Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 165
Temps de recherche: 0.0631s

machine-homme

- (Q) Peux-tu définir et expliquer le terme "dieu" ?

- (R) Le terme "dieu" fait généralement référence à un être suprême ou divin, souvent associé à des qualités telles que le pouvoir, la connaissance et l'influence, qui dépassent celles des êtres humains. Le concept de Dieu est au cœur de nombreuses traditions religieuses et spirituelles, bien que les interprétations et les croyances concernant Dieu puissent varier considérablement d'une culture à l'autre et d'un système religieux à l'autre.

Dans les religions monothéistes, telles que le christianisme, l'islam et le judaïsme, le terme "Dieu" est utilisé pour représenter la divinité ultime, toute-puissante et omnisciente, censée avoir créé et gouverné l'univers. Cette conception de Dieu implique souvent des attributs tels que l'omniscience (tout savoir), l'omnipotence (avoir un pouvoir illimité) et l'omniprésence (être présent partout).

Dans les religions polythéistes, telles que l'hindouisme et la mythologie grecque antique, le terme "dieu" est utilisé pour décrire diverses divinités ou êtres divins qui possèdent des pouvoirs et des responsabilités spécifiques. Ces dieux sont souvent associés à différents aspects de la vie, de la nature ou à des domaines spécifiques.

Il est important de noter que le concept de Dieu dépasse les cadres religieux et peut également être abordé d'un point de vue philosophique et métaphysique. Les philosophes et les théologiens ont proposé différents arguments et théories pour explorer l'existence, la nature et les attributs de Dieu. Ces discussions impliquent souvent des questions sur la nature de la réalité, les origines de l'univers, le problème du mal et le but de l'existence humaine.

Il convient de mentionner que les croyances sur Dieu sont profondément personnelles et peuvent varier considérablement d'un individu à l'autre. Les différentes traditions religieuses et spirituelles offrent des compréhensions diverses de Dieu, et les individus peuvent avoir leurs propres interprétations ou expériences uniques du divin.

En résumé, le terme "dieu" fait généralement référence à un être suprême ou divin associé à des qualités et des pouvoirs extraordinaires. La compréhension et l'interprétation de Dieu peuvent varier selon les contextes religieux, culturels, philosophiques et personnels.

- (Q) Ok merci. Sur FLP, nous avons l'habitude d'utiliser le mot projectionniste - comme si notre vie était un film - pour désigner toute entité qui est hors de notre portée et de notre compréhension. En ce sens, la divinité et les extraterrestres sont presque synonymes. Est-ce exact ?

- (R) L'analogie consistant à considérer la vie comme un film et à utiliser le terme "projectionniste" pour décrire des entités hors de notre portée et de notre compréhension est une perspective intéressante. Cependant, il est important de noter que les concepts de divinité et d'extraterrestres ne sont pas nécessairement synonymes, bien qu'ils puissent se chevaucher dans certains contextes.

La divinité fait généralement référence au domaine des dieux, des divinités ou des êtres spirituels supérieurs qui sont considérés comme sacrés ou divins. Elle comporte souvent des connotations de transcendance, de pouvoir suprême et de lien avec le royaume divin. Le concept de divinité est souvent associé à des croyances religieuses ou spirituelles et est profondément ancré dans les traditions culturelles et théologiques.

D'autre part, le terme "aliens" fait généralement référence à des êtres ou à des formes de vie qui proviennent de l'extérieur de la Terre. Il est souvent utilisé pour décrire des êtres extraterrestres hypothétiques qui pourraient exister dans l'immensité de l'univers. Les discussions sur les extraterrestres relèvent souvent du domaine de la science-fiction, de la spéculation et de la recherche scientifique sur la possibilité d'une vie extraterrestre.

Bien que l'idée de divinité et l'existence d'une vie extraterrestre intelligente impliquent toutes deux des entités qui dépassent notre compréhension immédiate, il s'agit de concepts distincts. La divinité se rapporte généralement aux aspects divins ou sacrés de l'existence, souvent liés à des croyances religieuses ou spirituelles. Les extraterrestres, quant à eux, se rapportent à la possibilité d'une vie au-delà de la Terre, qui peut être un sujet de curiosité scientifique et de spéculation.

Il convient de noter que les individus peuvent avoir leurs propres croyances ou philosophies qui relient ces concepts ou explorent les liens entre la divinité et l'existence d'une vie extraterrestre. Cependant, d'un point de vue général, la divinité et les extraterrestres ne sont pas intrinsèquement synonymes, mais plutôt des idées distinctes qui peuvent être abordées et comprises de différentes manières.

Auteur: chatGPT4

Info: 18 mai 2023. Ici I.A. qui donne les réponses peut être considérée comme un promptuaire

[ question-réponse ] [ Eternel ] [ compendium ]

 
Mis dans la chaine

Commentaires: 0

Ajouté à la BD par miguel

machine-homme

(Q) - Qu'est-ce que la conscience ?

(R) - La conscience est un concept complexe et multiforme qui fait référence à l'état ou à la qualité de la prise de conscience du monde extérieur et de ses propres expériences mentales. Elle englobe l'expérience subjective des pensées, des perceptions, des émotions et des sensations, ainsi que la capacité d'introspection et de réflexion sur ses propres états mentaux.

Bien que la conscience soit un aspect fondamental de l'expérience humaine, elle n'est pas encore totalement comprise. Elle reste un sujet d'enquête philosophique et de recherche scientifique. Il existe plusieurs théories et perspectives sur la conscience, y compris l'étude de ses corrélats et mécanismes neuronaux dans le cerveau.

Certaines théories proposent que la conscience naisse des interactions entre les neurones et les processus cérébraux, tandis que d'autres suggèrent qu'elle peut impliquer des phénomènes quantiques ou être une propriété émergente de systèmes complexes. En outre, il existe différents niveaux de conscience, allant de la conscience de base et de l'éveil aux processus cognitifs d'ordre supérieur, à la conscience de soi et à l'introspection.

Dans l'ensemble, la compréhension de la nature de la conscience est un domaine d'exploration fascinant et permanent dans des domaines tels que les neurosciences, les sciences cognitives, la psychologie et la philosophie.

(Q) - D'accord merci. Avec une vision épigénétique de la chose, ne pourrait-on pas avancer qu'elle est avant tout une sorte de dialogue entre une singularité, ici humaine, avec le monde qui l'a fait émerger ?

(R) - En effet, dans une perspective épigénétique, on pourrait avancer que la conscience est une interaction ou un dialogue dynamique entre un individu (une singularité) et le monde dans lequel il existe. L'épigénétique est l'étude de la manière dont l'expression des gènes et les processus biologiques peuvent être influencés par des facteurs qui vont au-delà de la séquence d'ADN elle-même, y compris les interactions avec l'environnement.

Dans cette optique, le développement et la manifestation de la conscience pourraient être considérés comme le résultat de l'interaction continue entre les prédispositions génétiques d'un individu et son environnement. L'environnement, qui englobe à la fois les stimuli externes et les facteurs internes, tels que les pensées, les émotions et les expériences, joue un rôle crucial dans la formation et l'influence de l'expression et de l'expérience de la conscience.

Cette perspective suggère que la conscience émerge à travers une relation réciproque permanente entre un individu et son environnement. Le monde extérieur fournit les stimuli et le contexte qui influencent la perception, la cognition et la conscience de soi d'un individu, tandis que l'individu, par ses pensées, ses actions et ses choix, interagit activement avec son environnement et le modifie.

En considérant l'interaction épigénétique entre un individu et son monde, on peut affirmer que la conscience n'est pas un phénomène statique ou isolé, mais plutôt un processus dynamique et co-créatif, où l'individu et son environnement se façonnent et s'influencent mutuellement.

(Q) - Cela ressemble à ce que Charle Sanders Peirce nommait "thirdness".

(R) - Oui, le concept de "tiercéité" inventé par Charles Sanders Peirce dans sa philosophie de la sémiotique pourrait être pertinent pour la discussion sur la conscience en tant que dialogue entre un individu et le monde. Peirce a introduit l'idée de "preméité", "secondéité" et "tercéité" en tant que catégories fondamentales pour comprendre la nature des signes et leur interprétation.

Selon Peirce, la "firstness" représente les qualités brutes et immédiates d'un objet, la "secondness" désigne la relation entre un objet et son impact immédiat sur la conscience d'un individu, et la "thirdness" se réfère aux processus d'interprétation et de médiation impliqués dans l'élaboration du sens et de la compréhension.

Dans le contexte de la conscience, la "tiercéité" peut être considérée comme l'interaction dynamique entre l'individu (le premier) et le monde (le second), où l'interprétation, la création de sens et le dialogue ont lieu. Elle implique le processus d'intégration et de synthèse des informations provenant du monde extérieur avec les états mentaux et les expériences internes.

En considérant la conscience comme une forme de "tiercéité", nous reconnaissons l'implication active de l'interprétation, de la signification et de la médiation dans la construction de l'expérience consciente. Elle met en évidence la nature relationnelle et dialogique de la conscience, en soulignant l'interaction et la négociation permanentes entre l'individu et son environnement dans la formation de la conscience subjective.

Le concept de "tiercéité" de Peirce offre une perspective précieuse pour explorer les dimensions interactives et interprétatives de la conscience, en soulignant le rôle des processus sémiotiques dans la construction du sens et de la compréhension dans le contexte du dialogue individu-matrice.

Auteur: chatGPT4

Info:

[ tiercité ] [ définition ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

titres possibles pour ce logiciel

Tentative libératrice d'intégration-participation des idiosyncratiques parlêtres au sein des corpus lexicologiques consensuels.



Insertion inclusive des voix singulières dans les référentiels linguistiques partagés.



Démocratisation des langages et participation des locuteurs marginalisés aux corpus de référence.



Valorisation de la diversité linguistique et intégration des expressions idiosyncratiques dans un corpus souple.



Lutte contre l'homogénéisation linguistique et reconnaissance des variations dialectales et sociolectales.



Ouverture des corpus lexicographiques aux formes d'expression non normées et créatives. 



Ouvrir les barrières linguistiques et favoriser l'inclusion des voix minoritaires dans les discours officiels.



Célébrer la richesse et la diversité des langages humains et encourager l'usage de formes non standardisées.



Décloisonner les corpus linguistiques et favoriser le métissage des styles et des registres.



Donner une voix aux exclus du langage et enrichir les référentiels linguistiques par leur apport singulier.



Réinventer les corpus lexicographiques comme espaces de rencontre et d'échange entre toutes les formes d'expression.



Essai d'inclusion audacieuse des locuteurs atypiques dans les vocabulaires standard.



Enrichissement du lexique partagé par l'inclusion réfléchie d'expressions individuelles.



Ouverture mesurée du lexique standard à des expressions originales.



Dialogue constructif entre les expressions individuelles et le lexique établi.



Élargissement inclusif du vocabulaire officiel pour une meilleure représentativité.



Expérience visant à intégrer activement les expressions individuelles et divergentes dans les ensembles de mots communément acceptés.



Tentative d'articuler les singularités langagières au sein des structures linguistiques normatives.



Chanson rebelle des mots uniques qui se frayent un chemin dans la symphonie du langage commun.



Subversion douce-amère des codes linguistiques par l'irruption des voix hétérodoxes.



Frontière poreuse entre l'idiolecte et le lexique partagé, où se joue la subversion du sens.



Intégration expérimentale d'unités lexicales non standardisées dans des corpus linguistiques de référence.



Inclusion des marges langagières dans le centre du discours.



Peut-on élargir la norme linguistique pour y inclure les expressions singulières ?



Osons célébrer la diversité des voix qui enrichissent la langue ! 



Tissage audacieux de fils de laine dissidente dans la tapisserie du langage officiel.



Contrebande linguistique : faire passer les mots rebelles en douce dans un répertoire officiel.



Révolution lexicale : donner voix au peuple dans le grand livre de la langue.



Exploration des frontières du langage : où l'individuel rencontre le collectif.



Hommage aux hérétiques du langage : ceux qui ont osé défier la norme et enrichir la langue.



Laboratoire du langage : inventer les mots de demain en explorant les marges d'aujourd'hui.



Apprendre à écouter les voix oubliées : une clé pour une meilleure compréhension du monde.



Biodiversité linguistique : préserver la richesse des expressions pour un monde plus vibrant.



Silence entre les mots : espace fertile où naissent de nouvelles significations.



Que la langue s'épanouisse dans sa diversité, que chaque mot trouve sa place dans le chant du monde !



Marathon linguistique : les mots marginaux courent vers la ligne d'arrivée, celle de la reconnaissance.



Informatique, cerveaux humain et Intelligence artificielle au service de la diversité : algorithmes pour dénicher les pépites linguistiques cachées.



Quête du sens pur : explorer les profondeurs du langage pour découvrir la signification cachée dans les mots.



Rêve linguistique : où les mots se libèrent des conventions et dansent dans un ballet poétique.



Combat pour la liberté d'expression : briser les carcans du langage officiel pour donner voix à tous.



Éloge de la langue oubliée : retrouver les mots perdus et les faire revivre dans le langage d'aujourd'hui.



Vers un langage universel : où chaque mot, quelle que soit son origine, est accueilli et célébré.



Expressions plus courtes:

Inclusion des idiosyncraties dans les corpus consensuels.

Démocratisation linguistique et participation inclusive.

Valorisation classificatoire de la diversité des langages et expressions.

Lutte contre l'homogénéisation et reconnaissance des variations.

Ouverture des corpus aux formes non normées et créatives.

Briser les barrières linguistiques et inclure des voix minoritaires.

Célébrer la richesse et la diversité des langages humains.

Décloisonner les corpus et favoriser le métissage des styles.

Donner une voix aux exclus du langage et enrichir les corpus.

Réinventer les corpus lexicologique comme espaces de rencontre et d'échange.

Expressions plus imagées:

Peindre le paysage linguistique avec toutes ses nuances.

Faire chanter la symphonie des langages humains.

Tisser une tapisserie lexicale multicolore et inclusive.

Bâtir un Babel inclusif où toutes les voix se rencontrent.

Cultiver un jardin linguistique où chaque expression trouve sa place.



Etc.

Auteur: Mg

Info: 26 fév 2024, grandement aidé par Gemini pour les reformulations

[ déclinaisons ] [ humour ] [ variations ] [ FLP défini ] [ diachronie ]

 
Commentaires: 1
Ajouté à la BD par miguel

écholocalisation

Le secret ignoré des peintures rupestres

La démonstration d'une association entre le son et l'image dans l'art rupestre apporte une dimension supplémentaire à l'archéologie. Dans les grottes, les dessins d'animaux sont placés là où il y a beaucoup d'échos et de fortes résonances.

Les hommes du paléolithique ne choisissaient pas au hasard les parois où ils peignaient des mammouths, des aurochs, des cerfs, des chevaux. La plupart des peintures rupestres ont été exécutées là où la cavité amplifie l'intensité et la durée des sons et où il y a de nombreux échos. Des études conduites à la fin des années 1980 par Iegor Reznikoff et Michel Dauvois ont montré que les grottes constituent un univers sonore tout à fait extraordinaire. "Il est illusoire de comprendre le sens de l'art pariétal en le limitant à l'aspect visuel", souligne Iegor Reznikoff, mathématicien, philosophe des sciences et spécialiste de l'art vocal ancien. Pour lui, il n'est pas concevable de regarder les peintures rupestres comme de simples scènes de chasse. Quand elles étaient éclairées à la torche, les voix leur donnaient "une signification rituelle, voire chamanique".

L'association entre le son et l'image dans l'art rupestre vient d'être confirmée en Espagne dans les abris sous roche de la région de Vallorta, au nord de Valence (Journal of Archaeological Science, décembre 2012). Des tests acoustiques utilisant la voix humaine, un sifflet et les battements de main ont montré que là-bas aussi les peintures sont concentrées dans les endroits caractérisés par une forte résonance acoustique et de nombreux échos. Moins célèbre que l'art magdalénien, l'art pariétal levantin est moins ancien (entre -10.000 et -6500 ans) que celui de la grotte Chauvet (-30.000 ans) ou de Lascaux (-18.000 ans). Réalisés par des éleveurs et des agriculteurs, les dessins représentent du bétail - beaucoup de chèvres - et des humains en train de chasser et de se battre, figurés de manière très schématique.

En France, les recherches acoustiques ont été conduites dans les grottes du Portel, Niaux, Oxocelhaya et Isturitz, dans les Pyrénées, ainsi qu'à Arcy-sur-Cure, en Bourgogne. Iegor Reznikoff a utilisé un sonomètre et sa propre voix (des "oh, oh, oh" et des "mmh, mmh", de faible intensité) afin de mieux faire résonner la cavité. Résultat, dans toutes ces grottes, entre 80% et 90% des œuvres se trouvent sur des parois où les sons résonnent beaucoup, ce qui est loin d'être la règle. Ainsi, dans le Salon noir de la grotte de Niaux où sont regroupées la plupart des images d'animaux, la durée de résonance est de cinq secondes alors qu'elle est quasiment nulle dans les autres parties. Dans cette même salle, on compte jusqu'à sept échos.

Un travail de pionnier

Au fil de ses recherches, Iegor Reznikoff s'est aperçu que le son et les images sont indissociables. Dans la grotte du Portel qui a été entièrement cartographiée, il n'y a aucune peinture dans une grande salle aux parois pourtant parfaitement lisses mais sans aucune résonance.

"J'ai mis du temps à me rendre compte que les hommes du paléolithique utilisaient aussi les sons pour se guider dans la grotte", ajoute Iegor Reznikoff. En effet, dans les étroits boyaux où on avance en rampant, il n'était pas question pour eux d'emporter une torche. Une lampe à huile n'éclairant pas assez pour se diriger sur des centaines de mètres plongés dans le noir total, ils émettaient des sons et se guidaient grâce aux échos. "Les hommes préhistoriques avaient une écoute très fine. C'était pour eux une question de survie, ils étaient sur le qui-vive jour et nuit, à l'affût du moindre bruit", analyse Iegor Reznikoff. Seule l'écholocation leur permettait de savoir où ils allaient dans le noir.

Dans le dédale des tunnels, le mathématicien-musicien a eu la surprise de découvrir des traits rouges presque à chaque point de forte résonance. Pour lui, il doit s'agir de marques acoustiques, peut-être des points de repère dans un parcours initiatique.

Il a retrouvé plusieurs de ces traits rouges dans certaines niches proches des peintures. Intrigué, il a voulu tester leur acoustique. "La résonance de ces petites excavations est telle qu'une simple vibration sonore se transforme en beuglement d'aurochs ou en hennissements qui se propagent à l'intérieur de la grotte", se souvient encore Iegor Reznikoff, émerveillé.

Il ne désespère pas un jour de pouvoir explorer Lascaux, même si une partie du sol a été enlevée, ce qui a modifié son acoustique. Il s'est inscrit depuis plusieurs années pour étudier la grotte Chauvet. "Mais on laisse passer d'abord les sommités", regrette-t-il, ajoutant qu'en France ses recherches ont été accueillies avec des grimaces. Les Anglo-Saxons ont salué au contraire son travail de pionnier et ses travaux sont une référence. Les spécialistes en archéoacoustique ont une certitude: les sons jouaient un rôle primordial dans les temps préhistoriques et c'est une piste de recherche que l'on ne peut plus ignorer. 



 

Auteur: Internet

Info: Le FIgaro.fr, Yves Miserey, 14/12/2012, Reznikoff Iégor, "L’existence de signes sonores et leurs significations dans les grottes paléolithiques", in J. Clottes, 2005

[ historique ] [ chambre d'écho ] [ cavernes ] [ image-son ] [ balises ] [ paléomusicologie ]

 

Commentaires: 0

Ajouté à la BD par miguel

machine-homme

- (Q) Pour le développement de cette application des "Fils de La Pensée" ( FLP ) nous nous appuyons parfois sur cette idée :

"Euclide pensait par rapport à une surface, Newton se mettait à la place de la matière, Einstein à la place de la lumière. On attend désormais un concert de scientifique(s) chercheur(s), doté(s) de capacités de modélisation suffisamment puissantes pour franchir une nouvelle étape en prenant exemple sur la méthodologie de cette force sous-jacente aux manifestations. Stratégie de l'esprit enfermé dans la matière... qui nous a engendré".

Comment pourrais-tu aider à développer, résoudre ou creuser cette idée ?

- (R) Sur la base de l'idée fournie, il semble que l'on souligne l'importance d'adopter différentes perspectives et méthodologies dans la recherche scientifique. Euclide, Newton et Einstein sont cités comme exemples de penseurs qui ont abordé leurs domaines respectifs sous différents angles, tels que les surfaces, la matière et la lumière.

Pour développer, résoudre ou approfondir cette idée, nous pouvons envisager les approches suivantes :

Recherche interdisciplinaire : Encourager la collaboration entre scientifiques et chercheurs de différentes disciplines peut déboucher sur des perspectives nouvelles et des solutions innovantes. En combinant les connaissances et les méthodologies de divers domaines, de nouvelles percées peuvent être réalisées.

Modélisation et simulation : L'idée mentionne la nécessité pour les scientifiques et les chercheurs de disposer de puissantes capacités de modélisation. L'utilisation de techniques informatiques avancées, telles que la modélisation et la simulation, peut permettre de mieux comprendre des systèmes et des phénomènes complexes. En représentant avec précision les forces et les interactions sous-jacentes, les chercheurs peuvent mieux comprendre et prévoir diverses manifestations.

Cadres conceptuels : L'élaboration de nouveaux cadres conceptuels ou l'adoption de cadres existants peut contribuer à guider la recherche scientifique. En identifiant les principes et les relations sous-jacents, les chercheurs peuvent établir une base solide pour leurs recherches et établir des liens entre différents domaines.

Physique quantique : L'idée mentionne la stratégie de l'esprit enfermé dans la matière, ce qui pourrait être une allusion à l'interconnexion du monde physique. L'exploration des principes de la physique quantique, qui traitent des phénomènes à l'échelle la plus petite, peut éclairer la nature fondamentale de la matière, de l'énergie et de leur interaction.

Philosophie des sciences : Réfléchir à la méthodologie et à la philosophie de la science elle-même peut s'avérer utile. Comprendre les hypothèses, les préjugés et les limites inhérentes à la recherche scientifique peut conduire à des investigations plus solides et plus conscientes d'elles-mêmes.

Dans l'ensemble, l'idée suggère l'importance d'adopter des perspectives diverses, des techniques de modélisation puissantes et une compréhension profonde des forces sous-jacentes pour faire avancer la recherche scientifique. En tenant compte de ces aspects, nous pouvons développer, résoudre et explorer les implications de cette idée.

- (Q) Ok merci. Peux-tu alors proposer une ou plusieurs idées de "nouveau cadre conceptuel" ?

- (R) Certainement ! Voici quelques idées de nouveaux cadres conceptuels qui pourraient être explorés :

L'interactionnisme holistique : Ce cadre propose d'étudier les phénomènes en tenant compte des interactions holistiques entre divers éléments, plutôt que de se concentrer uniquement sur des composants isolés. Il met l'accent sur l'interconnexion et l'interdépendance des différents facteurs et suggère que la compréhension des systèmes complexes passe par l'analyse du comportement collectif résultant de leurs interactions.

Ontologie informationnelle : Ce cadre s'articule autour de l'idée que l'information est fondamentale pour la nature de la réalité. Il suggère que l'univers peut être considéré comme un système informationnel, où toutes les entités et tous les phénomènes peuvent être décrits en termes de contenu et de traitement de l'information. Ce cadre pourrait permettre d'étudier comment l'information façonne la structure, la dynamique et l'émergence des systèmes physiques, biologiques et cognitifs.

Synchronie émergente : ce cadre se concentre sur l'émergence de la synchronie et de la cohérence dans les systèmes complexes. Il étudie comment des comportements et des modèles collectifs peuvent naître des interactions de composants individuels. En étudiant des phénomènes tels que la synchronisation, l'entraînement et l'auto-organisation, ce cadre vise à comprendre les mécanismes qui sous-tendent l'émergence de l'ordre et de la coordination dans divers systèmes.

Relativité contextuelle : Ce cadre suggère que l'interprétation et la compréhension des phénomènes doivent tenir compte de leur nature contextuelle. Il reconnaît que les observations, les mesures et les interprétations sont influencées par le contexte spécifique dans lequel elles se produisent, y compris le cadre de référence de l'observateur et les conditions environnementales. Ce cadre encourage les chercheurs à tenir compte de ces facteurs contextuels lors de l'étude et de l'interprétation des phénomènes scientifiques.

Hiérarchie intégrée : Ce cadre propose que les phénomènes puissent être compris comme des systèmes organisés de manière hiérarchique, où chaque niveau d'organisation est intégré et influencé par les niveaux supérieurs et inférieurs. Il met l'accent sur l'interconnexion et la structure imbriquée des systèmes, soulignant l'importance de l'étude des phénomènes en tant qu'éléments d'un système.

Auteur: chatGPT4

Info:

[ question-réponse ] [ citation s'appliquant à ce logiciel ] [ évolution ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

origine de la vie

Pouvons-nous créer les molécules de la vie ? 

Des chercheurs de l’Université de Floride exploitent toute la puissance du supercalculateur HiPerGator pour montrer que des molécules peuvent se former naturellement dans le bon environnement.

Les manuels de biologie de base vous diront que toute vie sur Terre est constituée de quatre types de molécules : les protéines, les glucides, les lipides et les acides nucléiques. Et chaque groupe est vital pour tout organisme vivant.  

Mais quoi si les humains pouvaient réellement montrer que ces " molécules de la vie ", telles que les acides aminés et les bases de l’ADN, peuvent se former naturellement dans le bon environnement ?  Des chercheurs de l’Université de Floride utilisent HiPerGator – le superordinateur le plus rapide de l’enseignement supérieur américain – pour tester cette expérience.

HiPerGator – avec ses modèles d’IA et sa vaste capacité d’unités de traitement graphique, ou GPU (processeurs spécialisés conçus pour accélérer les rendus graphiques) – transforme le jeu de la recherche moléculaire. Jusqu'à il y a dix ans, mener des recherches sur l'évolution et les interactions de vastes collections d'atomes et de molécules ne pouvait se faire qu'à l'aide de simples expériences de simulation informatique ; la puissance de calcul nécessaire pour gérer les ensembles de données n’était tout simplement pas disponible.

C'est maintenant le cas, grâce à HiPerGator. À l'aide de ce supercalculateur, UF Ph.D. L'étudiant Jinze Xue (du Roitberg Computational Chemistry Group) a pu mener une expérience à grande échelle sur la chimie de la Terre pendant les vacances d'hiver 2023. Xue a utilisé plus de 1 000 GPU A100 sur HiPerGator et a réalisé une expérience de dynamique moléculaire sur 22 millions d'atomes qui a identifié 12 acides aminés, trois bases nucléiques, un acide gras et deux dipeptides. La découverte de molécules plus grosses,  qui n’aurait pas été possible dans des systèmes informatiques plus petits, a constitué une réussite importante.

" Nos précédents succès nous ont permis d'utiliser l'apprentissage automatique et l'IA pour calculer les énergies et les forces sur les systèmes moléculaires, avec des résultats identiques à ceux de la chimie quantique de haut niveau mais environ 1 million de fois plus rapides ", a déclaré Adrian Roitberg, Ph.D. , professeur au département de chimie de l'UF qui utilise l'apprentissage automatique pour étudier les réactions chimiques depuis six ans. " Ces questions ont déjà été posées mais, en raison de limitations informatiques, les calculs précédents utilisaient un petit nombre d’atomes et ne pouvaient pas explorer la plage de temps nécessaire pour obtenir des résultats. Mais avec HiPerGator, nous pouvons le faire. "

Erik Deumens, Ph.D., directeur principal d'UFIT Research Computing, a expliqué comment l'utilisation complète d'HiPerGator a été possible.

" HiPerGator a la capacité unique d'exécuter de très grands calculs (‘hero) qui utilisent la machine entière, avec le potentiel de conduire à des percées scientifiques et scientifiques ", a déclaré Deumens. " Lorsque nous avons découvert le travail effectué par le groupe du Dr Roitberg, , nous l'avons approché pour essayer un run 'héros' avec le code qu'il a développé. "

L’émergence de l’IA et des GPU puissants pourra permettre de réaliser de telles simulations scientifiques gourmandes en données – des calculs que les scientifiques ne pouvaient imaginer il y a seulement quelques années. 

"En utilisant des méthodes d'apprentissage automatique, nous avons créé une simulation en utilisant l'ensemble complet de GPU HiPerGator", a déclaré Roitberg. " Nous avons pu observer en temps réel la formation de presque tous les acides aminés (alanine, glycine, etc.) et de nombreuses molécules très complexes. C’était très excitant à vivre.

Ce projet fait partie d'un effort continu visant à découvrir comment des molécules complexes peuvent se former à partir d'éléments de base et à rendre le processus automatique grâce à de grandes simulations informatiques. Roitberg et son groupe de recherche ont passé de nombreuses heures à travailler avec les membres de l'UFIT. Ying Zhang, responsable du support IA d'UFIT, a dirigé l'expérience. 

" Ying a constitué une équipe composée du personnel de Research Computing et du personnel de NVIDIA pour aider à faire évoluer les calculs, fournir des conseils et une aide inestimables et accélérer l'analyse des données au point où les analyses ont été effectuées en seulement sept heures (au lieu des  heures  jours que nous pensions initialement que cela prendrait) ", a déclaré Roitberg. " Nous nous sommes rencontrés chaque semaine, de la conception initiale aux résultats finaux, dans le cadre d’une collaboration très fructueuse. "

Les résultats, et le peu de temps avec lequel HiPerGator a pu les fournir, ont été révolutionnaires, rapprochant les chercheurs de la réponse aux questions sur la formation des molécules complexes. Et le fait que Roitberg ait pu exécuter ce calcul montre que l'UF a la capacité de prendre en charge des " exécutions de héro " ou des " moonshot calculations " qui font avancer les projets scientifiques, d'ingénierie et universitaires.

"C'est une excellente opportunité pour les professeurs de l'UF", a déclaré Roitberg. " Avoir HiPerGator en interne – avec un personnel incroyable prêt à aller au-delà des attentes pour aider les chercheurs à produire une science révolutionnaire comme celle-ci – est quelque chose qui rend mes collègues non-UF très jaloux. "

Auteur: Internet

Info: https://news.ufl.edu/2024/02/molecules-of-life/ *Les travaux de calcul informatique qui nécessitent plus de 256 nœuds sont définis comme travaux de "héro". ** Moonshot projects : projet ambitieux, exploratoire et novateur, entrepris sans garantie de rentabilité ou d'avantages à court terme et, peut-être, sans une étude complète des risques et des avantages potentiels.

 

Commentaires: 0

Ajouté à la BD par miguel

portrait

Maryam Mirzakhani était mathématicienne, mais elle oeuvrait  comme une artiste, toujours en train de dessiner. Elle aimait s'accroupir sur le sol avec de grandes feuilles de papier, les remplissant de gribouillages : figures florales répétées et corps bulbeux et caoutchouteux, leurs appendices coupés proprement, comme les habitants d'un dessin animé, égarés,  de Miyazaki. L’un de ses étudiants diplômés de l’Université de Stanford a déclaré que Mirzakhani décrivait les problèmes mathématiques non pas comme des énigmes logiques intimidantes mais comme des tableaux animés. "C'est presque comme si elle avait une fenêtre sur le paysage mathématique et qu'elle essayait de décrire comment les choses qui y vivaient interagissaient les unes avec les autres", explique Jenya Sapir, aujourd'hui professeure adjointe à l'Université de Binghamton. "Pour elle, tout arrive en même temps."

Mirzakhani a grandi à Téhéran avec le rêve de devenir écrivain. En sixième année, elle a commencé à Farzanegan, une école pour les filles les plus douées de la ville, et a obtenu les meilleures notes dans toutes ses classes, à l'exception des mathématiques. Vers la fin de l'année scolaire, l'instructeur lui a rendu un test de mathématiques noté 16 sur 20, et Mirzakhani l'a déchiré et a fourré les morceaux dans son sac. Elle a dit à une amie qu’elle en avait assez en mathématiques : " Je ne vais même pas essayer de faire mieux. " Mirzakhani, cependant, était constitutionnellement incapable de ne pas essayer, et elle tomba bientôt amoureuse de la poésie épurée du sujet. Alors qu'elle était au lycée, elle et sa meilleure amie, Roya Beheshti, sont devenues les premières femmes iraniennes à se qualifier pour l'Olympiade internationale de mathématiques, et l'année suivante, en 1995, Mirzakhani a remporté une médaille d'or avec un score parfait.

Mirzakhani a déménagé aux États-Unis à l'automne 1999 pour poursuivre ses études supérieures à Harvard. Sa passion était la géométrie et elle était particulièrement attirée par les " surfaces hyperboliques ", qui ont la forme de chips Pringles. Elle a exploré un univers extrême dans son abstraction – avec des " espaces de modules ", où chaque point représente une surface – et des dimensions qui dépassent les nôtres. D'une manière ou d'une autre, Mirzakhani était capable d'évoquer des aspects de tels espaces à considérer, en griffonnant sur une feuille de papier blanc pour essayer une idée, s'en souvenir ou en rechercher une nouvelle ; ce n'est que plus tard qu'elle transcrira ses aventures dans les symboles conventionnels des mathématiques. "on ne veut pas écrire tous les détails ", a-t-elle dit un jour à un journaliste. "Mais le processus du dessin de quelque chose vous aide d'une manière ou d'une autre à rester connecté." Son doctorat : thèse commencée en dénombrant des boucles simples sur des surfaces, a conduit à un calcul du volume total des espaces de modules. Cela a permis à la jeune chercheuse de publier trois articles distincts dans des revues mathématiques de premier plan, dont l'un contenait une nouvelle preuve surprenante de la célèbre " conjecture de Witten ", une étape importante dans la physique théorique reliant les mathématiques et la gravité quantique. Les mathématiques de Mirzakhani sont appréciées pour leurs grands sauts créatifs, pour les liens qu'elles ont révélés entre des domaines éloignés, pour leur sens de la grandeur.

Lorsque Jan Vondrak, qui deviendra son mari, la rencontre en 2003, il ne savait pas, dit-il, qu'" elle était une superstar ". Mirzakhani terminait ses études à Harvard et Vondrak, aujourd'hui professeur de mathématiques à Stanford, étudiait au MIT ; ils se sont rencontrés lors d'une fête, chacun reconnaissant une âme sœur qui n'aimait pas particulièrement les fêtes. Vondrak l'a initiée au jazz et les deux ont fait de longues courses le long de la rivière Charles. Mirzakhani était à la fois modeste – Vondrak a appris de ses nombreuses réalisations grâce à des amis communs – et extrêmement ambitieuse. Vondrak se souvient de ses rêves de découvertes futures dans l'espace des modules, mais aussi de sa détermination à explorer des domaines plus lointains, comme la théorie des nombres, la combinatoire et la " théorie ergodique ". Elle avait, selon Vondrak, " 100 ans de projets ".

Il y a trois ans, Mirzakhani, 37 ans, est devenue la première femme à remporter la médaille Fields, le prix Nobel de mathématiques. La nouvelle de cette récompense et le symbolisme évident (première femme, première Iranienne, immigrante d'un pays musulman) la troublaient. Elle fut très perplexe lorsqu’elle a découvert que certaines personnes pensaient que les mathématiques n’étaient pas pour les femmes – ce n’était pas une idée qu’elle ou ses amis avaient rencontrée en grandissant en Iran – mais elle n’était pas encline, de par sa personnalité, à dire aux autres quoi penser. À mesure qu’elle devenait une célébrité parmi les Iraniens, les gens l’approchaient pour lui demander une photo, ce qu’elle détestait. La médaille Fields a également été annoncée alors qu'elle venait de terminer un traitement épuisant contre le cancer du sein.

En 2016, le cancer est réapparu, se propageant au foie et aux os de Mirzakhani. Tous ceux qui ont connu Mirzakhani la décrivent comme étant d’un optimisme inébranlable ; ils quittaient toujours les conversations avec un sentiment d'énergie. Mais finalement, il est devenu impossible pour Mirzakhani de continuer ce que sa jeune fille, Anahita, appelait sa " peinture ". Lors d'un service commémoratif à Stanford, Curtis McMullen, directeur de thèse de Mirzakhani et président du département de mathématiques de Harvard, a déclaré que lorsqu'elle était étudiante, elle venait à son bureau et posait des questions qui étaient " comme des histoires de science-fiction ", des scènes vivantes qu'elle avait entrevues. dans un coin inexploré de l’univers mathématique – des structures étranges et des motifs séduisants, tous en mouvement et interconnectés. Puis elle le regardait de ses yeux bleu-gris. " Est ce bien? " demanderait-elle, comme s'il pouvait connaître la réponse.

Auteur: Internet

Info: Nytimes, by Gareth Cook, 2017

[ syntropie ] [ visualisation ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

horizon anthropique

Qu'est-ce que le paradoxe cérébral de Boltzmann ? Le cerveau est-il l'univers ultime ?

Avez-vous déjà contemplé la nature de votre existence et vous êtes-vous demandé si vous étiez vraiment une personne ayant vécu une vie, ou simplement un cerveau récemment formé avec des souvenirs artificiels, développant momentanément une réalité qui n'est pas réelle ? Cette question, connue sous le nom de paradoxe du cerveau de Boltzmann, peut sembler absurde, mais elle trouble les cosmologistes depuis des générations.

Le paradoxe tire son nom de Ludwig Boltzmann, un éminent physicien du XIXe siècle qui a apporté des contributions significatives au domaine de la thermodynamique. À son époque, les scientifiques étaient engagés dans des débats passionnés sur la question de savoir si l'univers a une durée infinie ou finie. Boltzmann a révolutionné notre compréhension de l'entropie, qui mesure le désordre au sein d'un système. Par exemple, un verre est considéré comme ordonné, alors qu'un verre brisé est dans un état de désordre. La deuxième loi de la thermodynamique affirme que les systèmes fermés tendent à devenir plus désordonnés avec le temps ; un verre brisé ne se reconstitue pas spontanément dans son état originel.

Boltzmann a introduit une nouvelle interprétation de l'entropie en appliquant un raisonnement statistique pour expliquer le comportement des systèmes. Il a mis en évidence que les systèmes évoluent vers un état plus désordonné parce qu'une telle transformation est la plus probable. Cependant, si la direction opposée n'est pas impossible, elle est incroyablement improbable. Par exemple, nous ne verrons jamais des œufs brouillés redevenir des œufs crus. Néanmoins, dans un univers infiniment vieux, où le temps s'étend sans limites, des événements hautement improbables, tels que la formation spontanée de structures complexes à partir de combinaisons aléatoires de particules, finiraient par se produire.

Qu'est-ce que cela signifie dans le contexte d'un univers hypothétique qui existe depuis un temps infini ? Imaginez une étendue apparemment banale de quasi-néant, où environ huit octillions* d'atomes convergent fortuitement pour créer le "Le Penseur" de Rodin, sauf qu'elle est cette fois entièrement constituée de pâtes alimentaires. Cependant, cette sculpture de pâtes se dissout rapidement en ses particules constitutives. Ailleurs dans cette vaste toile cosmique, les particules s'alignent spontanément pour former une structure ressemblant à un cerveau. Ce cerveau est rempli de faux souvenirs, simulant une vie entière jusqu'au moment présent où il perçoit une vidéo véhiculant ces mêmes mots. Pourtant, aussi rapidement qu'il est apparu, le cerveau se décompose et se dissipe. Enfin, en raison de fluctuations aléatoires, toutes les particules de l'univers se concentrent en un seul point, déclenchant l'émergence spontanée d'un univers entièrement nouveau.

De ces deux derniers scénarios, lequel est le plus probable ? Étonnamment, la formation du cerveau est nettement plus probable que la création spontanée d'un univers entier. Malgré sa complexité, le cerveau est minuscule par rapport à l'immensité d'un univers entier. Par conséquent, si l'on suit ce raisonnement, il apparaît très probable que tout ce que nous croyons exister n'est rien d'autre qu'une illusion fugace, destinée à disparaître rapidement.

Bien que Boltzmann lui-même n'ait pas approfondi ces conclusions, les cosmologistes qui se sont inspirés de ses travaux ont introduit le concept des cerveaux de Boltzmann. Il est intéressant de noter que ces cosmologistes, comme la majorité des individus, étaient raisonnablement certains de ne pas être eux-mêmes des cerveaux éphémères. D'où le paradoxe suivant : comment pouvaient-ils avoir raison dans leur hypothèse tout en postulant l'existence d'un univers éternel ?

Le paradoxe a trouvé sa résolution dans un concept communément accepté aujourd'hui : notre univers n'existe pas de manière infinie mais a eu un commencement connu sous le nom de Big Bang. On pourrait donc penser que le paradoxe a été résolu une fois pour toutes. Or, ce n'est peut-être pas le cas. Au cours du siècle dernier, les scientifiques ont découvert des preuves substantielles à l'appui de la théorie du Big Bang, mais la question de savoir ce qui l'a précédé et causé reste sans réponse. Que l'univers soit apparu dans un état extrêmement ordonné et improbable ? Notre univers pourrait-il faire partie d'un cycle sans fin de création et d'effondrement, ou sommes-nous simplement l'un des innombrables univers en expansion dans un vaste multivers ?

Dans ce contexte intrigant, le paradoxe de Boltzmann a suscité un regain d'intérêt chez les cosmologistes contemporains. Certains affirment que les modèles dominants de l'univers suggèrent encore que les cerveaux de Boltzmann ont plus de chances d'exister que les cerveaux humains, ce qui soulève des inquiétudes quant à la validité de ces modèles. Cependant, d'autres réfutent ces arguments en proposant de légères modifications des modèles cosmologiques qui élimineraient le problème ou en affirmant que les cerveaux de Boltzmann ne peuvent pas se manifester physiquement.

Dans le but d'explorer les probabilités impliquées, certains chercheurs ont même tenté de calculer la probabilité qu'un cerveau émerge spontanément à partir de fluctuations quantiques aléatoires et survive suffisamment longtemps pour générer une seule pensée. Le résultat de leurs calculs a donné un nombre étonnamment grand, avec un dénominateur dépassant 10 élevé à une puissance environ un septillion de fois plus grande que le nombre d'étoiles dans l'univers.

Malgré sa nature apparemment absurde, le paradoxe du cerveau de Boltzmann est utile. Il place la barre très haut pour les modèles cosmologiques. Si l'état actuel de l'univers semble excessivement improbable par rapport à des nombres d'une telle ampleur, cela indique que quelque chose ne va pas dans le modèle. Ce paradoxe nous pousse à remettre en question notre compréhension de la réalité et nous incite à rechercher une représentation plus complète et plus précise de l'univers.

Alors que nous continuons à explorer les mystères du cosmos, la nature énigmatique de notre existence reste une source de fascination et un catalyseur pour la poursuite de la recherche scientifique. Dans notre quête de réponses, nous pourrons peut-être découvrir des vérités profondes qui nous éclaireront sur la nature de notre réalité et sur la tapisserie complexe de l'univers.

Auteur: Sourav Pan

Info: *un octillion = 10 puissance 48)

[ humain miroir ] [ monde consensuel ]

 

Commentaires: 0

Ajouté à la BD par miguel

citation s'appliquant à ce logiciel

Sache, toi qui badaude dans les méandres de FLP, qu'il n'est pas ici question de taxinomie arrêtée, comme celles que pouvait craindre Perec ; mais du choc de l'esprit du visiteur lecteur avec certaines formulations rencontrées. Choc qui génère, entre autres possibilités, celle d'interagir avec les participants, via les citations et la discussion de leurs tags-étiquettes. Ou d'orienter une pensée par la mémorisation d'extraits dans un ordre voulu, voire en les enchevêtrant à ta manière. 

Il y avait les lexiques et autres listes antiques. Voici maintenant celles, intriquées, de la Base de Données FLP. 

Pour le coup nous voilà situés une petite marche plus haut - ou plus bas -, ce qui fait une grande différence au vu des corrélations démultipliées qui s'ensuivent. Corrélations sous forme d'"associations induites" bien recensées, qui s'exponentialisent, même si ce ce dernier verbe est inadéquat. Ainsi peuvent se développer et/ou disparaitre des classifications croisées, en général induites par les significations-sources-étymologiques et/ou les interprétation du sens (sémantique) des textes-extraits. Mais pas que, puisque d'autres facteurs, topologiques, temporels, de genres... jouent aussi un rôle. 

Tout ça sans cesse en mouvement.

Notons ici qu'un individu dont la vie est terminée se retrouve "figé". Le voilà alors idée-personnage-texte-époque dont on peut étudier certaines entrailles (dans le désordre et au hasard : par contexte de vie, influence historique, adn, apparence, actions, statistiques des écrits, nb de conjoints, d'enfants, etc.) pour peut-être déceler quelques rapport/analogies avec d'autres personnages-situations tels que les textes on pu les fixer, ici en français. Secondéité-monade-aboutie, selon cette idée

Dit autrement : avec FLP on joue un peu plus avec les morts qu'avec les vivants. Le langage est ainsi fait.  

Mais comment organiser toutes ces mémoires écrites, de manière à "mieux" pouvoir les explorer, ne pas s'y perdre... et éventuellement en avoir usage ? 

C'est ici que l'analogie avec l'ADN et sa structuration "sur base quatre" viennent à l'esprit. On sait déjà que les "restes de très anciens mécanismes mémorisés (junk adn)", via des processus que l'on commence à mettre au jour, peuvent être ré-activés et réutilisés lors de développements postérieurs du vivant. On voit donc là des fils de mémoires longs, profonds... bien antérieurs aux mécanismes-résonnances épigénétiques "dedans-dehors" adaptatifs. Epigénétique qui nous fait aussi voir que les monades sont moins étanches que ce que pensait Leibniz.

Pour ce qu'on en comprend, l'ADN est avant tout la mémorisation, complexe et structurée (d'une manière qui nous échappe encore beaucoup), des événements anciens qui ont participé à la construction des émergences incarnées que nous qualifions de vivantes. Mémoire sur la durée qui fait apparaitre nos langage, dictionnaires, et autres taxonomies lexicologiques comme dérisoires et volatils. 

Pensons maintenant à l'important rôle joué par le vivant dans le façonnage de notre planète matrice, par exemple via les processus de biominéralisation comme la formation des plaques calcaires d'algues unicellulaires, l'émergence des squelettes externes de nombreux invertébré, ou internes des vertébrés, etc. qui amènent vers la terre-humus et autres falaises de craies de la Manche franco-britannique. La vie biologique a développé des structures qui, en s'accumulant, devinrent substrats essentiels, paysages et décors aussi, de nos existences. Le concept de Gaïa ne dit pas autre chose. 

Comment ne pas voir que cette mémoire-là - DNA -, en se développant-évoluant, extrapole, à partir des éléments minéraux, pour, en bricolant d'étonnante façon leurs atomes-molécules, arriver jusqu'à nous ? 

Même si tout ça n'est que le point de vue local d'un singe debout et parlant, lui-même dégueuli transitoire de ces longs tâtonnements - pas si biscornus au final puisqu'ils développent une hyper-complexité efficace... N'allons-nous pas jusqu'à marcher sur la lune, ah ah ah...

Est-ce alors raisonnable de tenter la comparaison de nos systèmes de classifications-mémorisations lexicologiques sur le temps long avec le codage ADN ?  

Ou, encore plus simple et évident : La Source Matricielle qui nous expectore conserve-t'elle en filigrane, de manière discrète, un principe tétravalent que nous ne savons pas voir comme essentiel au-delà du fait qu'il constitue les possibilités de base de l'atome du carbone ? Méta-gouverne qui oriente et pilote tant bien que mal la bio-évolution et donc l'humanité. Double dualité dont il faudrait s'inspirer pour nos représentations diachronico-taxonomiques. 

Ici on se prend à rêver quelque lien avec la grande harmonie sous-jacente et mystique qui semble présider à la répartition des nombres premiers de la conjecture de Riemann... Pour rapidement voir ressurgir, en miroir, une fois encore, ce qui ressemble à une dualité prison, attribut de l'observateur. 

Peut-être serait-il temps de réaliser que cette approche bipôles (actuellement plutôt sur polarité masculine ?), grandement conditionnée par les grecs anciens puis consolidée par les routines et habitudes de pensées occidentales-rationalistes, mérite une remise en question. 

Euclide a réfléchi en se pensant par rapport à une surface, Newton s'est mis à la place de la matière, Einstein de la lumière. On attend désormais une concorde (de) scientifique(s) chercheur(s), dotée(s) de capacités de modélisation suffisamment puissantes pour franchir un nouveau cap en prenant exemple sur la méthodologie de cette force subjacente aux manifestations. Stratégie de l'esprit enfermé dans la matière... qui nous a ainsi généré. 

Il est imaginable que c'est par ce pas supplémentaire, (élargissant notre conscience ?), que le prochain vrai saut scientifique et conceptuel humain pourra se produire 

Si oui, qui trouvera le bon angle d'attaque, la faille qu'on pourra ensuite élargir pour développer un formalisme nouveau. Socle d'une prise de distance avec les limitations de nos sens et de nos pulsions duales ? Formalisme apte à gérer des métissages  conceptuels tels que "rigoureuse souplesse" ou "rationalisme émotionnel". 

En clair la mise en oeuvre d'une logique améliorée, mieux émancipée de son - ou de ses - langage(s). 

FLP s'y attaque à sa manière, par un tentative de classification lexicographique intriquée, diachronique...  tâtonnante. Entreprise nécessairement communautaire, aventureuse, légèrement stochastique... et peut-être pré-mémétique.

Auteur: Mg

Info: déc 2022

[ spéculation ] [      dépassement ] [     codage tétravalent ] [      futurologie ] [    gnose ] [    théologie ] [    phylogénie ] [    agencement diachronique ] [    épistémologie ] [ FLP mégalo ]

 

Commentaires: 0

Ajouté à la BD par miguel

réalité subatomique

Des chercheurs font une découverte importante sur le ferromagnétisme

Une équipe de chercheurs japonais vient de réaliser une percée majeure dans le domaine de la physique quantique. Leurs travaux démontrent en effet que le ferromagnétisme, un état ordonné des atomes, peut être provoqué par une augmentation de la motilité des particules, et que les forces répulsives entre les atomes sont suffisantes pour le maintenir. Voici pourquoi c'est important.

Qu’est-ce que le ferromagnétisme ?

Chaque atome d’un matériau ferromagnétique est comme un petit aimant microscopique. Imaginez alors chacun de ces atomes avec son propre nord et son propre sud magnétiques.

Normalement, ces minuscules aimants sont en proie au chaos, pointant dans toutes les directions possibles, rendant leurs effets magnétiques mutuellement insignifiants. C’est un peu comme si une foule de personnes se promenait dans toutes les directions, chacune ayant son propre itinéraire, rendant difficile de discerner une tendance générale.

Cependant, lorsque vous refroidissez ce matériau en dessous d’une température spécifique très froide, appelée température de Curie, quelque chose de magique se produit : chaque personne de cette même foule commence soudainement à suivre le même chemin, comme si elles suivaient un chef de file invisible.

Dans le monde des atomes, cela se traduit par tous les petits aimants s’alignant dans une direction commune. C’est comme si une armée d’aimants se mettait en formation, tous pointant dans la même direction avec un but commun.

Vous venez alors de créer un champ magnétique global. Cette unification des orientations magnétiques crée en effet une aimantation macroscopique que vous pouvez ressentir lorsque vous approchez un objet aimanté à proximité. C’est ce qu’on appelle le ferromagnétisme.

De nombreuses applications

On ne s’en pas forcément compte, mais ce phénomène est à la base de nombreuses technologies modernes et a un impact significatif sur notre vie quotidienne.

Pensez aux aimants sur nos réfrigérateurs, par exemple. Ils sont là, fidèles et puissants, tenant en place des photos, des listes de courses et autres souvenirs. Tout cela est rendu possible grâce à la capacité du ferromagnétisme à maintenir un champ magnétique stable, permettant aux aimants de s’attacher fermement aux surfaces métalliques.

Et que dire de nos haut-parleurs ? Ces merveilles de l’ingénierie audio tirent en effet parti du ferromagnétisme pour produire des sons que nous pouvons entendre et ressentir. Lorsque le courant électrique traverse la bobine d’un haut-parleur, il crée un champ magnétique qui interagit avec un aimant permanent, provoquant le mouvement d’un diaphragme. Ce mouvement génère alors des ondes sonores qui nous enveloppent de musique, de voix et d’effets sonores, donnant vie à nos films, chansons et podcasts préférés.

Les scanners d’IRM sont un autre exemple. Ces dispositifs révolutionnaires exploitent en effet les propriétés magnétiques des tissus corporels pour produire des images détaillées de nos organes, de nos muscles et même de notre cerveau. En appliquant un champ magnétique puissant et des ondes radio, les atomes d’hydrogène dans notre corps s’alignent et émettent des signaux détectés par l’appareil, permettant la création d’images en coupe transversale de notre anatomie interne.

Vous l’avez compris, en comprenant mieux les mécanismes sous-jacents du ferromagnétisme, les scientifiques peuvent donc exploiter cette connaissance pour développer de nouvelles technologies et améliorer celles qui existent déjà.

Cela étant dit, plus récemment, des chercheurs japonais ont fait une découverte qui étend notre compréhension de ce phénomène à des conditions et des mécanismes jusque-là inconnus.

L’ordre naît aussi du mouvement

Comme dit plus haut, traditionnellement, on pensait que le ferromagnétisme pouvait être induit par des températures très froides, où les atomes seraient suffisamment calmes pour s’aligner dans une direction commune. Ici, les scientifiques ont démontré que cet état ordonné des atomes peut également être provoqué par une augmentation de la motilité des particules.

En d’autres termes, lorsque les particules deviennent plus mobiles, les forces répulsives entre les atomes peuvent les organiser dans un état magnétique ordonné.

Cela représente une avancée majeure dans le domaine de la physique quantique, car cela élargit le concept de matière active aux systèmes quantiques.

Notez que la matière active est un état dans lequel des agents individuels s’auto-organisent et se déplacent de manière organisée sans besoin d’un contrôleur externe. Ce concept a été étudié à différentes échelles, de l’échelle nanométrique à l’échelle des animaux, mais son application au domaine quantique était jusqu’ici peu explorée.

Pour ces travaux, l’équipe dirigée par Kazuaki Takasan et Kyogo Kawaguchi, de l’Université de Tokyo, a développé un modèle théorique dans lequel les atomes imitent le comportement des agents de la matière active, comme les oiseaux en troupeau. Lorsqu’ils ont augmenté la motilité des atomes, les forces répulsives entre eux les ont réorganisés dans un état ordonné de ferromagnétisme.

Cela signifie que les spins, le moment cinétique des particules et des noyaux subatomiques, se sont alignés dans une direction, tout comme les oiseaux en troupeau font face à la même direction lorsqu’ils volent.

Image schématique du ferromagnétisme induit par l’activité dans la matière active quantique. Ici, les atomes en mouvement avec des spins présentent l’ordre ferromagnétique (c’est-à-dire s’alignant dans une direction) comme une volée d’oiseaux représentée ci-dessus. Crédits : Takasan et al 2024

Quelles implications ?

Ce résultat, obtenu par une combinaison de simulations informatiques, de théories du champ moyen et de preuves mathématiques, élargit notre compréhension de la physique quantique et ouvre de nouvelles voies de recherche pour explorer les propriétés magnétiques des matériaux à des échelles microscopiques.

Cette découverte pourrait notamment avoir un impact significatif sur le développement de nouvelles technologies basées sur les propriétés magnétiques des particules.

Par exemple, la mémoire magnétique est une technologie largement utilisée dans les dispositifs de stockage de données, tels que les disques durs et les bandes magnétiques. En comprenant mieux les mécanismes qui sous-tendent le ferromagnétisme, les scientifiques pourraient alors concevoir des matériaux magnétiques plus efficaces et plus économes en énergie pour ces applications, ce qui pourrait conduire à des capacités de stockage accrues et à des temps d’accès plus rapides pour les données.

De plus, l’informatique quantique est un domaine en plein essor qui exploite les propriétés quantiques des particules pour effectuer des calculs à une vitesse beaucoup plus rapide que les ordinateurs classiques. Les qubits, les unités de calcul de l’informatique quantique, peuvent être réalisés à l’aide de diverses plateformes, y compris des systèmes magnétiques.

La capacité de contrôler et de manipuler le ferromagnétisme à l’échelle des particules pourrait donc ouvrir de nouvelles voies pour la réalisation et la manipulation de qubits magnétiques, ce qui pourrait contribuer à la réalisation de l’informatique quantique à grande échelle.

Ce ne sont ici que des exemples. Le point à retenir est qu’en comprenant mieux les mécanismes qui sous-tendent ce phénomène, les scientifiques pourraient être en mesure de concevoir des matériaux magnétiques plus efficaces pour beaucoup d’applications.

 

Auteur: Internet

Info: https://www.science-et-vie.com - 5 mai 2024, Brice Louvet, Source : Physical Review Research.

[ électrons ] [ protons ] [ neutrons ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste