Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 35
Temps de recherche: 0.0375s

coadaptation

Étrangeté du vivant : deux araignées recréent une fleur pour survivre

Beaucoup de découvertes scientifiques majeures ont été faites par hasard. Celle-ci ne fait pas exception : des scientifiques ont surpris un couple d'araignées s'associant afin de recréer une fleur ! La première observation de mimétisme coopératif pour attirer les proies et repousser les prédateurs.

Il était une fois une araignée rêvant de ressembler à une fleur... Ne pouvant y parvenir seule, elle s'associa à un partenaire de son espèce. Ensemble, ils formèrent une magnifique tromperie visuelle, destinée tant à leurs proies qu'à leurs prédateurs. Un jour, un couple de spécialistes de l'environnement de l'université du Yunnan, en Chine, découvrit fortuitement cette coopération, et choisit de la documenter dans la revue Frontiers in Ecology and the Environment.

Voici l'histoire de cette association romantico-stratégique.

Elle débute dans une forêt tropicale humide à Xishuangbanna, dans le sud-ouest de la Chine. Dans le cadre de leur projet de recherche, Shi-Mao Wu et Jiang-Yun Gao y sont en pleine exploration lorsqu'ils tombent sur une araignée tentant manifestement d'imiter les fleurs qui l'entourent. Intrigués, ils s'approchent plus près, et découvrent qu'il s'agit en fait de deux araignées l'une sur l'autre, coopérant pour recréer l'image de cette fleur. Ce que les chercheurs ne savent pas encore, c'est qu'ils sont les premiers témoins d'un mimétisme coopératif, qui n'avait jamais été observé auparavant chez aucune espèce. 

A deux, on est plus forts ! 

Ces araignées, de leur nom latin Thomisus guangxicus, font partie de la famille des araignées-crabes, les Thomisidae. Elles survivent en se fondant dans le décor, d'une part pour se cacher de leurs prédateurs - généralement des oiseaux - et d'autre part pour piéger leurs proies - généralement des insectes visitant des fleurs. La paire observée par les chercheurs était composée d'un mâle et d'une femelle. La femelle avait l'apparence de pétales blancs pâles, imitant la corolle fusionnée de la fleur. Le mâle, quant à lui beaucoup plus petit et positionné sur le dos de la femelle, prenait l'apparence du pistil et des étamines. Le duo imitait parfaitement les fleurs de Hoya pandatura, de la famille des Asclepiadaceae, dont il était entouré.

Serait-ce le fruit d’une coévolution ?

La reproduction de la complexité de cette fleur n'est possible que par la présence d'araignées des deux sexes. Il s'agit d'un cas de coopération à double avantage, qui élargit les potentiels mimétiques des araignées mâles et femelles : les individus améliorent leur survie en tant que proie et leur efficacité en tant que prédateur. Comment ont-ils évolué ainsi ensemble ? C'est la question que se posent désormais les chercheurs. L'étude de la coévolution de ces araignées mâles et femelles peut représenter une piste de compréhension de la mise en place et de la variété des mimétismes coopératifs au sein du vivant.

 

Auteur: Internet

Info: https://www.futura-sciences.com, 30 mars 2024 - Léa Picon

[ animal-végétal ] [ tétravalence ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

microbiologie

Les bactéries prennent des décisions basées sur des souvenirs générationnels

Elles choisissent de pulluler en fonction de ce qui est arrivé à leurs arrière-grands-parents.

Même les organismes sans cerveau peuvent se souvenir de leur passé : les scientifiques ont découvert que la bactérie Escherichia coli forme son propre type de mémoire suite à son exposition aux nutriments. Ils transmettent ces souvenirs aux générations futures, ce qui peut les aider à échapper aux antibiotiques, a rapporté l'équipe de recherche dans les Actes de la National Academy of Sciences USA .

" Nous considérons généralement les microbes comme des organismes unicellulaires [qui] font chacun leur propre travail ", explique George O'Toole, microbiologiste au Dartmouth College, qui étudie les structures bactériennes appelées biofilms. En réalité, les bactéries survivent souvent en travaillant ensemble. Tout comme les abeilles qui déménagent leur ruche, les colonies de bactéries à la recherche d’un habitat permanent se déplacent souvent sous forme d’unités collectives appelées essaims.

Ces essaims peuvent mieux résister à l’exposition aux antibiotiques en raison de leur densité cellulaire élevée, ce qui les rend particulièrement intéressants pour les microbiologistes tels que Souvik Bhattacharyya de l’Université du Texas à Austin. Il étudiait le comportement d’essaimage d’ E. coli lorsqu’il a observé ce qu’il appelle des " modèles de colonies étranges " qu’il n’avait jamais vus auparavant. En isolant des bactéries individuelles, lui et ses collègues ont découvert que les cellules se comportaient différemment en fonction de leur expérience passée. Les cellules bactériennes des colonies qui avaient déjà essaimé étaient plus enclines à essaimer à nouveau que celles qui ne l'avaient pas fait, et leur progéniture a emboîté le pas pendant au moins quatre générations, soit environ deux heures.

En modifiant le génome d'E. coli , les scientifiques ont découvert que cette capacité repose sur deux gènes qui contrôlent ensemble l'absorption et la régulation du fer. Les cellules présentant de faibles niveaux de cet important nutriment bactérien semblaient prédisposées à former des essaims mobiles. Les chercheurs soupçonnent que ces essaims pourraient alors rechercher de nouveaux emplacements présentant des niveaux de fer idéaux, explique Bhattacharyya.

Des recherches antérieures ont montré que certaines bactéries peuvent se souvenir et transmettre à leur progéniture des détails de leur environnement physique, tels que l'existence d'une surface stable, explique O'Toole, mais cette étude suggère que les bactéries peuvent également se souvenir de la présence de nutriments. Les bactéries, dont certaines se reproduisent plusieurs fois par heure, utilisent ces détails pour déterminer l'adéquation à long terme d'un emplacement et peuvent même s'installer ensemble dans des biofilms, qui sont plus permanents.

Les microbes autres que E. coli se souviennent probablement aussi de l'exposition au fer, dit O'Toole. " Je serais vraiment choqué si [ces résultats] ne tenaient pas également dans d'autres bugs." Il espère que les recherches futures examineront au niveau cellulaire comment les bactéries traduisent la détection du fer en différents comportements.

Étant donné que les bactéries sont plus difficiles à tuer lorsqu’elles forment des structures plus grandes, comprendre pourquoi elles le font pourrait éventuellement conduire à de nouvelles approches pour lutter contre les infections tenaces. Cette recherche offre l'opportunité de développer de nouveaux traitements contre les infections, dit O'Toole, d'autant plus cruciale que les antibiotiques deviennent de moins en moins efficaces pour tuer ces microbes,



 

Auteur: Internet

Info: https://www.scientificamerican.com/, Allison Parshall, 29 JANVIER 2024

[ atavismes ] [ adaptation ] [ transgénérationnel ] [ procaryotes ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

microbiote

Le plus grand écosystème microbien du monde découvert sous la croûte terrestre
Des millions d’espèces microbiennes ont été découvertes par un conglomérat de 1 200 scientifiques, composé de géologues, de chimistes, de physiciens et de microbiologistes originaires de 52 pays. Leurs travaux ont été publiés lundi 10 décembre à l’occasion du sommet américain de géophysique à Washington. Pendant 10 ans, ils ont réalisé des centaines de forages, parfois à 5 kilomètres de profondeur sous la croûte terrestre et sous la mer. Ils y ont découvert un monde insoupçonné qui comprend des membres des trois domaines biologiques : les bactéries, les archées et les eucaryotes. Cette découverte vient questionner nos certitudes sur la formation de la vie sur Terre et ailleurs.

Une population aussi diversifiée que celle d'Amazonie
Nous sommes près de 7 milliards d’êtres humains mais nous ne représentons qu’une toute petite partie de la vie sur Terre. L’écosystème découvert par les scientifiques atteint un volume de près de deux fois celui de nos océans et un poids équivalent à une vingtaine de milliards de tonnes, soit beaucoup plus que le poids total de l’humanité. Sa diversité est comparable à celle de l’Amazonie. Ces millions de microbes "vivent partout dans les sédiments" explique Fumio Inagaki de l'agence japonaise pour les sciences marines et de la terre. "Ce sont de nouvelles branches dans l'arbre de la vie qui existent sur Terre depuis des milliards d'années, sans qu’on ne les ait jamais remarquées" ajoute Karen Lloyd de l'université du Tennessee. Une grande partie de la vie se trouverait donc à l'intérieur de la Terre plutôt qu'à sa surface et ces microbes "souterrains" représentent, selon les scientifiques, 70 % de la totalité de ces populations.

Un monde à part
Une telle découverte est souvent accompagnée de son lot d’énigmes et cette biosphère remet en cause de nombreuses certitudes que nous avons sur la vie. Ces microbes sont en effet très différents de leurs cousins vivant en surface. Ils vivent dans des milieux extrêmes très sombres et très chauds. "Leur source d'énergie n'est pas le Soleil et la photosynthèse. Ici, ce qui fait démarrer leurs communautés, c'est la chimiosynthèse. Ils tirent leur énergie des roches qui s'altèrent" explique Bénédicte Menez, responsable de l'équipe géomicrobiologie à l'Institut de Physique du Globe de Paris.

Leur rapport au temps est également différent. Alors qu’à la surface, nous dépendons de cycles relativement rapides, réglés sur le Soleil et sur la Lune, ces organismes souterrains font partie de cycles lents à l'échelles des temps géologiques, et ne dépendent pas de notre étoile. Certaines espèces vivent en effet depuis des milliers d’années et sont à peine en mouvement, excepté en cas de déplacement des plaques tectoniques ou d’éruptions. Les scientifiques ne comprennent pas leur mécanisme de survie à long terme : "Ils sont là et attendent…" conclut un scientifique.

La découverte de cette biosphère pose la question même de l'origine de la vie sur Terre : la vie a-t-elle commencé dans les profondeurs de la Terre pour ensuite migrer vers le Soleil, ou a-t-elle commencé à la surface pour ensuite migrer vers le bas ? Et comment ces microbes survivent-ils au manque de nutriments et aux conditions extrêmes ? Pour Robert Hazen, minéralogiste à la Carnegie Institution for Science, si "la vie sur Terre peut être si différente de ce à quoi nous sommes habitués, quelle étrangeté pourrait nous attendre en cherchant la vie dans d'autres mondes ?"

Auteur: Internet

Info: https://www.nationalgeographic.fr, trad Arnaud Sacleux , nov 2019

[ énigme ]

 

Commentaires: 0

Ajouté à la BD par miguel

réversibilité

La gravité quantique pourrait inverser causes et effets.

Toute théorie de la gravité quantique va devoir se colleter avec des trucs temporels bizarres.

Vous avez probablement entendu parler du chat de Schrödinger, ce  malheureux félin, dans une boîte, où il est simultanément vivant et mort jusqu'à ce que la boîte soit ouverte pour révéler son état réel. Maintenant, faites-vous une idée du temps de Schrödinger, une situation dans laquelle un événement peut être simultanément la cause et l'effet d'un autre événement. 

Un tel scénario pourrait être inévitable dans la théorie de la gravité quantique, domaine encore flou d'une physique qui cherche à combiner la théorie de la relativité générale d'Albert Einstein avec les mécanismes de la mécanique quantique. Dans un nouvel article, des scientifiques créent un mélange des deux en imaginant des vaisseaux spatiaux près d'une énorme planète dont la masse ralentit le temps. Ils en concluent que les vaisseaux pourraient se retrouver dans un état où la causalité est inversée : Tel événement pourrait finir par causer un autre événement qui s'est produit avant le premier. 

"On peut imaginer ce genre de scénario dans l'ordre temporel, où la cause et l'effet sont en superposition, inversés ou non", a déclaré le co-auteur de l'étude, Igor Pikovski, physicien au Center for Quantum Science and Engineering du Stevens Institute of Technology, dans le New Jersey. "C'est quelque chose qui devrait normalement se produire une fois que nous aurons une théorie complète de la gravité quantique".

Le temps quantique

La célèbre expérience de pensée du chat de Schrödinger demande à un spectateur d'imaginer une boîte contenant un chat et une particule radioactive qui, une fois désintégrée, tuera le malheureux félin. En vertu du principe de superposition quantique, la survie ou la mort du chat est tout aussi probable jusqu'à ce qu'elle soit mesurée - ainsi, jusqu'à ce que la boîte soit ouverte, le chat est simultanément vivant et mort. En mécanique quantique, la superposition signifie qu'une particule peut exister dans plusieurs états en même temps, tout comme le chat de Schrödinger. 

Cette nouvelle expérience de pensée, publiée le 21 août dans la revue Nature Communications, combine le principe de superposition quantique avec la théorie de la relativité générale d'Einstein. Selon la relativité générale, la masse d'un objet géant peut ralentir le temps. Ce phénomène est bien établi et mesurable, a déclaré M. Pikovski ; un astronaute en orbite autour de la Terre verra le temps s'écouler un tout petit peu plus vite que son jumeau sur la planète. (C'est aussi pourquoi tomber dans un trou noir serait une expérience très graduelle). 

Ainsi, si un vaisseau spatial futuriste se trouve à proximité d'une planète massive, son équipage ressentira le temps comme un peu plus lent que les personnes situées dans un autre vaisseau spatial stationné plus loin. Ajoutez à ça un peu de mécanique quantique et vous pouvez imaginer une situation dans laquelle cette planète est superposée simultanément près et loin des deux vaisseaux spatiaux. 

Le temps devient bizarre

Dans ce scénario de superposition de deux vaisseaux qui expérimentent le temps sur des lignes temporelles différentes, la cause et l'effet peuvent devenir bizarres. Par exemple, supposons que les vaisseaux doivent effectuer une mission d'entraînement au cours de laquelle ils se tirent dessus et s'esquivent mutuellement, en sachant parfaitement à quel moment les missiles seront lancés et intercepteront leurs positions. S'il n'y a pas de planète massive à proximité qui perturbe l'écoulement du temps, c'est un exercice simple. En revanche, si cette planète massive est présente et que le capitaine du vaisseau ne tient pas compte du ralentissement du temps, l'équipage pourrait être en retard pour esquiver et être détruit. 

Avec une telle planète en superposition, simultanément proche et lointaine, il serait impossible de savoir si les vaisseaux esquivent trop tard et se détruisent mutuellement ou s'ils s'écartent et survivent. Qui plus est, la cause et l'effet pourraient être inversés, selon M. Pikovski. Bref il faut imaginer deux événements liés par la causalité

"A et B peuvent s'influencer mutuellement dans un état de superposition, mais dans un cas, A est avant B et inversément, explique M. Pikovski. Ce qui signifie que A et B sont simultanément la cause et l'effet l'un de l'autre. Heureusement pour les équipages, sans doute très confus, de ces vaisseaux spatiaux imaginaires, dit Pikovski, ils auraient un moyen mathématique d'analyser les transmissions de l'autre pour confirmer qu'ils sont dans un état de superposition.

Évidemment, dans la vie réelle c'est très différent. Mais l'expérience de pensée pourrait avoir des implications pratiques pour l'informatique quantique, même sans élaborer une théorie complète de cette dernière, a déclaré M. Pikovski. En utilisant les superpositions dans les calculs, un système d'informatique quantique pourrait évaluer simultanément un processus en tant que cause et en tant qu'effet. 

"Les ordinateurs quantiques pourraient être en mesure de l'utiliser pour des calculs plus efficaces", a-t-il déclaré.

Auteur: Internet

Info: https://www.livescience.com/. Stephanie Pappas Le 28 août 2019

[ nanomonde ] [ coexistence ]

 

Commentaires: 0

Ajouté à la BD par miguel

horizon anthropique

Qu'est-ce que le paradoxe cérébral de Boltzmann ? Le cerveau est-il l'univers ultime ?

Avez-vous déjà contemplé la nature de votre existence et vous êtes-vous demandé si vous étiez vraiment une personne ayant vécu une vie, ou simplement un cerveau récemment formé avec des souvenirs artificiels, développant momentanément une réalité qui n'est pas réelle ? Cette question, connue sous le nom de paradoxe du cerveau de Boltzmann, peut sembler absurde, mais elle trouble les cosmologistes depuis des générations.

Le paradoxe tire son nom de Ludwig Boltzmann, un éminent physicien du XIXe siècle qui a apporté des contributions significatives au domaine de la thermodynamique. À son époque, les scientifiques étaient engagés dans des débats passionnés sur la question de savoir si l'univers a une durée infinie ou finie. Boltzmann a révolutionné notre compréhension de l'entropie, qui mesure le désordre au sein d'un système. Par exemple, un verre est considéré comme ordonné, alors qu'un verre brisé est dans un état de désordre. La deuxième loi de la thermodynamique affirme que les systèmes fermés tendent à devenir plus désordonnés avec le temps ; un verre brisé ne se reconstitue pas spontanément dans son état originel.

Boltzmann a introduit une nouvelle interprétation de l'entropie en appliquant un raisonnement statistique pour expliquer le comportement des systèmes. Il a mis en évidence que les systèmes évoluent vers un état plus désordonné parce qu'une telle transformation est la plus probable. Cependant, si la direction opposée n'est pas impossible, elle est incroyablement improbable. Par exemple, nous ne verrons jamais des œufs brouillés redevenir des œufs crus. Néanmoins, dans un univers infiniment vieux, où le temps s'étend sans limites, des événements hautement improbables, tels que la formation spontanée de structures complexes à partir de combinaisons aléatoires de particules, finiraient par se produire.

Qu'est-ce que cela signifie dans le contexte d'un univers hypothétique qui existe depuis un temps infini ? Imaginez une étendue apparemment banale de quasi-néant, où environ huit octillions* d'atomes convergent fortuitement pour créer le "Le Penseur" de Rodin, sauf qu'elle est cette fois entièrement constituée de pâtes alimentaires. Cependant, cette sculpture de pâtes se dissout rapidement en ses particules constitutives. Ailleurs dans cette vaste toile cosmique, les particules s'alignent spontanément pour former une structure ressemblant à un cerveau. Ce cerveau est rempli de faux souvenirs, simulant une vie entière jusqu'au moment présent où il perçoit une vidéo véhiculant ces mêmes mots. Pourtant, aussi rapidement qu'il est apparu, le cerveau se décompose et se dissipe. Enfin, en raison de fluctuations aléatoires, toutes les particules de l'univers se concentrent en un seul point, déclenchant l'émergence spontanée d'un univers entièrement nouveau.

De ces deux derniers scénarios, lequel est le plus probable ? Étonnamment, la formation du cerveau est nettement plus probable que la création spontanée d'un univers entier. Malgré sa complexité, le cerveau est minuscule par rapport à l'immensité d'un univers entier. Par conséquent, si l'on suit ce raisonnement, il apparaît très probable que tout ce que nous croyons exister n'est rien d'autre qu'une illusion fugace, destinée à disparaître rapidement.

Bien que Boltzmann lui-même n'ait pas approfondi ces conclusions, les cosmologistes qui se sont inspirés de ses travaux ont introduit le concept des cerveaux de Boltzmann. Il est intéressant de noter que ces cosmologistes, comme la majorité des individus, étaient raisonnablement certains de ne pas être eux-mêmes des cerveaux éphémères. D'où le paradoxe suivant : comment pouvaient-ils avoir raison dans leur hypothèse tout en postulant l'existence d'un univers éternel ?

Le paradoxe a trouvé sa résolution dans un concept communément accepté aujourd'hui : notre univers n'existe pas de manière infinie mais a eu un commencement connu sous le nom de Big Bang. On pourrait donc penser que le paradoxe a été résolu une fois pour toutes. Or, ce n'est peut-être pas le cas. Au cours du siècle dernier, les scientifiques ont découvert des preuves substantielles à l'appui de la théorie du Big Bang, mais la question de savoir ce qui l'a précédé et causé reste sans réponse. Que l'univers soit apparu dans un état extrêmement ordonné et improbable ? Notre univers pourrait-il faire partie d'un cycle sans fin de création et d'effondrement, ou sommes-nous simplement l'un des innombrables univers en expansion dans un vaste multivers ?

Dans ce contexte intrigant, le paradoxe de Boltzmann a suscité un regain d'intérêt chez les cosmologistes contemporains. Certains affirment que les modèles dominants de l'univers suggèrent encore que les cerveaux de Boltzmann ont plus de chances d'exister que les cerveaux humains, ce qui soulève des inquiétudes quant à la validité de ces modèles. Cependant, d'autres réfutent ces arguments en proposant de légères modifications des modèles cosmologiques qui élimineraient le problème ou en affirmant que les cerveaux de Boltzmann ne peuvent pas se manifester physiquement.

Dans le but d'explorer les probabilités impliquées, certains chercheurs ont même tenté de calculer la probabilité qu'un cerveau émerge spontanément à partir de fluctuations quantiques aléatoires et survive suffisamment longtemps pour générer une seule pensée. Le résultat de leurs calculs a donné un nombre étonnamment grand, avec un dénominateur dépassant 10 élevé à une puissance environ un septillion de fois plus grande que le nombre d'étoiles dans l'univers.

Malgré sa nature apparemment absurde, le paradoxe du cerveau de Boltzmann est utile. Il place la barre très haut pour les modèles cosmologiques. Si l'état actuel de l'univers semble excessivement improbable par rapport à des nombres d'une telle ampleur, cela indique que quelque chose ne va pas dans le modèle. Ce paradoxe nous pousse à remettre en question notre compréhension de la réalité et nous incite à rechercher une représentation plus complète et plus précise de l'univers.

Alors que nous continuons à explorer les mystères du cosmos, la nature énigmatique de notre existence reste une source de fascination et un catalyseur pour la poursuite de la recherche scientifique. Dans notre quête de réponses, nous pourrons peut-être découvrir des vérités profondes qui nous éclaireront sur la nature de notre réalité et sur la tapisserie complexe de l'univers.

Auteur: Sourav Pan

Info: *un octillion = 10 puissance 48)

[ humain miroir ] [ monde consensuel ]

 

Commentaires: 0

Ajouté à la BD par miguel