fréquemment dans le panorama " mer des quarks " du proton (les gluons peuvent se diviser en six types de quarks différents s'ils ont suffisamment d'énergie). Mais les résultats de Rojo et de ses collègues suggèrent que les charmés ont une présence plus permanente, ce qui les rend détectables lors de collisions plus douces. Dans ces collisions, le proton apparaît comme un mélange quantique, ou superposition, d'états multiples : un électron rencontre généralement les trois quarks légers. Mais il rencontrera occasionnellement une " molécule " plus rare de cinq quarks, comme un quark up, down et charmé regroupés d'un côté et un quark up et un antiquark charmé de l'autre.

Des détails aussi subtils sur la composition du proton pourraient avoir des conséquences. Au Grand collisionneur de hadrons, les physiciens recherchent de nouvelles particules élémentaires en frappant ensemble des protons à grande vitesse et en observant ce qui en ressort ; Pour comprendre les résultats, les chercheurs doivent commencer par savoir ce que contient un proton. L’apparition occasionnelle de quarks charmés géants rendrait impossible la production de particules plus exotiques.

Et lorsque des protons appelés rayons cosmiques déferlent ici depuis l'espace et percutent les protons de l'atmosphère terrestre, des quarks charmés apparaissant au bon moment inonderaient la Terre de neutrinos extra-énergétiques, ont calculé les chercheurs en 2021. Cela pourrait dérouter les observateurs à la recherche de neutrinos à haute énergie provenant de tout le cosmos.

La collaboration de Rojo prévoit de poursuivre l'exploration du proton en recherchant un déséquilibre entre les quarks charmés et les antiquarks. Et des constituants plus lourds, comme le quark top, pourraient faire des apparitions encore plus rares et plus difficiles à détecter.

Les expériences de nouvelle génération rechercheront des fonctionnalités encore plus inconnues. Les physiciens du Laboratoire national de Brookhaven espèrent lancer le collisionneur électron-ion dans les années 2030 et reprendre là où HERA s'est arrêté, en prenant des instantanés à plus haute résolution qui permettront les premières reconstructions 3D du proton. L'EIC utilisera également des électrons en rotation pour créer des cartes détaillées des spins des quarks et des gluons internes, tout comme le SLAC et HERA ont cartographié leurs impulsions. Cela devrait aider les chercheurs à enfin déterminer l'origine du spin du proton et à répondre à d'autres questions fondamentales concernant cette particule déroutante qui constitue l'essentiel de notre monde quotidien.

 

Auteur: Internet

Info: https://www.quantamagazine.org/ - Charlie Bois, 19 octobre 2022

[ univers subatomique ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-machine

Comment l'IA comprend des trucs que personne ne lui lui a appris

Les chercheurs peinent à comprendre comment les modèles d'Intelligence artificielle, formés pour perroquetter les textes sur Internet, peuvent effectuer des tâches avancées comme coder, jouer à des jeux ou essayer de rompre un mariage.

Personne ne sait encore comment ChatGPT et ses cousins ​​de l'intelligence artificielle vont transformer le monde, en partie parce que personne ne sait vraiment ce qui se passe à l'intérieur. Certaines des capacités de ces systèmes vont bien au-delà de ce pour quoi ils ont été formés, et même leurs inventeurs ne savent pas pourquoi. Un nombre croissant de tests suggèrent que ces systèmes d'IA développent des modèles internes du monde réel, tout comme notre propre cerveau le fait, bien que la technique des machines soit différente.

"Tout ce que nous voulons faire avec ces systèmes pour les rendre meilleurs ou plus sûrs ou quelque chose comme ça me semble une chose ridicule à demander  si nous ne comprenons pas comment ils fonctionnent", déclare Ellie Pavlick de l'Université Brown,  un des chercheurs travaillant à combler ce vide explicatif.

À un certain niveau, elle et ses collègues comprennent parfaitement le GPT (abréviation de generative pretrained transformer) et d'autres grands modèles de langage, ou LLM. Des modèles qui reposent sur un système d'apprentissage automatique appelé réseau de neurones. De tels réseaux ont une structure vaguement calquée sur les neurones connectés du cerveau humain. Le code de ces programmes est relativement simple et ne remplit que quelques pages. Il met en place un algorithme d'autocorrection, qui choisit le mot le plus susceptible de compléter un passage sur la base d'une analyse statistique laborieuse de centaines de gigaoctets de texte Internet. D'autres algorithmes auto-apprenants supplémentaire garantissant que le système présente ses résultats sous forme de dialogue. En ce sens, il ne fait que régurgiter ce qu'il a appris, c'est un "perroquet stochastique", selon les mots d'Emily Bender, linguiste à l'Université de Washington. Mais les LLM ont également réussi à réussir l'examen pour devenir avocat, à expliquer le boson de Higgs en pentamètre iambique (forme de poésie contrainte) ou à tenter de rompre le mariage d'un utilisateurs. Peu de gens s'attendaient à ce qu'un algorithme d'autocorrection assez simple acquière des capacités aussi larges.

Le fait que GPT et d'autres systèmes d'IA effectuent des tâches pour lesquelles ils n'ont pas été formés, leur donnant des "capacités émergentes", a surpris même les chercheurs qui étaient généralement sceptiques quant au battage médiatique sur les LLM. "Je ne sais pas comment ils le font ou s'ils pourraient le faire plus généralement comme le font les humains, mais tout ça mes au défi mes pensées sur le sujet", déclare Melanie Mitchell, chercheuse en IA à l'Institut Santa Fe.

"C'est certainement bien plus qu'un perroquet stochastique, qui auto-construit sans aucun doute une certaine représentation du monde, bien que je ne pense pas que ce soit  vraiment de la façon dont les humains construisent un modèle de monde interne", déclare Yoshua Bengio, chercheur en intelligence artificielle à l'université de Montréal.

Lors d'une conférence à l'Université de New York en mars, le philosophe Raphaël Millière de l'Université de Columbia a offert un autre exemple à couper le souffle de ce que les LLM peuvent faire. Les modèles avaient déjà démontré leur capacité à écrire du code informatique, ce qui est impressionnant mais pas trop surprenant car il y a tellement de code à imiter sur Internet. Millière est allé plus loin en montrant que le GPT peut aussi réaliser du code. Le philosophe a tapé un programme pour calculer le 83e nombre de la suite de Fibonacci. "Il s'agit d'un raisonnement en plusieurs étapes d'un très haut niveau", explique-t-il. Et le robot a réussi. Cependant, lorsque Millière a demandé directement le 83e nombre de Fibonacci, GPT s'est trompé, ce qui suggère que le système ne se contentait pas de répéter ce qui se disait sur l'internet. Ce qui suggère que le système ne se contente pas de répéter ce qui se dit sur Internet, mais qu'il effectue ses propres calculs pour parvenir à la bonne réponse.

Bien qu'un LLM tourne sur un ordinateur, il n'en n'est pas un lui-même. Il lui manque des éléments de calcul essentiels, comme sa propre mémoire vive. Reconnaissant tacitement que GPT seul ne devrait pas être capable d'exécuter du code, son inventeur, la société technologique OpenAI, a depuis introduit un plug-in spécialisé -  outil que ChatGPT peut utiliser pour répondre à une requête - qui remédie à cela. Mais ce plug-in n'a pas été utilisé dans la démonstration de Millière. Au lieu de cela, ce dernier suppose plutôt que la machine a improvisé une mémoire en exploitant ses mécanismes d'interprétation des mots en fonction de leur contexte -  situation similaire à la façon dont la nature réaffecte des capacités existantes à de nouvelles fonctions.

Cette capacité impromptue démontre que les LLM développent une complexité interne qui va bien au-delà d'une analyse statistique superficielle. Les chercheurs constatent que ces systèmes semblent parvenir à une véritable compréhension de ce qu'ils ont appris. Dans une étude présentée la semaine dernière à la Conférence internationale sur les représentations de l'apprentissage (ICLR), le doctorant Kenneth Li de l'Université de Harvard et ses collègues chercheurs en intelligence artificielle, Aspen K. Hopkins du Massachusetts Institute of Technology, David Bau de la Northeastern University et Fernanda Viégas , Hanspeter Pfister et Martin Wattenberg, tous à Harvard, ont créé leur propre copie plus petite du réseau neuronal GPT afin de pouvoir étudier son fonctionnement interne. Ils l'ont entraîné sur des millions de matchs du jeu de société Othello en alimentant de longues séquences de mouvements sous forme de texte. Leur modèle est devenu un joueur presque parfait.

Pour étudier comment le réseau de neurones encodait les informations, ils ont adopté une technique que Bengio et Guillaume Alain, également de l'Université de Montréal, ont imaginée en 2016. Ils ont créé un réseau de "sondes" miniatures pour analyser le réseau principal couche par couche. Li compare cette approche aux méthodes des neurosciences. "C'est comme lorsque nous plaçons une sonde électrique dans le cerveau humain", dit-il. Dans le cas de l'IA, la sonde a montré que son "activité neuronale" correspondait à la représentation d'un plateau de jeu d'Othello, bien que sous une forme alambiquée. Pour confirmer ce résultat, les chercheurs ont inversé la sonde afin d'implanter des informations dans le réseau, par exemple en remplaçant l'un des marqueurs noirs du jeu par un marqueur blanc. "En fait, nous piratons le cerveau de ces modèles de langage", explique Li. Le réseau a ajusté ses mouvements en conséquence. Les chercheurs ont conclu qu'il jouait à Othello à peu près comme un humain : en gardant un plateau de jeu dans son "esprit" et en utilisant ce modèle pour évaluer les mouvements. Li pense que le système apprend cette compétence parce qu'il s'agit de la description la plus simple et efficace de ses données pour l'apprentissage. "Si l'on vous donne un grand nombre de scripts de jeu, essayer de comprendre la règle qui les sous-tend est le meilleur moyen de les comprimer", ajoute-t-il.

Cette capacité à déduire la structure du monde extérieur ne se limite pas à de simples mouvements de jeu ; il apparaît également dans le dialogue. Belinda Li (aucun lien avec Kenneth Li), Maxwell Nye et Jacob Andreas, tous au MIT, ont étudié des réseaux qui jouaient à un jeu d'aventure textuel. Ils ont introduit des phrases telles que "La clé est dans le coeur du trésor", suivies de "Tu prends la clé". À l'aide d'une sonde, ils ont constaté que les réseaux encodaient en eux-mêmes des variables correspondant à "coeur" et "Tu", chacune avec la propriété de posséder ou non une clé, et mettaient à jour ces variables phrase par phrase. Le système n'a aucun moyen indépendant de savoir ce qu'est une boîte ou une clé, mais il a acquis les concepts dont il avait besoin pour cette tâche."

"Une représentation de cette situation est donc enfouie dans le modèle", explique Belinda Li.

Les chercheurs s'émerveillent de voir à quel point les LLM sont capables d'apprendre du texte. Par exemple, Pavlick et sa doctorante d'alors, l'étudiante Roma Patel, ont découvert que ces réseaux absorbent les descriptions de couleur du texte Internet et construisent des représentations internes de la couleur. Lorsqu'ils voient le mot "rouge", ils le traitent non seulement comme un symbole abstrait, mais comme un concept qui a une certaine relation avec le marron, le cramoisi, le fuchsia, la rouille, etc. Démontrer cela fut quelque peu délicat. Au lieu d'insérer une sonde dans un réseau, les chercheurs ont étudié sa réponse à une série d'invites textuelles. Pour vérifier si le systhème ne faisait pas simplement écho à des relations de couleur tirées de références en ligne, ils ont essayé de le désorienter en lui disant que le rouge est en fait du vert - comme dans la vieille expérience de pensée philosophique où le rouge d'une personne correspond au vert d'une autre. Plutôt que répéter une réponse incorrecte, les évaluations de couleur du système ont évolué de manière appropriée afin de maintenir les relations correctes.

Reprenant l'idée que pour remplir sa fonction d'autocorrection, le système recherche la logique sous-jacente de ses données d'apprentissage, le chercheur en apprentissage automatique Sébastien Bubeck de Microsoft Research suggère que plus la gamme de données est large, plus les règles du système faire émerger sont générales. "Peut-être que nous nous constatons un tel bond en avant parce que nous avons atteint une diversité de données suffisamment importante pour que le seul principe sous-jacent à toutes ces données qui demeure est que des êtres intelligents les ont produites... Ainsi la seule façon pour le modèle d'expliquer toutes ces données est de devenir intelligent lui-même".

En plus d'extraire le sens sous-jacent du langage, les LLM sont capables d'apprendre en temps réel. Dans le domaine de l'IA, le terme "apprentissage" est généralement réservé au processus informatique intensif dans lequel les développeurs exposent le réseau neuronal à des gigaoctets de données et ajustent petit à petit ses connexions internes. Lorsque vous tapez une requête dans ChatGPT, le réseau devrait être en quelque sorte figé et, contrairement à l'homme, ne devrait pas continuer à apprendre. Il fut donc surprenant de constater que les LLM apprennent effectivement à partir des invites de leurs utilisateurs, une capacité connue sous le nom d'"apprentissage en contexte". "Il s'agit d'un type d'apprentissage différent dont on ne soupçonnait pas l'existence auparavant", explique Ben Goertzel, fondateur de la société d'IA SingularityNET.

Un exemple de la façon dont un LLM apprend vient de la façon dont les humains interagissent avec les chatbots tels que ChatGPT. Vous pouvez donner au système des exemples de la façon dont vous voulez qu'il réponde, et il obéira. Ses sorties sont déterminées par les derniers milliers de mots qu'il a vus. Ce qu'il fait, étant donné ces mots, est prescrit par ses connexions internes fixes - mais la séquence de mots offre néanmoins une certaine adaptabilité. Certaines personnes utilisent le jailbreak à des fins sommaires, mais d'autres l'utilisent pour obtenir des réponses plus créatives. "Il répondra mieux aux questions scientifiques, je dirais, si vous posez directement la question, sans invite spéciale de jailbreak, explique William Hahn, codirecteur du laboratoire de perception de la machine et de robotique cognitive à la Florida Atlantic University. "Sans il sera un meilleur universitaire." (Comme son nom l'indique une invite jailbreak -prison cassée-, invite à  moins délimiter-verrouiller les fonctions de recherche et donc à les ouvrir, avec les risques que ça implique) .

Un autre type d'apprentissage en contexte se produit via l'incitation à la "chaîne de pensée", ce qui signifie qu'on demande au réseau d'épeler chaque étape de son raisonnement - manière de faire qui permet de mieux résoudre les problèmes de logique ou d'arithmétique en passant par plusieurs étapes. (Ce qui rend l'exemple de Millière si surprenant  puisque le réseau a trouvé le nombre de Fibonacci sans un tel encadrement.)

En 2022, une équipe de Google Research et de l'École polytechnique fédérale de Zurich - Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev, Andrey Zhmoginov et Max Vladymyrov - a montré que l'apprentissage en contexte suit la même procédure de calcul de base que l'apprentissage standard, connue sous le nom de descente de gradient". 

Cette procédure n'était pas programmée ; le système l'a découvert sans aide. "C'est probablement une compétence acquise", déclare Blaise Agüera y Arcas, vice-président de Google Research. De fait il pense que les LLM peuvent avoir d'autres capacités latentes que personne n'a encore découvertes. "Chaque fois que nous testons une nouvelle capacité que nous pouvons quantifier, nous la trouvons", dit-il.

Bien que les LLM aient suffisamment d'angles morts et autres défauts pour ne pas être qualifiés d'intelligence générale artificielle, ou AGI - terme désignant une machine qui atteint l'ingéniosité du cerveau animal - ces capacités émergentes suggèrent à certains chercheurs que les entreprises technologiques sont plus proches de l'AGI que même les optimistes ne l'avaient deviné. "Ce sont des preuves indirectes que nous en sommes probablement pas si loin", a déclaré Goertzel en mars lors d'une conférence sur le deep learning à la Florida Atlantic University. Les plug-ins d'OpenAI ont donné à ChatGPT une architecture modulaire un peu comme celle du cerveau humain. "La combinaison de GPT-4 [la dernière version du LLM qui alimente ChatGPT] avec divers plug-ins pourrait être une voie vers une spécialisation des fonctions semblable à celle de l'homme", déclare Anna Ivanova, chercheuse au M.I.T.

Dans le même temps, les chercheurs s'inquiètent de voir leur capacité à étudier ces systèmes s'amenuiser. OpenAI n'a pas divulgué les détails de la conception et de l'entraînement de GPT-4, en partie du à la concurrence avec Google et d'autres entreprises, sans parler des autres pays. "Il y aura probablement moins de recherche ouverte de la part de l'industrie, et les choses seront plus cloisonnées et organisées autour de la construction de produits", déclare Dan Roberts, physicien théoricien au M.I.T., qui applique les techniques de sa profession à la compréhension de l'IA.

Ce manque de transparence ne nuit pas seulement aux chercheurs, il entrave également les efforts qui visent à comprendre les répercussions sociales de l'adoption précipitée de la technologie de l'IA. "La transparence de ces modèles est la chose la plus importante pour garantir la sécurité", affirme M. Mitchell.

Auteur: Musser Georges

Info: https://www.scientificamerican.com,  11 mai 2023. *algorithme d'optimisation utilisé dans l'apprentissage automatique et les problèmes d'optimisation. Il vise à minimiser ou à maximiser une fonction en ajustant ses paramètres de manière itérative. L'algorithme part des valeurs initiales des paramètres et calcule le gradient de la fonction au point actuel. Les paramètres sont ensuite mis à jour dans la direction du gradient négatif (pour la minimisation) ou positif (pour la maximisation), multiplié par un taux d'apprentissage. Ce processus est répété jusqu'à ce qu'un critère d'arrêt soit rempli. La descente de gradient est largement utilisée dans la formation des modèles d'apprentissage automatique pour trouver les valeurs optimales des paramètres qui minimisent la différence entre les résultats prédits et les résultats réels. Trad et adaptation Mg

[ singularité technologique ] [ versatilité sémantique ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-machine

Une nouvelle approche du calcul réinvente l'intelligence artificielle

Par l'imprégnation d'énormes vecteurs de sens sémantique, nous pouvons amener les machines à raisonner de manière plus abstraite et plus efficace qu'auparavant.

M
algré le succès retentissant de ChatGPT et d'autres grands modèles de langage, les réseaux de neurones artificiels (ANN) qui sous-tendent ces systèmes pourraient être sur la mauvaise voie.

D'une part, les ANN sont "super gourmands en énergie", a déclaré Cornelia Fermüller , informaticienne à l'Université du Maryland. "Et l'autre problème est [leur] manque de transparence." De tels systèmes sont si compliqués que personne ne comprend vraiment ce qu'ils font, ou pourquoi ils fonctionnent si bien. Ceci, à son tour, rend presque impossible de les amener à raisonner par analogie, ce que font les humains - en utilisant des symboles pour les objets, les idées et les relations entre eux.

Ces lacunes proviennent probablement de la structure actuelle des RNA et de leurs éléments constitutifs : les neurones artificiels individuels. Chaque neurone reçoit des entrées, effectue des calculs et produit des sorties. Les RNA modernes sont des réseaux élaborés de ces unités de calcul, formés pour effectuer des tâches spécifiques.

Pourtant, les limites des RNA sont évidentes depuis longtemps. Considérez, par exemple, un ANN qui sépare les cercles et les carrés. Une façon de le faire est d'avoir deux neurones dans sa couche de sortie, un qui indique un cercle et un qui indique un carré. Si vous voulez que votre ANN discerne également la couleur de la forme - bleu ou rouge - vous aurez besoin de quatre neurones de sortie : un pour le cercle bleu, le carré bleu, le cercle rouge et le carré rouge. Plus de fonctionnalités signifie encore plus de neurones.

Cela ne peut pas être la façon dont notre cerveau perçoit le monde naturel, avec toutes ses variations. "Vous devez proposer que, eh bien, vous avez un neurone pour toutes les combinaisons", a déclaré Bruno Olshausen , neuroscientifique à l'Université de Californie à Berkeley. "Donc, vous auriez dans votre cerveau, [disons,] un détecteur Volkswagen violet."

Au lieu de cela, Olshausen et d'autres soutiennent que l'information dans le cerveau est représentée par l'activité de nombreux neurones. Ainsi, la perception d'une Volkswagen violette n'est pas codée comme les actions d'un seul neurone, mais comme celles de milliers de neurones. Le même ensemble de neurones, tirant différemment, pourrait représenter un concept entièrement différent (une Cadillac rose, peut-être).

C'est le point de départ d'une approche radicalement différente de l'informatique connue sous le nom d'informatique hyperdimensionnelle. La clé est que chaque élément d'information, comme la notion d'une voiture, ou sa marque, son modèle ou sa couleur, ou tout cela ensemble, est représenté comme une seule entité : un vecteur hyperdimensionnel.

Un vecteur est simplement un tableau ordonné de nombres. Un vecteur 3D, par exemple, comprend trois nombres : les coordonnées x , y et z d'un point dans l'espace 3D. Un vecteur hyperdimensionnel, ou hypervecteur, pourrait être un tableau de 10 000 nombres, par exemple, représentant un point dans un espace à 10 000 dimensions. Ces objets mathématiques et l'algèbre pour les manipuler sont suffisamment flexibles et puissants pour amener l'informatique moderne au-delà de certaines de ses limites actuelles et favoriser une nouvelle approche de l'intelligence artificielle.

"C'est ce qui m'a le plus enthousiasmé, pratiquement de toute ma carrière", a déclaré Olshausen. Pour lui et pour beaucoup d'autres, l'informatique hyperdimensionnelle promet un nouveau monde dans lequel l'informatique est efficace et robuste, et les décisions prises par les machines sont entièrement transparentes.

Entrez dans les espaces de grande dimension

Pour comprendre comment les hypervecteurs rendent le calcul possible, revenons aux images avec des cercles rouges et des carrés bleus. Nous avons d'abord besoin de vecteurs pour représenter les variables SHAPE et COLOR. Ensuite, nous avons également besoin de vecteurs pour les valeurs pouvant être affectées aux variables : CERCLE, CARRÉ, BLEU et ROUGE.

Les vecteurs doivent être distincts. Cette distinction peut être quantifiée par une propriété appelée orthogonalité, ce qui signifie être à angle droit. Dans l'espace 3D, il existe trois vecteurs orthogonaux entre eux : un dans la direction x , un autre dans la direction y et un troisième dans la direction z . Dans un espace à 10 000 dimensions, il existe 10 000 vecteurs mutuellement orthogonaux.

Mais si nous permettons aux vecteurs d'être presque orthogonaux, le nombre de ces vecteurs distincts dans un espace de grande dimension explose. Dans un espace à 10 000 dimensions, il existe des millions de vecteurs presque orthogonaux.

Créons maintenant des vecteurs distincts pour représenter FORME, COULEUR, CERCLE, CARRÉ, BLEU et ROUGE. Parce qu'il y a tellement de vecteurs presque orthogonaux possibles dans un espace de grande dimension, vous pouvez simplement assigner six vecteurs aléatoires pour représenter les six éléments ; ils sont presque garantis d'être presque orthogonaux. "La facilité de créer des vecteurs presque orthogonaux est une raison majeure d'utiliser la représentation hyperdimensionnelle", a écrit Pentti Kanerva , chercheur au Redwood Center for Theoretical Neuroscience de l'Université de Californie à Berkeley, dans un article influent de 2009.

L'article s'appuyait sur des travaux effectués au milieu des années 1990 par Kanerva et Tony Plate, alors étudiant au doctorat avec Geoff Hinton à l'Université de Toronto. Les deux ont développé indépendamment l'algèbre pour manipuler les hypervecteurs et ont fait allusion à son utilité pour le calcul en haute dimension.

Étant donné nos hypervecteurs pour les formes et les couleurs, le système développé par Kanerva et Plate nous montre comment les manipuler à l'aide de certaines opérations mathématiques. Ces actions correspondent à des manières de manipuler symboliquement des concepts.

La première opération est la multiplication. C'est une façon de combiner les idées. Par exemple, multiplier le vecteur FORME par le vecteur CERCLE lie les deux en une représentation de l'idée "LA FORME est CERCLE". Ce nouveau vecteur "lié" est presque orthogonal à la fois à SHAPE et à CIRCLE. Et les composants individuels sont récupérables - une caractéristique importante si vous souhaitez extraire des informations à partir de vecteurs liés. Étant donné un vecteur lié qui représente votre Volkswagen, vous pouvez dissocier et récupérer le vecteur pour sa couleur : VIOLET.

La deuxième opération, l'addition, crée un nouveau vecteur qui représente ce qu'on appelle une superposition de concepts. Par exemple, vous pouvez prendre deux vecteurs liés, "SHAPE is CIRCLE" et "COLOR is RED", et les additionner pour créer un vecteur qui représente une forme circulaire de couleur rouge. Là encore, le vecteur superposé peut être décomposé en ses constituants.

La troisième opération est la permutation ; cela implique de réorganiser les éléments individuels des vecteurs. Par exemple, si vous avez un vecteur tridimensionnel avec des valeurs étiquetées x , y et z , la permutation peut déplacer la valeur de x vers y , y vers z et z vers x. "La permutation vous permet de construire une structure", a déclaré Kanerva. "Ça permet de gérer des séquences, des choses qui se succèdent." Considérons deux événements, représentés par les hypervecteurs A et B. Nous pouvons les superposer en un seul vecteur, mais cela détruirait les informations sur l'ordre des événements. La combinaison de l'addition et de la permutation préserve l'ordre ; les événements peuvent être récupérés dans l'ordre en inversant les opérations.

Ensemble, ces trois opérations se sont avérées suffisantes pour créer une algèbre formelle d'hypervecteurs permettant un raisonnement symbolique. Mais de nombreux chercheurs ont été lents à saisir le potentiel de l'informatique hyperdimensionnelle, y compris Olshausen. "Cela n'a tout simplement pas été pris en compte", a-t-il déclaré.

Exploiter le pouvoir

En 2015, un étudiant d'Olshausen nommé Eric Weiss a démontré un aspect des capacités uniques de l'informatique hyperdimensionnelle. Weiss a compris comment représenter une image complexe comme un seul vecteur hyperdimensionnel contenant des informations sur tous les objets de l'image, y compris leurs propriétés, telles que les couleurs, les positions et les tailles.

"Je suis pratiquement tombé de ma chaise", a déclaré Olshausen. "Tout d'un coup, l'ampoule s'est allumée."

Bientôt, d'autres équipes ont commencé à développer des algorithmes hyperdimensionnels pour reproduire des tâches simples que les réseaux de neurones profonds avaient commencé à effectuer environ deux décennies auparavant, comme la classification d'images.

Considérons un ensemble de données annotées composé d'images de chiffres manuscrits. Un algorithme analyse les caractéristiques de chaque image en utilisant un schéma prédéterminé. Il crée ensuite un hypervecteur pour chaque image. Ensuite, l'algorithme ajoute les hypervecteurs pour toutes les images de zéro pour créer un hypervecteur pour l'idée de zéro. Il fait ensuite la même chose pour tous les chiffres, créant 10 hypervecteurs "de classe", un pour chaque chiffre.

Maintenant, l'algorithme reçoit une image non étiquetée. Il crée un hypervecteur pour cette nouvelle image, puis compare l'hypervecteur aux hypervecteurs de classe stockés. Cette comparaison détermine le chiffre auquel la nouvelle image ressemble le plus.

Pourtant, ce n'est que le début. Les points forts de l'informatique hyperdimensionnelle résident dans la capacité de composer et de décomposer des hypervecteurs pour le raisonnement. La dernière démonstration en date a eu lieu en mars, lorsqu'Abbas Rahimi et ses collègues d'IBM Research à Zurich ont utilisé l'informatique hyperdimensionnelle avec des réseaux de neurones pour résoudre un problème classique de raisonnement visuel abstrait - un défi important pour les RNA typiques, et même certains humains. Connu sous le nom de matrices progressives de Raven, le problème présente des images d'objets géométriques dans, disons, une grille 3 par 3. Une position dans la grille est vide. Le sujet doit choisir, parmi un ensemble d'images candidates, l'image qui correspond le mieux au blanc.

"Nous avons dit:" C'est vraiment ... l'exemple qui tue pour le raisonnement abstrait visuel, allons-y "", a déclaré Rahimi.

Pour résoudre le problème à l'aide de l'informatique hyperdimensionnelle, l'équipe a d'abord créé un dictionnaire d'hypervecteurs pour représenter les objets dans chaque image ; chaque hypervecteur du dictionnaire représente un objet et une combinaison de ses attributs. L'équipe a ensuite formé un réseau de neurones pour examiner une image et générer un hypervecteur bipolaire - un élément peut être +1 ou -1 - aussi proche que possible d'une superposition d'hypervecteurs dans le dictionnaire ; l'hypervecteur généré contient donc des informations sur tous les objets et leurs attributs dans l'image. "Vous guidez le réseau de neurones vers un espace conceptuel significatif", a déclaré Rahimi.

Une fois que le réseau a généré des hypervecteurs pour chacune des images de contexte et pour chaque candidat pour l'emplacement vide, un autre algorithme analyse les hypervecteurs pour créer des distributions de probabilité pour le nombre d'objets dans chaque image, leur taille et d'autres caractéristiques. Ces distributions de probabilité, qui parlent des caractéristiques probables à la fois du contexte et des images candidates, peuvent être transformées en hypervecteurs, permettant l'utilisation de l'algèbre pour prédire l'image candidate la plus susceptible de remplir l'emplacement vacant.

Leur approche était précise à près de 88 % sur un ensemble de problèmes, tandis que les solutions de réseau neuronal uniquement étaient précises à moins de 61 %. L'équipe a également montré que, pour les grilles 3 par 3, leur système était presque 250 fois plus rapide qu'une méthode traditionnelle qui utilise des règles de logique symbolique pour raisonner, car cette méthode doit parcourir un énorme livre de règles pour déterminer la bonne prochaine étape.

Un début prometteur

Non seulement l'informatique hyperdimensionnelle nous donne le pouvoir de résoudre symboliquement des problèmes, mais elle résout également certains problèmes épineux de l'informatique traditionnelle. Les performances des ordinateurs d'aujourd'hui se dégradent rapidement si les erreurs causées, par exemple, par un retournement de bit aléatoire (un 0 devient 1 ou vice versa) ne peuvent pas être corrigées par des mécanismes de correction d'erreurs intégrés. De plus, ces mécanismes de correction d'erreurs peuvent imposer une pénalité sur les performances allant jusqu'à 25 %, a déclaré Xun Jiao , informaticien à l'Université de Villanova.

Le calcul hyperdimensionnel tolère mieux les erreurs, car même si un hypervecteur subit un nombre important de retournements de bits aléatoires, il reste proche du vecteur d'origine. Cela implique que tout raisonnement utilisant ces vecteurs n'est pas significativement impacté face aux erreurs. L'équipe de Jiao a montré que ces systèmes sont au moins 10 fois plus tolérants aux pannes matérielles que les ANN traditionnels, qui sont eux-mêmes des ordres de grandeur plus résistants que les architectures informatiques traditionnelles. "Nous pouvons tirer parti de toute [cette] résilience pour concevoir du matériel efficace", a déclaré Jiao.

Un autre avantage de l'informatique hyperdimensionnelle est la transparence : l'algèbre vous indique clairement pourquoi le système a choisi la réponse qu'il a choisie. Il n'en va pas de même pour les réseaux de neurones traditionnels. Olshausen, Rahimi et d'autres développent des systèmes hybrides dans lesquels les réseaux de neurones cartographient les éléments du monde physique en hypervecteurs, puis l'algèbre hyperdimensionnelle prend le relais. "Des choses comme le raisonnement analogique vous tombent dessus", a déclaré Olshausen. "C'est ce que nous devrions attendre de tout système d'IA. Nous devrions pouvoir le comprendre comme nous comprenons un avion ou un téléviseur.

Tous ces avantages par rapport à l'informatique traditionnelle suggèrent que l'informatique hyperdimensionnelle est bien adaptée à une nouvelle génération de matériel extrêmement robuste et à faible consommation d'énergie. Il est également compatible avec les "systèmes informatiques en mémoire", qui effectuent le calcul sur le même matériel qui stocke les données (contrairement aux ordinateurs von Neumann existants qui transfèrent inefficacement les données entre la mémoire et l'unité centrale de traitement). Certains de ces nouveaux appareils peuvent être analogiques, fonctionnant à très basse tension, ce qui les rend économes en énergie mais également sujets aux bruits aléatoires. Pour l'informatique de von Neumann, ce caractère aléatoire est "le mur que vous ne pouvez pas franchir", a déclaré Olshausen. Mais avec l'informatique hyperdimensionnelle, "vous pouvez simplement percer".

Malgré ces avantages, l'informatique hyperdimensionnelle en est encore à ses balbutiements. "Il y a un vrai potentiel ici", a déclaré Fermüller. Mais elle souligne qu'il doit encore être testé contre des problèmes du monde réel et à des échelles plus grandes, plus proches de la taille des réseaux de neurones modernes.

"Pour les problèmes à grande échelle, cela nécessite un matériel très efficace", a déclaré Rahimi. "Par exemple, comment [faites-vous] une recherche efficace sur plus d'un milliard d'articles ?"

Tout cela devrait venir avec le temps, a déclaré Kanerva. "Il y a d'autres secrets [que] les espaces de grande dimension détiennent", a-t-il déclaré. "Je vois cela comme le tout début du temps pour le calcul avec des vecteurs."

Auteur: Ananthaswamy Anil

Info: https://www.quantamagazine.org/ Mais 2023

[ machine learning ]

 

Commentaires: 0

Ajouté à la BD par miguel

question

La conscience est-elle partie prenante de l'univers et de sa structure ?

Des physiciens et des philosophes se sont récemment rencontrés pour débattre d'une théorie de la conscience appelée panpsychisme.

Il y a plus de 400 ans, Galilée a montré que de nombreux phénomènes quotidiens, tels qu'une balle qui roule sur une pente ou un lustre qui se balance doucement au plafond d'une église, obéissent à des lois mathématiques précises. Pour cette intuition, il est souvent salué comme le fondateur de la science moderne. Mais Galilée a reconnu que tout ne se prêtait pas à une approche quantitative. Des choses telles que les couleurs, les goûts et les odeurs "ne sont rien de plus que de simples noms", a déclaré Galilée, car "elles ne résident que dans la conscience". Ces qualités ne sont pas réellement présentes dans le monde, affirmait-il, mais existent uniquement dans l'esprit des créatures qui les perçoivent. "Par conséquent, si l'on supprimait la créature vivante, écrivait-il, toutes ces qualités seraient effacées et anéanties.

Depuis l'époque de Galilée, les sciences physiques ont fait un bond en avant, expliquant le fonctionnement des plus petits quarks jusqu'aux plus grands amas de galaxies. Mais expliquer les choses qui résident "uniquement dans la conscience" - le rouge d'un coucher de soleil, par exemple, ou le goût amer d'un citron - s'est avéré beaucoup plus difficile. Les neuroscientifiques ont identifié un certain nombre de corrélats neuronaux de la conscience - des états cérébraux associés à des états mentaux spécifiques - mais n'ont pas expliqué comment la matière forme les esprits en premier lieu. Comme l'a dit le philosophe Colin McGinn dans un article publié en 1989, "d'une manière ou d'une autre, nous avons l'impression que l'eau du cerveau physique est transformée en vin de la conscience". Le philosophe David Chalmers a célèbrement surnommé ce dilemme le "problème difficile" de la conscience*.

Des chercheurs se sont récemment réunis pour débattre de ce problème au Marist College de Poughkeepsie, dans l'État de New York, à l'occasion d'un atelier de deux jours consacré à une idée connue sous le nom de panpsychisme. Ce concept propose que la conscience soit un aspect fondamental de la réalité, au même titre que la masse ou la charge électrique. L'idée remonte à l'Antiquité - Platon l'a prise au sérieux - et a eu d'éminents partisans au fil des ans, notamment le psychologue William James et le philosophe et mathématicien Bertrand Russell. Elle connaît depuis peu un regain d'intérêt, notamment à la suite de la publication en 2019 du livre du philosophe Philip Goff, Galileo's Error, qui plaide vigoureusement en sa faveur.

M. Goff, de l'université de Durham en Angleterre, a organisé l'événement récent avec le philosophe mariste Andrei Buckareff, et il a été financé par une subvention de la Fondation John Templeton. Dans une petite salle de conférence dotée de fenêtres allant du sol au plafond et donnant sur l'Hudson, environ deux douzaines d'universitaires ont examiné la possibilité que la conscience se trouve peut-être en bas de l'échelle.

L'attrait du panpsychisme réside en partie dans le fait qu'il semble apporter une solution à la question posée par M. Chalmers : nous n'avons plus à nous préoccuper de la manière dont la matière inanimée forme des esprits, car l'esprit était là depuis le début, résidant dans le tissu de l'univers. Chalmers lui-même a adopté une forme de panpsychisme et a même suggéré que les particules individuelles pourraient être conscientes d'une manière ou d'une autre. Il a déclaré lors d'une conférence TED qu'un photon "pourrait avoir un élément de sentiment brut et subjectif, un précurseur primitif de la conscience". Le neuroscientifique Christof Koch est également d'accord avec cette idée. Dans son livre Consciousness paru en 2012, il note que si l'on accepte la conscience comme un phénomène réel qui ne dépend d'aucune matière particulière - qu'elle est "indépendante du substrat", comme le disent les philosophes - alors "il est facile de conclure que le cosmos tout entier est imprégné de sensibilité".

Pourtant, le panpsychisme va à l'encontre du point de vue majoritaire dans les sciences physiques et en philosophie, qui considère la conscience comme un phénomène émergent, quelque chose qui apparaît dans certains systèmes complexes, tels que le cerveau humain. Selon ce point de vue, les neurones individuels ne sont pas conscients, mais grâce aux propriétés collectives de quelque 86 milliards de neurones et à leurs interactions - qui, il est vrai, ne sont encore que mal comprises - les cerveaux (ainsi que les corps, peut-être) sont conscients. Les enquêtes suggèrent qu'un peu plus de la moitié des philosophes universitaires soutiennent ce point de vue, connu sous le nom de "physicalisme" ou "émergentisme", tandis qu'environ un tiers rejette le physicalisme et penche pour une alternative, dont le panpsychisme est l'une des nombreuses possibilités.

Lors de l'atelier, M. Goff a expliqué que la physique avait manqué quelque chose d'essentiel en ce qui concerne notre vie mentale intérieure. En formulant leurs théories, "la plupart des physiciens pensent à des expériences", a-t-il déclaré. "Je pense qu'ils devraient se demander si ma théorie est compatible avec la conscience, car nous savons qu'elle est réelle.

De nombreux philosophes présents à la réunion ont semblé partager l'inquiétude de M. Goff quant à l'échec du physicalisme lorsqu'il s'agit de la conscience. "Si vous connaissez les moindres détails des processus de mon cerveau, vous ne saurez toujours pas ce que c'est que d'être moi", déclare Hedda Hassel Mørch, philosophe à l'université des sciences appliquées de Norvège intérieure. "Il existe un fossé explicatif évident entre le physique et le mental. Prenons l'exemple de la difficulté d'essayer de décrire la couleur à quelqu'un qui n'a vu le monde qu'en noir et blanc. Yanssel Garcia, philosophe à l'université du Nebraska Omaha, estime que les faits physiques seuls sont inadéquats pour une telle tâche. "Il n'y a rien de physique que l'on puisse fournir [à une personne qui ne voit qu'en nuances de gris] pour qu'elle comprenne ce qu'est l'expérience de la couleur ; il faudrait qu'elle en fasse elle-même l'expérience", explique-t-il. "La science physique est, en principe, incapable de nous raconter toute l'histoire. Parmi les différentes alternatives proposées, il estime que "le panpsychisme est notre meilleure chance".

Mais le panpsychisme attire également de nombreuses critiques. Certains soulignent qu'il n'explique pas comment de petits morceaux de conscience s'assemblent pour former des entités conscientes plus substantielles. Ses détracteurs affirment que cette énigme, connue sous le nom de "problème de la combinaison", équivaut à une version du problème difficile propre au panpsychisme. Le problème de la combinaison "est le défi majeur de la position panpsychiste", admet M. Goff. "Et c'est là que se concentre la majeure partie de notre énergie.

D'autres remettent en question le pouvoir explicatif du panpsychisme. Dans son livre Being You (2021), le neuroscientifique Anil Seth écrit que les principaux problèmes du panpsychisme sont qu'"il n'explique rien et qu'il ne conduit pas à des hypothèses vérifiables. C'est une échappatoire facile au mystère apparent posé par le problème difficile".

Si la plupart des personnes invitées à l'atelier étaient des philosophes, les physiciens Sean Carroll et Lee Smolin, ainsi que le psychologue cognitif Donald Hoffman, ont également pris la parole. Carroll, un physicaliste pur et dur, a joué le rôle de chef de file officieux de l'opposition pendant le déroulement de l'atelier. (Lors d'un débat public très suivi entre Goff et Carroll, la divergence de leurs visions du monde est rapidement devenue évidente. Goff a déclaré que le physicalisme ne menait "précisément nulle part" et a suggéré que l'idée même d'essayer d'expliquer la conscience en termes physiques était incohérente. M. Carroll a affirmé que le physicalisme se porte plutôt bien et que, bien que la conscience soit l'un des nombreux phénomènes qui ne peuvent être déduits des phénomènes microscopiques, elle constitue néanmoins une caractéristique réelle et émergente du monde macroscopique. Il a présenté la physique des gaz comme un exemple parallèle. Au niveau micro, on parle d'atomes, de molécules et de forces ; au niveau macro, on parle de pression, de volume et de température. Il s'agit de deux types d'explications, en fonction du "niveau" étudié, mais elles ne présentent pas de grand mystère et ne constituent pas un échec pour la physique. En peu de temps, Goff et Carroll se sont enfoncés dans les méandres de l'argument dit de la connaissance (également connu sous le nom de "Marie dans la chambre noire et blanche"), ainsi que de l'argument des "zombies". Tous deux se résument à la même question clé : Y a-t-il quelque chose à propos de la conscience qui ne peut être expliqué par les seuls faits physiques ? Une grande partie du ping-pong rhétorique entre Goff et Carroll a consisté pour Goff à répondre oui à cette question et pour Carroll à y répondre non.

Une autre objection soulevée par certains participants est que le panpsychisme n'aborde pas ce que les philosophes appellent le problème des "autres esprits". (Vous avez un accès direct à votre propre esprit, mais comment pouvez-vous déduire quoi que ce soit de l'esprit d'une autre personne ?) "Même si le panpsychisme est vrai, il y aura toujours un grand nombre de choses - notamment des choses liées à l'expérience des autres - que nous ne connaîtrons toujours pas", déclare Rebecca Chan, philosophe à l'université d'État de San José. Elle craint que l'invocation d'une couche sous-jacente d'esprit ne revienne à invoquer Dieu. Je me demande parfois si la position panpsychiste n'est pas similaire aux arguments du "dieu des lacunes"", dit-elle, en référence à l'idée que Dieu est nécessaire pour combler les lacunes de la connaissance scientifique.

D'autres idées ont été évoquées. L'idée du cosmopsychisme a été évoquée - en gros, l'idée que l'univers lui-même est conscient. Paul Draper, philosophe à l'université de Purdue qui a participé via Zoom, a parlé d'une idée subtilement différente connue sous le nom de "théorie de l'éther psychologique", à savoir que les cerveaux ne produisent pas la conscience mais l'utilisent plutôt. Selon cette théorie, la conscience existait déjà avant que les cerveaux n'existent, comme un ether omniprésent. Si cette idée est correcte, écrit-il, "alors (selon toute vraisemblance) Dieu existe".

M. Hoffman, chercheur en sciences cognitives à l'université de Californie à Irvine, qui s'est également adressé à l'atelier via Zoom, préconise de rejeter l'idée de l'espace-temps et de rechercher quelque chose de plus profond. (Il a cité l'idée de plus en plus populaire en physique ces derniers temps selon laquelle l'espace et le temps ne sont peut-être pas fondamentaux, mais constituent plutôt des phénomènes émergents). L'entité plus profonde liée à la conscience, suggère Hoffman, pourrait consister en "sujets et expériences" qui, selon lui, "sont des entités au-delà de l'espace-temps, et non dans l'espace-temps". Il a développé cette idée dans un article de 2023 intitulé "Fusions of Consciousness" (Fusions de conscience).

M. Smolin, physicien à l'Institut Perimeter pour la physique théorique en Ontario, qui a également participé via Zoom, a également travaillé sur des théories qui semblent offrir un rôle plus central aux agents conscients. Dans un article publié en 2020, il a suggéré que l'univers "est composé d'un ensemble de vues partielles de lui-même" et que "les perceptions conscientes sont des aspects de certaines vues" - une perspective qui, selon lui, peut être considérée comme "une forme restreinte de panpsychisme".

Carroll, qui s'est exprimé après la session à laquelle participaient Hoffman et Smolin, a noté que ses propres opinions divergeaient de celles des intervenants dès les premières minutes (au cours du déjeuner, il a fait remarquer que participer à l'atelier donnait parfois l'impression d'être sur un subreddit pour les fans d'une série télévisée qui ne vous intéresse tout simplement pas). Il a admis que les débats interminables sur la nature de la "réalité" le laissaient parfois frustré. Les gens me demandent : "Qu'est-ce que la réalité physique ? C'est la réalité physique ! Il n'y a rien qu'elle 'soit'. Que voulez-vous que je dise, qu'elle est faite de macaronis ou d'autre chose ?" (Même Carroll admet cependant que la réalité est plus complexe qu'il n'y paraît. Il est un fervent partisan de l'interprétation "multi-mondes" de la mécanique quantique, selon laquelle notre univers n'est qu'une facette d'un vaste multivers quantique).

Si tout cela semble n'avoir aucune valeur pratique, M. Goff a évoqué la possibilité que la façon dont nous concevons les esprits puisse avoir des implications éthiques. Prenons la question de savoir si les poissons ressentent la douleur. La science traditionnelle ne peut étudier que le comportement extérieur d'un poisson, et non son état mental. Pour M. Goff, se concentrer sur le comportement du poisson n'est pas seulement une erreur, c'est aussi une "horreur", car cela laisse de côté ce qui est en fait le plus important : ce que le poisson ressent réellement. "Nous allons cesser de nous demander si les poissons sont conscients et nous contenter de regarder leur comportement ? Qui se soucie du comportement ? Je veux savoir s'il a une vie intérieure, c'est tout ce qui compte ! Pour les physicalistes comme Carroll, cependant, les sentiments et le comportement sont intimement liés, ce qui signifie que nous pouvons éviter de faire souffrir un animal en ne le plaçant pas dans une situation où il semble souffrir en raison de son comportement. "S'il n'y avait pas de lien entre eux [comportement et sentiments], nous serions en effet dans le pétrin", déclare Carroll, "mais ce n'est pas notre monde".

Seth, le neuroscientifique, n'était pas présent à l'atelier, mais je lui ai demandé quelle était sa position dans le débat sur le physicalisme et ses différentes alternatives. Selon lui, le physicalisme offre toujours plus de "prise empirique" que ses concurrents, et il déplore ce qu'il considère comme une crispation excessive sur ses prétendus échecs, y compris la difficulté supposée due à un problème complexe. Critiquer le physicalisme au motif qu'il a "échoué" est une erreur volontaire de représentation", déclare-t-il. "Il se porte très bien, comme l'attestent les progrès de la science de la conscience. Dans un article récemment publié dans le Journal of Consciousness Studies, Seth ajoute : "Affirmer que la conscience est fondamentale et omniprésente n'éclaire en rien la raison pour laquelle l'expérience du bleu est telle qu'elle est, et pas autrement. Cela n'explique pas non plus les fonctions possibles de la conscience, ni pourquoi la conscience est perdue dans des états tels que le sommeil sans rêve, l'anesthésie générale et le coma".

Même ceux qui penchent pour le panpsychisme semblent parfois hésiter à plonger dans le grand bain. Comme le dit Garcia, malgré l'attrait d'un univers imprégné de conscience, "j'aimerais qu'on vienne m'en dissuader".

 

Auteur: Internet

Info: Dan Falk, September 25, 2023

[ perspectiviste ] [ atman ] [ interrogation ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

vacheries

Le Top 10 des livres que vous n'avez jamais réussi à finir

Quel est le livre que vous n'avez jamais réussi à terminer ? Nous vous avons posé la question sur les réseaux sociaux, et vous avez été plus de trois mille à nous répondre. Voici le top 10 des livres qui vous sont tombés des mains.

On a rarement vu autant de pavés sur les tables des libraires ! Il n'existe pas forcément de lien entre la difficulté à lire un livre, et son épaisseur. Pour autant, cette rentrée littéraire riche en gros volumes nous a inspiré un sondage, que nous avons lancé sur nos réseaux sociaux le 27 septembre : nous avons voulu savoir quels romans vous n'aviez jamais réussi à terminer. Voici donc le top 10 des livres qui vous sont tombés des mains. Ceux qui détiennent la palme de l'ennui, de la complexité, ou du malaise... ! De l'Ulysse de James Joyce, au Voyage au bout de la nuit, de Céline.

1. "Ulysse", de James Joyce

La palme du livre le plus difficile à terminer revient sans conteste à l'Ulysse, de Joyce. Si ça peut ôter des scrupules à certains, notez que lors de sa parution, en 1922, Virginia Woolf elle-même l'avait jugé "prétentieux" et "vulgaire" !

Je n'y arrive pas. J'ai testé deux traductions différentes. J'ai même essayé en anglais. J'ai tout essayé. Impossible. Pour moi ce texte ne fait aucun sens. Je n'ai jamais dépassé la page 50. Marie-Claude

À la centième page ça lasse. Et il y en a bien plus ! Pourtant j'ai essayé trois fois. La dernière fois j'étais en Turquie : le livre y est resté. Échangé contre un polar dans une auberge. Moins bien écrit, mais lisible ! Delphine

Trop longuement perché pour moi, décourageant quand on pense que ces mille pages ne représentent qu'une journée narrée ! @Antilabe

Très touffu, assez opaque, nécessite, je pense, pour être bien compris, de solides connaissances en art littéraire, ou en tout cas d'avoir un parcours littéraire très développé, pour mettre à nu l'architecture du roman. Alexis

Ils disent tous que c'est immense mais quand tu prends le livre sur les étagères, à partir de la page 10 c'est du papier Canson. @xabicasto

Si vous cherchez à dompter l'Ulysse de James Joyce, vous pouvez commencer par réécouter ces Nouveaux chemins de la connaissance d'octobre 2014. Pour parler du roman, Adèle Van Reeth recevait Jacques Aubert, universitaire et éditeur des œuvres de Joyce (et de Virginia Woolf) dans la Bibliothèque de la Pléiade.

2. "Les Bienveillantes", de Jonathan Littell

Médaille d'argent pour Les Bienveillantes, prix Goncourt 2006, qui, à en croire vos témoignages, a donné la nausée à un certain nombre d'entre vous ! Notamment à cause d'une identification au narrateur (un ancien SS), vécue difficilement...

Une plume sublissime. Mais je finis par m'identifier au "je".... et je vomis. Impossible de prendre du recul tant l'écriture est puissante. Géraldine

J'ai étalé ma lecture sur neuf mois... malgré tout, impossible d'arriver au bout. Trop long, trop lourd, trop sordide, trop d'abréviations qui renvoient le lecteur tous les quatre paragraphes au glossaire de fin d'ouvrage (tout est en allemand) !! Je n'ai pas réussi, ni voulu me familiariser avec ce tout. Jeanne

Ce livre m'a plongée dans une angoisse monstre. Jusqu'à me poursuivre la nuit, sous forme de cauchemars... je l'ai arrêté à contre-cœur car je le trouvais aussi fascinant que perturbant. Anaïs

Le décalage, certes voulu, entre l’horreur des faits évoqués et la froideur du récit m’était insupportable. Par ailleurs, le profil du narrateur me semblait peu crédible et sans intérêt : sur neuf-cents pages, c’est long. Stéphane

Je n'ai pas trouvé la grille de lecture, pas compris le sens. Absence d'émotions, même négatives. Un catalogue d'horreurs aseptisées. Si quelqu’un peut m'aider à comprendre ce qui lui a valu le Prix Goncourt, je suis preneur. Geoffrey

En décembre 2006, année de publication des Bienveillantes, l'émission Répliques se posait la question de savoir si le succès de ce roman historique sur le génocide des Juifs pendant la Seconde Guerre mondiale, était ou non choquant. Au micro, la journaliste Nathalie Crom, qui qualifiait ce roman de "stupéfiant", mais aussi l'un des détracteurs de l'ouvrage, le philosophe Michel Terestchenko, qui le considérait comme "un mélange de lieux communs, de platitudes et de clichés" :

3. "À la Recherche du temps perdu", de Marcel Proust

Le bronze revient sans surprise à Marcel Proust, mondialement connu pour ses phrases interminables, et à son oeuvre cathédrale, À la recherche du temps perdu. Rappelons qu'en 1913, Gallimard avait dans un premier temps refusé de publier Du côté de chez Swann.

C'est illisible. Des paragraphes qui font cinq pages, des phrases qui n'en finissent jamais... Un éditeur moderne ne l'aurait jamais publié ! Pierre

Longtemps je me suis couchée de bonne heure... pour lire, mais celui-là m'a complètement endormie. @Tlih_Eilerua

Quand j'avais 15-16 ans, il a même traversé la fenêtre et a atterri dans la rue. Je trouvais ce livre insupportable. Olivier

C'est tellement riche et beau qu'après avoir lu une page, il faut la savourer et la méditer avant de passer à la suivante. Et après une dizaine de pages, je ressens comme un trop plein, une sorte d'écœurement. Rémi

Ah, "La Recherche"... Arrêtée au Temps retrouvé ! @TataMarceline

Les lecteurs du XXe siècles ont-ils eu du mal, eux aussi, à entrer dans La Recherche du temps perdu ? Pour le savoir, réécoutez ce Lieux de mémoire diffusé sur notre antenne en 1997. Antoine Compagnon et Jean-Yves Tadié y racontaient leur première lecture de La Recherche, et expliquaient comment donner envie de lire cette oeuvre... voilà qui tombe plutôt bien !

4. "Le Seigneur des anneaux", de J. R. R. Tolkien

La trilogie de Tolkien, parue entre 1954 et 1955, a recueilli également de très nombreux suffrages ! Beaucoup d'entre vous n'ont notamment pas su dépasser le très long préambule consacré aux mœurs des Hobbits et à leur vie dans La Comté.

Après avoir eu l'impression de passer une vie à errer dans la forêt, j'ai lâché l'affaire. @manel_bertrand

Le style, les longueurs, l'ennui... ! J'ai essayé de zapper les passages du début, comme on me l'avait conseillé. Mais rien à faire, je ne suis jamais arrivé à entrer dedans. Pourtant j'ai lu "Le Hobbit" facilement, ainsi que d'autres œuvres de fantasy. Sandrine

Au milieu du troisième tome, j'avais perdu tout intérêt de savoir si le bien allait triompher du mal. @emilycsergent

Tolkien, on aime, ou pas. Mais il faut reconnaître que l'écrivain était prodigieusement inventif, capable de créer un univers entier, doté de sa géographie particulière, et de ses langues singulières. En 1985, France Culture s'intéressait à ses inspirations, depuis le poème anglo-saxon de Béowulf, jusqu'aux légendes celtiques, en passant par les anciens livres gallois :

5. "Belle du Seigneur", d'Albert Cohen

Vous n'y êtes pas allés avec le dos de la cuillère pour dire votre incapacité à venir à bout du roman-fleuve de l'écrivain suisse francophone, publié en 1968 ! Joseph Kessel l'avait pourtant qualifié de "chef-d'œuvre absolu"...

J'avais l'impression de voir l'auteur se donner des tapes dans le dos et s'auto-contempler en train d'écrire. J'ai rarement lu quelque chose d'aussi satisfait et suffisant. Pas un personnage pour rattraper l'autre, on a envie de leur mettre des baffes à la Bud Spencer, à tour de rôle. Aucun humour en fait, pas de place pour l'autodérision, Cohen se prenant bien trop au sérieux. Samia

J'avais très envie d'aimer ce livre. Mais la scène où son sentiment pour le jeune homme bascule était tellement rapide et illogique, que ça m'a tout fichu en l'air. Je trouvais tout le monde tarte, j'ai arrêté au bout de deux-cents pages et je n'ai pas regretté. Solène

Impossible, malgré trois essais et à des années d’intervalle. Rien à faire. Ecriture trop poussive, métaphorique à l’excès, détails à foison... Impossible pour moi, grande lectrice et professeur de littérature, d’apprécier ce roman pourtant salué de tous. Françoise

En 2006, dans Carnet nomade, des artistes, des chercheurs et des zélateurs d'Albert Cohen venaient raconter leur lecture personnelle de Belle du seigneur. Nombre d'entre eux trouvaient à ce livre "humour, ferveur, et intelligence". Sauront-ils vous convaincre ?

6. "L'Homme sans qualités", de Robert Musil

Paru en 1932, le roman inachevé de l'écrivain autrichien Robert Musil a également fait consensus. Mille huit cents pages... on ne vous trouve pas très endurants !

Les premiers chapitres m'ont ravi : ce style et cet univers m'ont très vite pris. Pourquoi alors, au fur et à mesure, cette sensation d'enlisement, de stériles redites, d'absurdité, de vanité ? Et malgré tout l'impression saisissante de passer à côté de quelque chose d'énorme, pour lequel je ne serais pas outillé... Patrick

Des passages lents et interminables, et quelques éclats de génie qui m'ont fait m'accrocher jusqu'à la moitié (du premier tome), c'est déjà une performance. Méli

J'ai essayé maintes et maintes fois, il me tombe des mains et finit toujours sous mon lit ! Martine

Les premières pages sont prodigieuses, puis la magie disparaît. Musil ne l'a pas fini non plus ! @BrouLou

Et vous, êtes-vous parvenu(e) au bout de la grande oeuvre de Musil, qui met en scène des personnages ambivalents et en quête d'équilibre dans un monde en pleine mutation ? Peut-être que l'écoute de ce Une vie, une oeuvre, diffusé en 1989, vous décidera à en tenter ou en retenter la lecture !

7. "Le Rouge et le Noir", de Stendhal

Pour l'écrivain britannique William Somerset Maugham, il fait partie des dix plus grands romans jamais écrits. Pourtant, le grand classique de Stendhal, publié en 1830, vous tombe des mains ! Peut-être est-il trop étudié en classe ?

J'ai craqué au bout de quelques chapitres. Une à deux pages pour décrire une tapisserie de salon ou d'antichambre... juste imbuvable ! Nathalie

J'avais en permanence envie de secouer les protagonistes, insupportables de mollesse, à contempler leurs sentiments et émotions sous toutes les coutures (je reste polie). Je les hais. J'ai fini par jeter l'éponge, ce qui ne m'arrive jamais. Marie

Obligée de le lire à l'école deux années de suite, car la même prof de français. Je crois bien ne pas être allée jusqu'au bout, et ça m'a dégoûtée de la littérature classique ! Christine

Le professeur de littérature française Yves Ansel saura-t-il réconcilier les lecteurs avec Stendhal ? Il était venu en 2014, parler de ce fameux roman dans Les Nouveaux chemins de la connaissance :

8. "Madame Bovary", de Gustave Flaubert

Il ne pouvait pas ne pas faire partie de ce top 10 ! Il faut dire que Flaubert a tendu le bâton pour se faire battre : en écrivant ce roman publié en 1856, son but assumé était bel et bien de "faire un livre sur rien".

Alors que j'aime beaucoup Flaubert - j'ai adoré "Salammbô" ! -, je n'ai jamais réussi à finir "Madame Bovary". Je suppose que Flaubert est tellement doué pour décrire l'ennui d'Emma que cet ennui m'a gagné aussi. C'est un personnage qui m'ennuie, et m'agace... Certainement pour des raisons personnelles ! Caroline

Tous les personnages sont médiocres, lâches, stupides, on ne peut pas s'identifier à eux. Il faudrait que je m'y essaye à nouveau ! @AudeJavel1

Je n ai jamais pu aller plus loin que le mariage. Ça m'ennuyait trop. Un livre qui ne tient que par son style, ça ne m'intéresse pas. Il faut qu'il se passe des choses. Je suis peut être trop parisienne ? Caroline

En août 2017, nous consacrions un article à la manière dont Flaubert avait révolutionné l'écriture romanesque avec Madame Bovary. Car dès sa publication, en 1856, le roman choqua d'abord par son style, avant même d'être mis en procès pour son caractère "licencieux" l'année suivante. De quoi peut-être rassurer le lectorat récalcitrant !

9. "Cent ans de solitude", de Gabriel Garcia Marquez

Trop de personnages, et une traduction jugée "laborieuse" pour certains. La grande oeuvre de Gabriel Garcia Marquez (Nobel de littérature en 1982), parue en 1967, a dérouté un bon nombre d'entre vous ! Après tout, peut-être que l'on peut se contenter de la première phrase du roman, connue comme l'un des incipits les plus célèbres de la littérature : "Bien des années plus tard, face au peloton d'exécution, le colonel Aureliano Buendía devait se rappeler ce lointain après-midi au cours duquel son père l'emmena faire connaissance avec la glace."

Une oeuvre géniale dans laquelle je me suis plongé à corps perdu. Et puis, je ne sais plus quand, j'ai arrêté de le lire pendant une deux semaines. Et quand j'ai voulu m'y remettre, je ne savais plus qui était qui dans cette histoire (fichus Buendia avec leurs prénoms mélangés !), et j'ai abandonné. Lucas

J'ai eu l'impression de rentrer dans un monde distorsion avec des malheurs sans fin, je n'en pouvais plus. Anne-Sophie

Je ne sais pas pourquoi les éditeurs n'insèrent pas un arbre généalogique ! C'est bien ça qui manque pour le terminer... Dee Dee

En 1970, sur France Culture, l'émission Les Voix étrangères s'intéressait à Cent ans de solitude : "Il arrive parfois qu'un livre refuse sa condition de livre. La condition d'un volume que chacun ouvre ou pose à son gré, pour faire irruption dans la vie quotidienne du lecteur, s'installer d'un air résolu dans les rêves, mais aussi dans la conversation familiale du soir", commentait la critique littéraire Ugne Karvelis.

10. "Voyage au bout de la nuit", de Louis-Ferdinand Céline

"Voyage au bout de l'ennui", le jeu de mots est facile, mais vous êtes nombreux à l'avoir osé ! En avril 1932, Céline promettait pourtant à Gaston Gallimard que son roman était "du pain pour un siècle entier de littérature" !

J'avais et j'ai toujours l'impression que le vieux Céline sortait comme un diable de sa boîte à chaque ponctuation, ricanant, insultant et grinçant. Cette vision récurrente m'effraie encore, rien que d'y penser. C'est le seul livre que j'ai jeté au travers d'une pièce, de peur et de rage. Le seul roman qui me renvoie à un perpétuel effondrement. Hélène

Bien que je trouve l'écriture de Céline fascinante et d'une intelligence rare, le dernier tiers me laisse toujours moralement le cœur au bord des lèvres. J'avance toujours un peu plus mais ne le termine jamais. Stéfanie

J'ai essayé deux fois : style apprécié, mais c'est le contexte, je n'arrive jamais à garder mon attention quand l'objet parle des guerres du XXe siècle. Je ne saurais même pas dire si c'est par ennui ou par dégoût de cette période. Oda

,

Auteur: Internet

Info: Combis Hélène, https://www.franceculture.fr, 06/10/2017

[ survol littéraire ]

 
Commentaires: 2
Ajouté à la BD par miguel

ufo

Un bon copain et ancien compagnon d'escadron, Dave "Sex" Fravor, a vécu une des histoires d'aviation les plus bizarres de tous les temps. Un truc qui éclate la crédibilité, alors je vais la raconter en m'appuyant sur la bonne foi de Dave.
Je le connais personnellement - très bien. Nous avons volé sur des A-6 ensemble avant qu'il n'entre dans le monde des Hornet. C'est un mec drôle. Intelligent et malin, avec la typique surestimation de ses compétences du pilote de chasse. En vol cependant, Dave était aussi professionnel que possible.
Au matin du 14 novembre 2004, Dave et son équipier se sont lancés dans le ciel bleu clair de la Californie du Sud, à une centaine de kilomètres au sud-ouest de San Diego. Leur nom d'appel était FASTEAGLE 01. Son ailier a décollé juste après eux dans FASTEAGLE 02. Ils ont grimpé au-dessus du navire et eu rendez-vous de façon normale avant de partir vers la zone de travail assignée dans l'océan ouvert au sud de l'USS Nimitz. Jour normal, opérations normales pour le pré-déploiement du cycle de travail dans tel milieu.
Le Nimitz Carrier Strike Group était déjà en poste depuis quelques semaines et travaillait à intégrer les opérations du transporteur avec ses différents navires de soutien, y compris le croiseur de missiles guidés de classe Ticonderoga, USS Princeton. En ce qui concerne Dave, c'était un jour standard, autre étape dans le long processus de la préparation des navires du Strike group et des avions de l'Air Wing pour travailler harmonieusement leur prochain déploiement de combat.
Ce que Dave ne savait pas, c'était qu'au cours des derniers jours, le Princeton avait attrapé des retours bizarres sur leur radar SPY-1. À plusieurs occasions, à compter du 10 novembre, le fire control officer, un type expérimenté, tout comme les radaristes, avaient détecté de nombreux échos qui se situaient bien au-dessus du volume de balayage du radar, quelque part à plus de 80 000 pieds. Des signaux qui partaient de 80 000 pieds jusqu'à planer à environ 50 pieds au-dessus de l'eau en quelques secondes. Toujours au même endroit, à la latitude d'environ 30NM au large de la côte de Baja, à environ 70NM au sud-ouest de Tijuana. À l'époque, le SPY-1 était le radar tactique le plus sophistiqué et le plus puissant de la planète. Avec cet engin, ils ont pu suivre ces AAV* pendant qu'ils descendaient, tournaient et glissaient à des vitesses, des taux de rotation et des accélérations plus rapides que n'importe quel avion ami ou menace connu. Incroyablement rapide.
Une fois les avions de l'escadre aérienne arrivés près du Nimitz, le fire squad control du Princeton y vit l'opportunité d'utiliser ces atouts et ces yeux pour aider à résoudre le mystère de ces AAVs.
A un moment, le vol FASTEAGLE terminait son entraînement prévu, le cmdt de l'escadron VMFA-232 de Marine, le lieutenant-colonel "Cheeks" Kurth, effectuait un vol de vérification post-maintenance pas très loin. Il fut le premier engin rapide contacté par le Princeton. La communication était étrange et intrigante. On lui demandait d'enquêter sur un contact aérien non identifié. Ce n'est pas une demande terriblement inhabituelle quand un Strike Group est en transit ou déployé loin des eaux domestiques, mais c'est plus qu'un peu étrange, pratiquement en vue du San Diego Homeport. Pour ajouter aux communications inhabituelles, on lui demanda quel armement il avait à bord. "Aucun."
Alors que le Princeton communiquait avec Cheeks, ils tentait également de transmettre ce contact AAV à l'E-2C Hawkeye de l'Air Wing, également en vol à l'époque. L'équipage de VAW-117 participait au contrôle d'interception pour le vol FASTEAGLE pendant leur entraînement et le Princeton souhaitait maintenant que l'E-2 guide les Super Hornets vers le point d'interception avec le contact de l'AAV, qui planait à ce moment sur leur spot préféré, mais maintenant à environ 20 000 pieds au-dessus de l'océan.
Les retours de l'AAV n'étaient pas été assez forts pour apparaître sur le large balayage de l'E-2, mais une fois qu'ils concentrèrent leur radar sur les coordonnées que le Princeton leur indiqua ils obtinrent un contact faible. Echos qui ne suffisaient pas pour générer une piste cible. Alors le Princeton contacta directement FASTEAGLE. Bien qu'il n'ait pas pu verrouiller les AAV, le contrôleur E-2 resta sur la fréquence et put suivre toute l'évolution qui s'ensuivit.
Alors que Cheeks s'approchait de l'endroit où il était dirigé, le Princeton lui conseilla de rester au-dessus de 10K alors que la section des Super Hornets s'approchait de la cible. Son radar reconnut les deux ships FASTEAGLE, mais pas d'autre contact. Un moment plus tard, le Princeton lui ordonna de le laisser tomber et de retourner au navire. Comme il était très proche, il décida de survoler l'action et de jeter un coup d'oeil.
La mer était calme, presque vitreuse et on était en fin de matinée d'une belle journée. Des conditions parfaites. Alors que Cheeks survolait l'endroit, il vit une perturbation à la surface de l'océan. Une section ronde d'eau turbulente d'environ 50-100 mètres de diamètre. C'était la seule zone du type de ce qu'il nomma "eau vive", décrivant ça comme s'il y avait quelque chose sous la surface comme un banc ou ce qu'il avait entendu dire de ce à quoi ressemble un navire qui coule rapidement.
Il survola la perturbation et fit demi-tour en direction de Nimitz sans voir ce qui faisait mousser l'eau. Comme il s'en retournait, au moment où les Super Hornets convergeaient vers l'endroit, les eaux blanches cessèrent et la surface de l'océan redevint lisse. Le point de la perturbation précédente étant complètement indiscernable.
À quelques milliers de pieds au-dessous de lui, Dave avait vu le même spectacle surréaliste, tout comme il s'était fait demander par le Princeton si les jets FASTEAGLE avaient des armes avec munition. Dave, déconcerté, rapporta que tout ce qu'ils avaient c'était deux missiles d'entraînement passifs. On lui donna des vecteurs de portée et un ensemble de coordonnées et on leur a dit d'enquêter sur un contact aérien inconnu à cet endroit.
Sans plus d'informations sur le contact, ils descendirent vers 20 mile pieds pour balayer avec un radar, ne percevant rien. Aucun avion de ce vol ne portait de girouette FLIR, ce qui limitait le type de capteurs avec lesquels il pouvait effectuer des recherches; mais les deux avions étaient neufs, selon les termes de Dave: "Ils avaient toujours cette nouvelle odeur de voiture". Les radars APG-73 étaient à la fois neufs et avaient parfaitement fonctionné durant l'entraînement de l'heure précédente. Pourtant, les écrans des deux avions étaient vides au point que Princeton lança "Merge plot!" (radars stop ?)
De ce moment les quatre membres d'équipage n'étaient plus que des yeux. La première indication inhabituelle que Dave nota fut la zone d'eau vive sur la surface que Cheeks regardait par-dessus son épaule alors qu'il s'éloignait. Il se souvient avoir pensé qu'il s'agissait de la taille d'un 737 et peut-être que le contact sur lequel ils avaient été dirigés était un avion de ligne qui venait de s'écraser. Il manoeuvra son F-18 plus bas pour mieux voir. Comme il descendait à environ 20K il fut surpris à la vue d'un objet blanc qui se déplaçait juste au-dessus de l'eau moussante. Il était immaculé, sans relief, oblong, et effectuait des mouvements latéraux mineurs tout en restant à une altitude constante au-dessus du disque d'eau turbulente.
Dave mis FASTEAGLE 02 en haute couverture passant vers environ 15K et avec son équipier put assister aux événements d'un point de vue parfait. Dave continua sa plongée en bas vers l'objet, essayant maintenant d'asservir le radar par l'intermédiaire de son NCSM pour le régler sur une distance de courte portée. Sans succès. Son intention était de passer près de l'objet à près de 350 nœuds. En se rapprochant il remarqua que l'AAV avait orienté l'une de ses extrémités fine vers lui, comme si, selon ses mots, "Il venait de nous remarquer et maintenant il nous pointait".
L'AAV commença alors à s'élever de son vol stationnaire. L'objet, qu'il décrivit plus tard comme bougeant en tic-tac, s'est élevé et fit deux cercles à droite, à environ un mile de la trajectoire en cercle du Hornet de Dave. Les instincts de BFM prirent le dessus et Dave poussa le nez vers le bas pour couper le bas du cercle. Alors il regarda l'AAV en mettant le nez en l'air, et tenta à nouveau d'asservir son radar via le NCSM. Encore une fois, l'APG-73 ne put verrouiller l'objet volant blanc de la taille d'un chasseur à quelques milliers de pieds de là.
Tout au long de ces manoeuvres, le WSO de Dave diffusait les événements en temps réel de l'interception vers le Princeton. Les opérateurs radar de l'E-2 entendirent sur le réseau sécurisé ce qui ressemblait à l'une des centaines d'interceptions qu'ils avaient entendues au fil des ans. À l'exception notable que les voix des équipages étaient plus stressées et que le verbiage pour identifier la cible était différent de ce qu'ils entendaient en général.
Dans leurs commentaires de débriefing, Dave, son OSM et les deux autres équipages déclarèrent que l'objet avait initialement plané comme un Harrier. Ils le décrivirent comme étant uniformément blanc, mesurant environ 45 pieds de longueur (grosso modo comme un avion de chasse), avec un axe horizontal discernable (comme un fuselage) mais sans fenêtres visibles, ni nacelles, ailes ou de systèmes de propulsion.
Alors que Dave tentait de manoeuvrer et d'essayer d'obtenir un verrou de combat avec son radar, l'AAV resserra son virage, "lift vector, puis vers l'arrière" comme Dave l'a décrit. Dave demanda immédiatement au Princeton un snap instantané, mais le radar SPY-1 avait également perdu le contact.
Les premières réponses du Princeton furent "image propre". Quelques instants plus tard, le Princeton relança "Vous n'allez pas le croire, mais il est à votre CAP." Le Princeton avait récupéré l'AAV planant à 24K au niveau assigné Lat / Long que Dave avait utilisé plus tôt pendant l'entraînement comme point orbital.
Bien que court en carburant, le vol FASTEAGLE bascula vers la position CAP pour essayer de reprendre l'AAV. Ils ne virent rien, ni sur leur chemin de retour vers Nimitz. Même le cercle de 100 mètres d'eau océanique turbulente avait disparu, lieu maintenant indiscernable du reste de la surface de la mer. Interrogé plus tard, Dave rapporta qu'il n'avait rien vu sur ou sous la surface de l'océan qui aurait pu causer ce cercle d'eau turbulente. Il était là quand ils acquirent visuellement le tic-tac, puis c'était parti lorsqu'ils cerclèrent quelques minutes plus tard.
De retour sur Nimitz, les quatre membres d'équipage se sont dirigés vers le paraloft pour retirer leur équipement. Les quatre équipages suivants de VFA-41 s'habillaient pour leur mission d'entraînement dans la même zone, avec utilisation des mêmes points Lat / Long que les points CAP de Dave. Dave et ses membres d'équipage transmirent ce qu'ils avaient vu aux nouveaux gars et leur rappelèrent d'enregistrer s'ils le pouvaient.
Le temps que lancement de la nouvelle équipe se fasse avec rendez-vous et vérification avec l'E-2 pour le contrôle, on était en début d'après-midi; 1500. Les avions se séparèrent, avec un cap vers ce même emplacement du sud de la PAC. Ils naviguaient à 20K et 300kts, max endurance. Là aussi le jet, le radar et aussi cette fois le FLIR, étaient nickel et fonctionnaient parfaitement.
Le WSO acquit d'abord un contact sur le radar à une distance d'environ 30 NM alors qu'il fonctionnait en mode balayage RWS. Il vérifia les coordonnées et ça oscillait en effet au point précis du CAP. Il tenta plusieurs verrouillage STT, sans succès. Plus tard, lors du débriefing, il expliqua qu'il avait plusieurs indices révélateurs d'EA.
L'aspect de la cible sur l'enregistrement de tracking tournait à 360 degrés avec d'autres indications de brouillage distinctes. En mode de balayage moins précis, le retour indiquait que l'objet était, aux dires du WSO, "à quelques milliers de pieds au-dessous de nous. Environ 15-20K- mais stationnaire." Le seul mouvement fut généré par le verrouillage radar du jet vers l'emplacement de la PAC.
Le WSO utilisa le pod FLIR à bord, l'asservissant à la piste faible que le mode RWS avait pu générer. Il enregistra la séquence sur l'enregistreur de bord. En utilisant le mode IR, il avait pu se verrouiller sur l'AAV., qui apparaissait sur l'écran dans l’enregistrement comme un objet blanc sur fond noir planant sans moyens connus.
La caméra Infra rouge ne détectait pas de gaz chauds sous l'AAV, comme avec un Harrier ou un hélicoptère. C'était simplement suspendu dans les airs. Il passa en mode TV et put verrouiller à nouveau le FLIR sur l'objet tout en essayant, sans succès, d'obtenir une piste STT sur le radar. Comme il regardait, l'AAV sortit de l'écran vers la gauche si soudainement qu'il sembla disparaître. Sur la bande au ralenti l'objet accélère hors du champ de vision avec une vitesse choquante. Le WSO ne fut pas en mesure de réacquérir l'AAV soit dans RWS soit avec le FLIR.
D'une manière ou d'une autre, la bande fut diffusée sur YouTube. Quelques années après l'incident, en me racontant l'histoire, Dave me montra le lien. C'était sans grand intérêt sans les informations de base. Mais remis dans le contexte, c'était incroyable, en particulier le ralenti du point d'accélération hors de l'écran. Pendant des années, j'ai raconté l'histoire à des amis et leur ai montré la vidéo.
Le mois dernier, lorsque j'ai appelé Dave pour me rafraîchir la mémoire avant de m'asseoir pour écrire cette rencontre bizarre, il m'a informé que la vidéo avait été retirée de YouTube. Il m'a dit qu'une agence gouvernementale avec un identificateur à trois lettres avait récemment mené une enquête sur les AAVs et avait interviewé exhaustivement toutes les parties impliquées, les sept membres d'équipage, dont les 6 membres du VFA-41 et Cheeks du VMFA-232, le fire control officer et le chef principal du Princeton, ainsi que l'opérateur radar de l'E-2. Ils ont même questionné l'équipage de l'USS Louisville, un sous-marin Fast-Attack de la classe de Los Angeles, qui faisait partie du Nimitz Carrier Strike Group, qui a rapporté qu'il n'y avait pas de contacts sonar non identifiés ou de bruits sous-marins étranges ce jour-là.
Je ne sais pas quoi faire de ces événements. J'ai aimé l'histoire dès sa première écoute parce que c'est tellement fou. Je n'avais jamais beaucoup réfléchi aux extraterrestres ou aux ovnis. C'était pour moi du gaspillage de le faire. S'ils voulaient prendre contact, ils le feraient. S'ils voulaient observer de loin, ils pourraient facilement être impossibles à discerner compte tenu de la haute technologie qu'ils semblent avoir.
Maintenant j'ai été confronté à des témoins crédibles. Pas des cinglés portant des chapeaux de papier mais des gens que je connais, des gens de mon monde. Il y eut plusieurs plates-formes corroborantes qui détectèrent l'AAV à l'aide de capteurs variés. Et, bien sûr, les huit globes oculaires qui ont eu le visuel sur le tic-tac blanc alors que Dave manœuvrait pour l'intercepter.
Dave n'a pas besoin d'être un étranger pour vous non plus. Regardez-le sur la série PBS, Carrier, et faites-vous votre propre opinion sur son professionnalisme et sa santé mentale.

Auteur: Chierici Paco

Info: 14 mars 2015. *Anomalous Aerial Vehicles

[ témoignage ] [ extraterrestres ]

 

Commentaires: 0

solipsismes confrontés

Bonsoir tout le monde,

Question, délicate ou ridiculement évidente, c'est selon, de ce qu'on peut qualifier d'interprétation subjective et personnelle versus ce qu'on pourrait identifier comme "objectif" dans les différents plans dans lesquels on voyage astralement.. 

Pour prendre un exemple enfonçons une porte ouverte liée à nos sens basiques, la synesthésie est un phénomène neurologique qui fait qu'un sens est associé - ou fusionné - systématiquement à un autre, pour faire court. J'en suis atteinte, et dans mon cas c'est les sons qui sont associés à des formes en couleur et en texture, avec une charge émotionnelle. Par exemple, le son du piano a pour moi une forme blanche laiteuse, opaque, concave, avec des bords plus ou moins colorés, alors que le violoncelle est rouge foncé mais lumineux, convexe, trace des lignes en s'approchant dans l'espace, etc.

Les études qui ont été faites là-dessus montrent que oh surprise, si c'est systématique et stable pour chacun (le piano se présente toujours blanc opaque pour moi)  c'est aussi complètement différent en fonction des personnes - pour quelqu'un d'autre qui présente ces caractéristiques neurologiques, le piano sera toujours vert+ autres attributs constants pour elle. Et bien sûr ce phénomène est présent à des degrés plus ou moins élevés, allant de l'inaperçu a l'handicap, finalement chez pas mal de gens.

Ca a déjà été dit et répété dans le groupe, mais j'ai aussi lu pas mal de posts/commentaires qui semblent difficilement prendre ce facteur en compte, en traitant des autres plans de conscience et des diverses expériences dont on parle ici.

J'ai aussi pu expérimenter et vérifié une ou deux fois que dans les autres plans de conscience, et au niveau énergétique, la même chose s'appliquait : sans en faire une généralité, on était 2 à percevoir un même phénomène, mais de façon très différente.

Et pourtant, il y a aussi des constantes qui semblent ressortir, le plan éthérique étant décrit comme bleu à la quasi unanimité par exemple... ou les "cavernes brunes du bas-astral ou tout est lent et pèse un tonne" (bon ça c'est peut-être moins consensuel, mais vu et vécu avec, à peu de choses près, la même description).

Du coup les amis... Comment mettez-vous des repères là-dedans ? En général, et dans les fils de discussion du groupe ? Est-ce important pour vous ? Ou à valeur nulle ? Je me suis bien fait ma petite idée, mais je suis assez curieuse d'autres perspectives... 

J'en profite aussi pour remercier chaleureusement Marc Auburn et les contributeurs de ce groupe, qui défrichent avec brio ces terra incognita...

Loïc Dubuckingham@ Auteur1. Moi je dirais que c'est simplement humain de vouloir que tout soit "repérable" et contrôler. Vous avez de la chance de pouvoir effectuer ces voyages là alors prenez la chance aussi de lâcher prise en m'étant un peu de côté l'obsession humaine de vouloir tout expliquer pour mieux comprendre. Ce n'est pas un reproche que je vous fait la mais une suggestion.

Auteur 1 @ Loïc Dubuckingham. Bonjour, je ne crois pas chercher à tout repérer et contrôler, et surtout pas dans ce genre de sujet... lâcher prise, bien sûr, mais de mon côté ça ne m’empêche pas de temps à autres d’essayer de comprendre ce que je vis. Jusqu’ici, ça ne m’a pas tellement joué de mauvais tours ??

Callirhoé Déicoon @ Loïc Dubuckingham. Je pense que la curiosité et l'envie de comprendre sont plutôt des moteurs sains. De + les divers témoignages et communications avec des entités laissent entendre que ce moteur est universel en tant que base de l'évolution des consciences, et non juste humain (désolée de déterrer ce fil 1 an après)

Marc Auburn@. Oui, la synesthésie est l'état naturel du corps de lumière. Toute perception suscite une correspondance avec toutes les autres perceptions, et pourtant en même temps on fait parfaitement le distinguo.

Auteur 1@ Marc Auburn. Oui, la distinction est claire. Ce que j’en retenais surtout, c’était le côté subjectif et propre à chacun, et j’avais tendance à partir du principe que si même un son est perçu différemment selon la personne, c’était logiquement pareil puissance X dans d’autres dimensions... mais, bon... je me prends peut être un peu la tête pas dans le bon sens ??

Callirhoé Déicoon @ Auteur 1. Au contraire, vous ne vous prenez pas la tête pour rien, c'est justement une question centrale… et éminemment complexe. Je ne sais pas mais on dirait que c'est comme s'il y avait une réalité archétypale dans l'astral, c'est-à-dire que les gens y voient la "même chose" (le même concept) mais avec des apparences qui varient…

Denis Cottard. Mon approche des réalités énergétiques est avant tout une approche par le sens, par l’intensité de signification, car curieusement, bien souvent, la sensation pure n’est pas centrale. Il y a des cas où elle l’est, quand il s’agit de situations fortement reliées au plan physique et où il faut des éléments qui puissent nous faire des repères, mais sinon je sais que c’est moi qui met le truc en image parce que c’est plus simple pour se souvenir et garder, et je reste d’ailleurs conscient de le faire. Donc, je conçois que chacun puisse "imager" à sa façon car chacun a sa sensibilité, certains sont plus visuels, d’autres tactiles, etc... et qu’il y a un symbolisme de représentation qui peut être très personnel. L’important étant que çà fasse sens pour celle ou celui qui fait l’expérience.

Donc je ne me fixe pas trop sur la forme des expériences (même si pour certains, c’est encore celle-ci qui est l’aspect le plus fascinant) car dès lors qu’on quitte la réalité matérielle, on évolue dans une réalité qui n’a aucune raison d’être particulièrement objective, et qu’à partir de certains plans d’existence, il n’y a tout simplement plus de forme ou alors, il y a quelque chose mais qui ne témoigne en rien de ce que nos sens pourrait témoigner. C’est en cela que j’affectionne particulièrement les sorties en tandem car au retour, la reconstruction s’effectue à deux et c’est très amusant : c’est un peu comme peindre un tableau à deux mains. C’est également ce que j’apprécie dans les témoignages des uns et des autres dans ce groupe, c’est que çà fait autant de point de vue différents sur des expériences qui sont souvent semblables. Là encore, je trouve que le sens s’enrichit.

Auteur 1 @ Denis Cottard. J’ai un peu la même façon d’aborder ça en principe. Mais j’ai été un peu secouée en lisant Dolores Cannon, de trouver des descriptions quand même très ressemblantes entre elles, et en particulier une description vraiment très similaire à une de mes expériences de sortie... et justement, jusque dans la forme... ça fout un peu une baffe à mon approche ?? - mais sinon, qu’est ce que c’est chouette de pouvoir lire tous ces points de vue, merci !  D'ailleurs Denis Cottard comment on fait des sorties en tandem ??

Denis Cottard @ Auteur 1. Alors, pour faire une sortie en tandem, il faut utiliser un protocole de sortie qui démarre comme une projection de conscience dans laquelle on s’investit progressivement. Il est bien de faire çà avec quelqu’un qu’on connaît bien, dont on a une signature énergétique, claire car tant qu’on ne sait pas se faire un véhicule à 2 places (qui peut se résumer à une bulle de taille adéquate), on peut se perdre et partir chacun dans son coin. D’autre part, au début, on est chacun bien calé dans un fauteuil mais on peut se parler si nécessaire et c’est très aidant pour savoir où est l’autre. Au fil de l’exploration, on se fait happé par la situation, et on ne se parle plus physiquement, mais on continue de se parler mentalement, car çà maintient le lien : c’est du genre : t’es là ? Oui et toi ? ?? on se fait nos commentaires, on se donne des indications de déplacement.

J’ai appris çà en cours de parapsychologie car c’était un exercice assez ludique qu’on faisait à chaque fin de cours. Il y avait une personne qui notait sur un papier, des lieux qu’elle allait visiter en esprit, et les autres n’avaient qu’à suivre son empreinte énergétique et dire à la fin, les sites dans lesquels ils avaient été, et on pouvait vérifier avec ce qui avait été inscrit. Surprenant ! Une de mes filles était excellente à ce jeu -là. Essayez, vous allez voir, déjà, c’est sympa comme tout, et puis, c’est la base pour effectuer une sortie à deux.

Dans ces sorties à deux, on peut décider de ce qu’on veut visiter, ou se laisser aller au hasard. Je sais que nombre d’entre vous vont penser : Bof, c’est que du remote viewing ! Mais faites-le et on en reparle : vous allez voir que c’est bien plus que çà, et que, un des intérêts de la chose, en dehors du fait qu’on peut confronter les deux expériences a posteriori, c’est que la conscience y est particulièrement vive et les perceptions très claires. ( à part peut-être qu’on peut y voir à l’envers - pas systématiquement mais çà peut arriver - c’est à dire comme l’image dans un miroir ce qui rend toute lecture particulièrement fastidieuse!!).

Avec l’habitude, on peut même le faire à distance de la personne. Il faut juste fixer un jour et une heure et on s’y met. On se donne RV là où on a "parqué" la bulle qui nous sert à voyager ensemble, et on se met dedans et quand l’autre y est aussi, on bouge.

Il y a une quinzaine d’année, avec une amie on était très désireux de savoir à quoi s’en tenir à propos de la 9 eme planète, ce corps qui fou le bordel dans les orbites des planètes extérieures. On s’y est rendu de cette façon là, et à l’époque on a été très surpris de rencontrer un corps noir comme l’encre et qui semblait même absorber toute lumière. Il faut dire que dans le soit-disant  "vide spatial" c’est très éclairé parce qu’on voit mille fois plus d’étoiles et ce corps se repère parce qu’il masque les étoiles sur son passage. Nous nous sommes rapproché et très honnêtement, ce truc tout noir , un peu grouillant (il y avait du mouvement, un peu comme de l’eau ou un quelque chose de fluide) n’était pas très engageant, et courageux mais pas téméraires, dans le doute on s’est tiré de là vite fait. J’ai lu cette semaine que des astronomes très sérieux envisagent que ce corps puisse être un mini trou noir. Tiens, tiens ...

Auteur 1 @ Denis Cottard ça à l’air très chouette et ça me rend curieuse, tout en me demandant avec qui j’aurais envie de faire ça ?? ... je sais pas... merci pour le partage.

Denis Cottard@auteur 1. Il faut faire çà avec quelqu'un que vous connaissez bien, parce qu'on est vraiment à poil !!! on entend tout ce que l'autre pense ou ressent. Heureusement, quand on est en esprit, on a pas trop de pulsion sexuelles, pour ne pas dire niveau zéro. Mais enfin, çà fait partie de ces voyages où l'on garde une certaine apparence, pour ne pas se perdre, on se voit aussi. çà pourrait être gênant !! ??

Auteur1 @ Denis Cottard. Certes ??

Reinald Durand. Pour revenir à ce qui est dit plus haut, évoquer l'objectivité et des constantes, des repères qui seraient fixes nous fait entrer sur un terrain glissant. La perception, de même que la connaissance, n'est jamais neutre. La perception est orientée, colorée par nos croyances, nos intentions, nos attentes, nos états intérieurs. Comme on dit, on voit ce qu'on veut voir, même si on n'en est pas toujours conscient ou qu'on a oublié la chose. Et si on fait intervenir des petits hommes gris ou des figures sombres encapuchonnées autour de son lit, il y a peut être une raison, qui n'a pas nécessairement à être jugée d'ailleurs en termes de bien ou de mal. Maintenant, on peut surtout en prendre conscience pour changer la nature de ses aventures... C'est la même chose dans la vie de tous les jours, je pense. Il peut être utile de prendre le temps d'examiner certaines choses: est-ce que ce sont des projections, est-ce qu'on n'en rajoute pas une couche, est-ce qu'on peut relier ce qu'on voit à des croyances, des intentions, des états intérieurs? Il y a un monde intérieur d'où jaillit cette réalité qu'il faut reconnaitre, à défaut on croira que tout cela nous arrive, indépendamment de notre volonté ( innocente victime, va!) que ce soit dans le rêve, dans les sorties hors corps, dans son quotidien, et si on change l'intérieur l'extérieur se met changer...??

Denis Cottard. Je suis bien d’accord, il ne faut pas oublier le caractère hautement subjectif d’expériences de ce genre.

C’est d’ailleurs tout l’intérêt de chercher à vérifier dans "la vie réelle", ce qui est vérifiable, et même de s’efforcer d’orienter nos sorties dans ce sens afin d’avoir une idée du pourcentage d’entre elles qui est validable et trouver le juste recul qu’il convient d’avoir à cet égard, car on va tous expérimenter un jour ou l’autre, ce truc de ouf qui va nous obliger à convenir qu’il y a bien là, un outil incroyable qui nous ouvre réellement des voies de connaissance objective, mais çà n’implique pas pour autant que toutes nos sorties soient des expériences de ce type.

J’ai longtemps pratiqué la radiesthésie, et j’y retrouve le même problème, et je pense que c’est encore la même chose avec la médiumnité. Toutes ces voies provoquent réellement une amplification de notre champ de perception mais dont il faut se garder de considérer la pertinence comme acquise une fois pour toute.

Denis Cottard. C'est comme pour "vu à la télé", çà ne veux pas dire que c'est juste à tous les coups.

Reinald Durand. Oui, qu'est qui est réel, qu'est-ce qui ne l'est pas ? l'imagination pourrait être réelle... Qu'est-ce qui va faire la différence? Pour moi, ça tourne autour de consensus, de conventions, d'accords souvent tacites reposant sur des objectifs communs... et une manière de camoufler les choses, filtrage propres à chaque monde ou dimension sur quelque chose d'infini. Alors il y a peut-être simplement moins de réalité lorsqu'on se trompe, lorsqu'on s'écarte de ce qu'on est profondément et qu'on souffre... Je ne nie pas le besoin d'objectivité, mais, comme tu dis, c'est essayer de voir deux fois. ??

Sofiane Thoulon. Bonjour, comme vous j'ai des synesthesies. Chez moi elles s'expriment beaucoup par les voyelles qui sont directement reliées à des couleurs (i rouge, a blanc, etc...) j'ai aussi des mots dont la sonorité se rapportent à des formes géométriques etc...

J'ai vécu lors d'une sortie l'été dernier, un phénomène que je dirais de cet ordre : alors que j'étais en train de sortir de mon corps, des entités sont venues autour de moi, je ne les voyais pas mais je sentais qu'elles étaient plusieurs. J'ai senti qu'elles me touchaient, elles faisaient une sorte d'expérience. Bref, rien de très rassurant sur le coup, d'autant plus que j'avais parlé quelques jours auparavant, avec une personne médium qui avait subie des attaques et qui voulait m'avertir du danger. Elle m'avait donc conseillé de les insulter sans relâche jusqu'à ce qu'elles partent. J'ai donc fait ça et, non seulement elles ne partaient pas, mais j'ai alors vu dans mon ''écran visuel'' une sorte d'onde verticale faite de lumière rose-rouge en mouvement et assez anguleuse. C'était clairement pour moi, la conversion visuelle de l'onde des insultes. Je n'ai même pas vraiment voulu interpréter, mais cette info est venue immédiatement après l'expérience. Pour en conclure, derrière n'importe quel Objet physique, de quelque nature qu'il soit, il y a un champ d'information d'ordre quantique et je pense que les synesthesies sont une sorte de perception de cette information quantique, que le cerveau humain essaie de convertir pour en comprendre l'essence. Mais finalement, ce qui fait la subjectivité des synesthesies, c'est peut-être bien cette conversion faite par le cerveau de chacun, pour comprendre l'essence des choses. Haha je ne sais même pas si je suis claire ??? je crois que je m'embrouille moi même !

Claude-Samuel Levine @ Sofiane Thoulon. Si c'est clair, je comprend bien. Du fait que moi même j'ai toujours eu des synesthésies très précises.

Lettres, chiffres, nombres, heures, jours de la semaine, mois, notes de musiques et orchestrations. D'ailleurs ce n'est pas qu'une association "couleur" ,la couleur envoit à une véritable ambiance. Exemple : une musique en LA majeur : La vert, Do# jaune doré => forêt au soleil, ou lumière de l'au-delà sur paysage, et avec la joie liée à la lumière. Le "Metal" : violence, rouge sombre noir avec lignes cassantes et les barres des rythmes.

Auteur: Anonymes pseudos

Info: Fil de discussion sur Explorateurs du réel avec Marc Auburn, octobre 2019

[ réalités individuelles ] [ cerveau filtre ] [ ésotérisme ] [ occultisme ]

 

Commentaires: 0

Ajouté à la BD par miguel

auto-programmation

Pieuvres et calmars modifient et corrigent (édit en anglais) leur ARN, tout en laissant l'ADN intact. Des changements qui pourraient expliquer l'intelligence et la flexibilité des céphalopodes dépourvus de coquille

De nombreux écrivains se plaignent lorsqu'un rédacteur  vient éditer et donc modifier leur article, mais les conséquences de la modification d'un seul mot ne sont généralement pas si graves.

Ce n'est pas le cas des instructions génétiques pour la fabrication des protéines. Même une petite modification peut empêcher une protéine de faire son travail correctement, ce qui peut avoir des conséquences mortelles. Ce n'est qu'occasionnellement qu'un changement est bénéfique. Il semble plus sage de conserver les instructions génétiques telles qu'elles sont écrites. À moins d'être une pieuvre.

Les pieuvres sont comme des extraterrestres qui vivent parmi nous : elles font beaucoup de choses différemment des animaux terrestres ou même des autres créatures marines. Leurs tentacules flexibles goûtent ce qu'ils touchent et ont leur esprit propre. Les yeux des pieuvres sont daltoniens, mais leur peau peut détecter la lumière par elle-même. Les pieuvres sont des maîtres du déguisement, changeant de couleur et de texture de peau pour se fondre dans leur environnement ou effrayer leurs rivaux. Et plus que la plupart des créatures, les pieuvres font gicler l'équivalent moléculaire de l'encre rouge sur leurs instructions génétiques avec un abandon stupéfiant, comme un rédacteur en chef déchaîné.

Ces modifications-éditions concernent l'ARN, molécule utilisée pour traduire les informations du plan génétique stocké dans l'ADN, tout en laissant l'ADN intact.

Les scientifiques ne savent pas encore avec certitude pourquoi les pieuvres et d'autres céphalopodes sans carapace, comme les calmars et les seiches, sont des modificateurs aussi prolifiques. Les chercheurs se demandent si cette forme d'édition génétique a donné aux céphalopodes une longueur d'avance sur le plan de l'évolution (ou un tentacule) ou si cette capacité n'est qu'un accident parfois utile. Les scientifiques étudient également les conséquences que les modifications de l'ARN peuvent avoir dans diverses conditions. Certaines données suggèrent que l'édition pourrait donner aux céphalopodes une partie de leur intelligence, mais au prix d'un ralentissement de l'évolution de leur ADN.

"Ces animaux sont tout simplement magiques", déclare Caroline Albertin, biologiste spécialiste du développement comparatif au Marine Biological Laboratory de Woods Hole (Massachusetts). "Ils ont toutes sortes de solutions différentes pour vivre dans le monde d'où ils viennent. L'édition de l'ARN pourrait contribuer à donner à ces créatures un grand nombre de solutions aux problèmes qu'elles peuvent rencontrer.

(vidéo - Contrairement à d'autres animaux à symétrie bilatérale, les pieuvres ne rampent pas dans une direction prédéterminée. Des vidéos de pieuvres en train de ramper montrent qu'elles peuvent se déplacer dans n'importe quelle direction par rapport à leur corps, et qu'elles changent de direction de rampe sans avoir à tourner leur corps. Dans le clip, la flèche verte indique l'orientation du corps de la pieuvre et la flèche bleue indique la direction dans laquelle elle rampe.)

Le dogme central de la biologie moléculaire veut que les instructions pour construire un organisme soient contenues dans l'ADN. Les cellules copient ces instructions dans des ARN messagers, ou ARNm. Ensuite, des machines cellulaires appelées ribosomes lisent les ARNm pour construire des protéines en enchaînant des acides aminés. La plupart du temps, la composition de la protéine est conforme au modèle d'ADN pour la séquence d'acides aminés de la protéine.

Mais l'édition de l'ARN peut entraîner des divergences par rapport aux instructions de l'ADN, créant ainsi des protéines dont les acides aminés sont différents de ceux spécifiés par l'ADN.

L'édition modifie chimiquement l'un des quatre éléments constitutifs de l'ARN, ou bases. Ces bases sont souvent désignées par les premières lettres de leur nom : A, C, G et U, pour adénine, cytosine, guanine et uracile (la version ARN de la base ADN thymine). Dans une molécule d'ARN, les bases sont liées à des sucres ; l'unité adénine-sucre, par exemple, est appelée adénosine.

Il existe de nombreuses façons d'éditer des lettres d'ARN. Les céphalopodes excellent dans un type d'édition connu sous le nom d'édition de l'adénosine à l'inosine, ou A-to-I. Cela se produit lorsqu'une enzyme appelée ADAR2 enlève un atome d'azote et deux atomes d'hydrogène de l'adénosine (le A). Ce pelage chimique transforme l'adénosine en inosine (I).

 Les ribosomes lisent l'inosine comme une guanine au lieu d'une adénine. Parfois, ce changement n'a aucun effet sur la chaîne d'acides aminés de la protéine résultante. Mais dans certains cas, la présence d'un G à la place d'un A entraîne l'insertion d'un acide aminé différent dans la protéine. Ce type d'édition de l'ARN modifiant la protéine est appelé recodage de l'ARN.

Les céphalopodes à corps mou ont adopté le recodage de l'ARN à bras-le-corps, alors que même les espèces étroitement apparentées sont plus hésitantes à accepter les réécritures, explique Albertin. "Les autres mollusques ne semblent pas le faire dans la même mesure.

L'édition de l'ARN ne se limite pas aux créatures des profondeurs. Presque tous les organismes multicellulaires possèdent une ou plusieurs enzymes d'édition de l'ARN appelées enzymes ADAR, abréviation de "adénosine désaminase agissant sur l'ARN", explique Joshua Rosenthal, neurobiologiste moléculaire au Marine Biological Laboratory.

Les céphalopodes possèdent deux enzymes ADAR. L'homme possède également des versions de ces enzymes. "Dans notre cerveau, nous modifions une tonne d'ARN. Nous le faisons beaucoup", explique Rosenthal. Au cours de la dernière décennie, les scientifiques ont découvert des millions d'endroits dans les ARN humains où se produit l'édition.

Mais ces modifications changent rarement les acides aminés d'une protéine. Par exemple, Eli Eisenberg, de l'université de Tel Aviv, et ses collègues ont identifié plus de 4,6 millions de sites d'édition dans les ARN humains. Parmi ceux-ci, seuls 1 517 recodent les protéines, ont rapporté les chercheurs l'année dernière dans Nature Communications. Parmi ces sites de recodage, jusqu'à 835 sont partagés avec d'autres mammifères, ce qui suggère que les forces de l'évolution ont préservé l'édition à ces endroits.

(Encadré :  Comment fonctionne l'édition de l'ARN ?

Dans une forme courante d'édition de l'ARN, une adénosine devient une inosine par une réaction qui supprime un groupe aminé et le remplace par un oxygène (flèches). L'illustration montre une enzyme ADAR se fixant à un ARN double brin au niveau du "domaine de liaison de l'ARNdb". La région de l'enzyme qui interagit pour provoquer la réaction, le "domaine de la désaminase", est positionnée près de l'adénosine qui deviendra une inosine.)

Les céphalopodes portent le recodage de l'ARN à un tout autre niveau, dit Albertin. L'encornet rouge (Doryteuthis pealeii) possède 57 108 sites de recodage, ont rapporté Rosenthal, Eisenberg et leurs collègues en 2015 dans eLife. Depuis, les chercheurs ont examiné plusieurs espèces de pieuvres, de calmars et de seiches, et ont à chaque fois trouvé des dizaines de milliers de sites de recodage.

Les céphalopodes à corps mou, ou coléoïdes, pourraient avoir plus de possibilités d'édition que les autres animaux en raison de l'emplacement d'au moins une des enzymes ADAR, ADAR2, dans la cellule. La plupart des animaux éditent les ARN dans le noyau - le compartiment où l'ADN est stocké et copié en ARN - avant d'envoyer les messages à la rencontre des ribosomes. Mais chez les céphalopodes, les enzymes se trouvent également dans le cytoplasme, l'organe gélatineux des cellules, ont découvert Rosenthal et ses collègues (SN : 4/25/20, p. 10).

Le fait d'avoir des enzymes d'édition dans deux endroits différents n'explique pas complètement pourquoi le recodage de l'ARN chez les céphalopodes dépasse de loin celui des humains et d'autres animaux. Cela n'explique pas non plus les schémas d'édition que les scientifiques ont découverts.

L'édition de l'ARN amènerait de la flexibilité aux céphalopodes

L'édition n'est pas une proposition "tout ou rien". Il est rare que toutes les copies d'un ARN dans une cellule soient modifiées. Il est beaucoup plus fréquent qu'un certain pourcentage d'ARN soit édité tandis que le reste conserve son information originale. Le pourcentage, ou fréquence, de l'édition peut varier considérablement d'un ARN à l'autre ou d'une cellule ou d'un tissu à l'autre, et peut dépendre de la température de l'eau ou d'autres conditions. Chez le calmar à nageoires longues, la plupart des sites d'édition de l'ARN étaient édités 2 % ou moins du temps, ont rapporté Albertin et ses collègues l'année dernière dans Nature Communications. Mais les chercheurs ont également trouvé plus de 205 000 sites qui étaient modifiés 25 % du temps ou plus.

Dans la majeure partie du corps d'un céphalopode, l'édition de l'ARN n'affecte pas souvent la composition des protéines. Mais dans le système nerveux, c'est une autre histoire. Dans le système nerveux du calmar à nageoires longues, 70 % des modifications apportées aux ARN producteurs de protéines recodent ces dernières. Dans le système nerveux de la pieuvre californienne à deux points (Octopus bimaculoides), les ARN sont recodés trois à six fois plus souvent que dans d'autres organes ou tissus.

(Photo -  L'encornet rouge recode l'ARN à plus de 50 000 endroits. Le recodage de l'ARN pourrait aider le calmar à réagir avec plus de souplesse à son environnement, mais on ne sait pas encore si le recodage a une valeur évolutive. Certains ARNm possèdent plusieurs sites d'édition qui modifient les acides aminés des protéines codées par les ARNm. Dans le système nerveux de l'encornet rouge, par exemple, 27 % des ARNm ont trois sites de recodage ou plus. Certains contiennent 10 sites ou plus. La combinaison de ces sites d'édition pourrait entraîner la fabrication de plusieurs versions d'une protéine dans une cellule.)

Le fait de disposer d'un large choix de protéines pourrait donner aux céphalopodes "plus de souplesse pour réagir à l'environnement", explique M. Albertin, "ou leur permettre de trouver diverses solutions au problème qui se pose à eux". Dans le système nerveux, l'édition de l'ARN pourrait contribuer à la flexibilité de la pensée, ce qui pourrait expliquer pourquoi les pieuvres peuvent déverrouiller des cages ou utiliser des outils, pensent certains chercheurs. L'édition pourrait être un moyen facile de créer une ou plusieurs versions d'une protéine dans le système nerveux et des versions différentes dans le reste du corps, explique Albertin.

Lorsque l'homme et d'autres vertébrés ont des versions différentes d'une protéine, c'est souvent parce qu'ils possèdent plusieurs copies d'un gène. Doubler, tripler ou quadrupler les copies d'un gène "permet de créer tout un terrain de jeu génétique pour permettre aux gènes de s'activer et d'accomplir différentes fonctions", explique M. Albertin. Mais les céphalopodes ont tendance à ne pas dupliquer les gènes. Leurs innovations proviennent plutôt de l'édition.

Et il y a beaucoup de place pour l'innovation. Chez le calmar, les ARNm servant à construire la protéine alpha-spectrine comportent 242 sites de recodage. Toutes les combinaisons de sites modifiés et non modifiés pourraient théoriquement créer jusqu'à 7 x 1072 formes de la protéine, rapportent Rosenthal et Eisenberg dans le numéro de cette année de l'Annual Review of Animal Biosciences (Revue annuelle des biosciences animales). "Pour mettre ce chiffre en perspective, écrivent les chercheurs, il suffit de dire qu'il éclipse le nombre de toutes les molécules d'alpha-spectrine (ou, d'ailleurs, de toutes les molécules de protéines) synthétisées dans toutes les cellules de tous les calmars qui ont vécu sur notre planète depuis l'aube des temps.

Selon Kavita Rangan, biologiste moléculaire à l'université de Californie à San Diego, ce niveau de complexité incroyable ne serait possible que si chaque site était indépendant. Rangan a étudié le recodage de l'ARN chez le calmar californien (Doryteuthis opalescens) et le calmar à nageoires longues. La température de l'eau incite les calmars à recoder les protéines motrices appelées kinésines qui déplacent les cargaisons à l'intérieur des cellules.

Chez l'encornet rouge, l'ARNm qui produit la kinésine-1 comporte 14 sites de recodage, a découvert Mme Rangan. Elle a examiné les ARNm du lobe optique - la partie du cerveau qui traite les informations visuelles - et du ganglion stellaire, un ensemble de nerfs impliqués dans la génération des contractions musculaires qui produisent des jets d'eau pour propulser le calmar.

Chaque tissu produit plusieurs versions de la protéine. Rangan et Samara Reck-Peterson, également de l'UC San Diego, ont rapporté en septembre dernier dans un article publié en ligne sur bioRxiv.org que certains sites avaient tendance à être édités ensemble. Leurs données suggèrent que l'édition de certains sites est coordonnée et "rejette très fortement l'idée que l'édition est indépendante", explique Rangan. "La fréquence des combinaisons que nous observons ne correspond pas à l'idée que chaque site a été édité indépendamment.

L'association de sites d'édition pourrait empêcher les calmars et autres céphalopodes d'atteindre les sommets de complexité dont ils sont théoriquement capables. Néanmoins, l'édition de l'ARN offre aux céphalopodes un moyen d'essayer de nombreuses versions d'une protéine sans s'enfermer dans une modification permanente de l'ADN, explique M. Rangan.

Ce manque d'engagement laisse perplexe Jianzhi Zhang, généticien évolutionniste à l'université du Michigan à Ann Arbor. "Pour moi, cela n'a pas de sens", déclare-t-il. "Si vous voulez un acide aminé particulier dans une protéine, vous devez modifier l'ADN. Pourquoi changer l'ARN ?

L'édition de l'ARN a-t-elle une valeur évolutive ?

L'édition de l'ARN offre peut-être un avantage évolutif. Pour tester cette idée, Zhang et Daohan Jiang, alors étudiant de troisième cycle, ont comparé les sites "synonymes", où les modifications ne changent pas les acides aminés, aux sites "non synonymes", où le recodage se produit. Étant donné que les modifications synonymes ne modifient pas les acides aminés, les chercheurs ont considéré que ces modifications étaient neutres du point de vue de l'évolution. Chez l'homme, le recodage, ou édition non synonyme, se produit sur moins de sites que l'édition synonyme, et le pourcentage de molécules d'ARN qui sont éditées est plus faible que sur les sites synonymes.

"Si nous supposons que l'édition synonyme est comme un bruit qui se produit dans la cellule, et que l'édition non-synonyme est moins fréquente et [à un] niveau plus bas, cela suggère que l'édition non-synonyme est en fait nuisible", explique Zhang. Même si le recodage chez les céphalopodes est beaucoup plus fréquent que chez les humains, dans la plupart des cas, le recodage n'est pas avantageux, ou adaptatif, pour les céphalopodes, ont affirmé les chercheurs en 2019 dans Nature Communications.

Il existe quelques sites communs où les pieuvres, les calmars et les seiches recodent tous leurs ARN, ont constaté les chercheurs, ce qui suggère que le recodage est utile dans ces cas. Mais il s'agit d'une petite fraction des sites d'édition. Zhang et Jiang ont constaté que quelques autres sites édités chez une espèce de céphalopode, mais pas chez les autres, étaient également adaptatifs.

Si ce n'est pas si utile que cela, pourquoi les céphalopodes ont-ils continué à recoder l'ARN pendant des centaines de millions d'années ? L'édition de l'ARN pourrait persister non pas parce qu'elle est adaptative, mais parce qu'elle crée une dépendance, selon Zhang.

Zhang et Jiang ont proposé un modèle permettant de nuire (c'est-à-dire une situation qui permet des modifications nocives de l'ADN). Imaginez, dit-il, une situation dans laquelle un G (guanine) dans l'ADN d'un organisme est muté en A (adénine). Si cette mutation entraîne un changement d'acide aminé nocif dans une protéine, la sélection naturelle devrait éliminer les individus porteurs de cette mutation. Mais si, par chance, l'organisme dispose d'un système d'édition de l'ARN, l'erreur dans l'ADN peut être corrigée par l'édition de l'ARN, ce qui revient à transformer le A en G. Si la protéine est essentielle à la vie, l'ARN doit être édité à des niveaux élevés de sorte que presque chaque copie soit corrigée.

 Lorsque cela se produit, "on est bloqué dans le système", explique M. Zhang. L'organisme est désormais dépendant de la machinerie d'édition de l'ARN. "On ne peut pas la perdre, car il faut que le A soit réédité en G pour survivre, et l'édition est donc maintenue à des niveaux élevés.... Au début, on n'en avait pas vraiment besoin, mais une fois qu'on l'a eue, on en est devenu dépendant".

Zhang soutient que ce type d'édition est neutre et non adaptatif. Mais d'autres recherches suggèrent que l'édition de l'ARN peut être adaptative.

L'édition de l'ARN peut fonctionner comme une phase de transition, permettant aux organismes de tester le passage de l'adénine à la guanine sans apporter de changement permanent à leur ADN. Au cours de l'évolution, les sites où les adénines sont recodées dans l'ARN d'une espèce de céphalopode sont plus susceptibles que les adénines non éditées d'être remplacées par des guanines dans l'ADN d'une ou de plusieurs espèces apparentées, ont rapporté les chercheurs en 2020 dans PeerJ. Et pour les sites fortement modifiés, l'évolution chez les céphalopodes semble favoriser une transition de A à G dans l'ADN (plutôt qu'à la cytosine ou à la thymine, les deux autres éléments constitutifs de l'ADN). Cela favorise l'idée que l'édition peut être adaptative.

D'autres travaux récents de Rosenthal et de ses collègues, qui ont examiné les remplacements de A en G chez différentes espèces, suggèrent que le fait d'avoir un A modifiable est un avantage évolutif par rapport à un A non modifiable ou à un G câblé.

(Tableau :  Quelle est la fréquence de l'enregistrement de l'ARN ?

Les céphalopodes à corps mou, notamment les pieuvres, les calmars et les seiches, recodent l'ARN dans leur système nerveux sur des dizaines de milliers de sites, contre un millier ou moins chez l'homme, la souris, la mouche des fruits et d'autres espèces animales. Bien que les scientifiques aient documenté le nombre de sites d'édition, ils auront besoin de nouveaux outils pour tester directement l'influence du recodage sur la biologie des céphalopodes.

Schéma avec comparaison des nombre de sites de recodage de l'ARN chez les animaux

J.J.C. ROSENTHAL ET E. EISENBERG/ANNUAL REVIEW OF ANIMAL BIOSCIENCES 2023 )

Beaucoup de questions en suspens

Les preuves pour ou contre la valeur évolutive du recodage de l'ARN proviennent principalement de l'examen de la composition génétique totale, ou génomes, de diverses espèces de céphalopodes. Mais les scientifiques aimeraient vérifier directement si les ARN recodés ont un effet sur la biologie des céphalopodes. Pour ce faire, il faudra utiliser de nouveaux outils et faire preuve de créativité.

Rangan a testé des versions synthétiques de protéines motrices de calmars et a constaté que deux versions modifiées que les calmars fabriquent dans le froid se déplaçaient plus lentement mais plus loin le long de pistes protéiques appelées microtubules que les protéines non modifiées. Mais il s'agit là de conditions artificielles de laboratoire, sur des lames de microscope. Pour comprendre ce qui se passe dans les cellules, Mme Rangan aimerait pouvoir cultiver des cellules de calmar dans des boîtes de laboratoire. Pour l'instant, elle doit prélever des tissus directement sur le calmar et ne peut obtenir que des instantanés de ce qui se passe. Les cellules cultivées en laboratoire pourraient lui permettre de suivre ce qui se passe au fil du temps.

M. Zhang explique qu'il teste son hypothèse de l'innocuité en amenant la levure à s'intéresser à l'édition de l'ARN. La levure de boulanger (Saccharomyces cerevisiae) ne possède pas d'enzymes ADAR. Mais Zhang a modifié une souche de cette levure pour qu'elle soit porteuse d'une version humaine de l'enzyme. Les enzymes ADAR rendent la levure malade et la font croître lentement, explique-t-il. Pour accélérer l'expérience, la souche qu'il utilise a un taux de mutation supérieur à la normale et peut accumuler des mutations G-A. Mais si l'édition de l'ARN peut corriger ces mutations, il est possible d'obtenir des résultats positifs. Mais si l'édition de l'ARN peut corriger ces mutations, la levure porteuse d'ADAR pourrait se développer mieux que celles qui n'ont pas l'enzyme. Et après de nombreuses générations, la levure pourrait devenir dépendante de l'édition, prédit Zhang.

Albertin, Rosenthal et leurs collègues ont mis au point des moyens de modifier les gènes des calmars à l'aide de l'éditeur de gènes CRISPR/Cas9. L'équipe a créé un calmar albinos en utilisant CRISPR/Cas9 pour supprimer, ou désactiver, un gène qui produit des pigments. Les chercheurs pourraient être en mesure de modifier les sites d'édition dans l'ADN ou dans l'ARN et de tester leur fonction, explique Albertin.

Cette science n'en est qu'à ses débuts et l'histoire peut mener à des résultats inattendus. Néanmoins, grâce à l'habileté des céphalopodes en matière d'édition, la lecture de cet article ne manquera pas d'être intéressante.

 

Auteur: Internet

Info: https://www.sciencenews.org/article/octopus-squid-rna-editing-dna-cephalopods, Tina Hesman Saey, 19 may 2023

[ poulpes ] [ calamars ] [ homme-animal ]

 

Commentaires: 0

Ajouté à la BD par miguel