Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Nuage de corrélats : pour l'activer, cochez seulement catégorie et tag dans la recherche avancée à gauche.
Résultat(s): 94818
Temps de recherche: 0.1962s

connaissance erronée

Comme l'a remarqué Marc Twain, ce n'est pas ce que nous ignorons qui cause des ennuis, c'est ce que nous savons et qui est inexact.

Auteur: Sheffield Charles

Info: Les chroniques de McAndrew

[ croyance biaisée ]

 
Commentaires: 1
Ajouté à la BD par miguel

topologie abstraite

Des surfaces au-delà de l'imagination sont découvertes après des décennies de recherche

Grâce à des idées empruntées à la théorie des graphes, deux mathématiciens ont montré que des surfaces extrêmement complexes sont faciles à parcourir.

En juillet dernier, deux mathématiciens de l'Université de Durham, Will Hide et Michael Magee , ont confirmé l'existence d'une séquence de surfaces très recherchée : chacune plus compliquée que la précédente, devenant finalement si étroitement liée à elles-mêmes qu'elles atteignent presque les limites de ce qui est possible. possible.

Au début, il n’était pas évident que ces surfaces existaient. Mais depuis que la question de leur existence s’est posée pour la première fois dans les années 1980, les mathématiciens ont compris que ces surfaces pouvaient en réalité être courantes, même si elles sont extrêmement difficiles à identifier – un exemple parfait de la façon dont les mathématiques peuvent renverser l’intuition humaine. Ce nouveau travail constitue un pas en avant dans une quête visant à aller au-delà de l’intuition pour comprendre les innombrables façons dont les surfaces peuvent se manifester.

"C'est un brillant morceau de mathématiques", a déclaré Peter Sarnak , mathématicien à l'Institute for Advanced Study de Princeton, New Jersey.

Les surfaces comprennent toutes sortes d’objets bidimensionnels : l’enveloppe extérieure d’une sphère, d’un beignet ou d’un cylindre ; une bande de Möbius. Ils sont essentiels aux mathématiques et à la physique. Mais même si la relation des mathématiciens avec les surfaces remonte à plusieurs siècles, ils ne connaissent pas du tout ces objets.

Les surfaces simples ne sont pas le problème. Simple dans ce cas signifie que la surface a un petit nombre de trous, ou un faible " genre ". Une sphère, par exemple, n'a pas de trous et a donc un genre nul ; un beignet en a un.

Mais lorsque le genre est élevé, l’intuition nous fait défaut. Lorsqu'Alex Wright , mathématicien à l'Université du Michigan, tente de visualiser une surface de haut genre, il se retrouve avec des trous disposés en rangée bien rangée. " Si vous vouliez que je sois un peu plus créatif, je pourrais l'enrouler en un cercle avec de nombreux trous. Et j’aurais du mal à imaginer une image mentale fondamentalement différente de celle-là ", a-t-il déclaré. Mais sur les surfaces de grande qualité, les trous se chevauchent de manière complexe, ce qui les rend difficiles à saisir. Une simple approximation est " aussi loin d’être représentative qu’elle pourrait l’être, dans tous les sens du terme ", a déclaré Wright.

Cette lutte était prévisible, a déclaré Laura Monk , mathématicienne à l'Université de Bristol. " On peut souvent faire des choses qui ne sont pas bonnes. Cependant, créer des choses qui sont bonnes, qui ressemblent à ce que nous attendons généralement d’être vrai, est un peu plus difficile ", a-t-elle déclaré.

Cela signifie que les mathématiciens souhaitant vraiment comprendre l’espace des surfaces doivent trouver des moyens de découvrir des objets dont ils ignorent même l’existence.

C’est exactement ce qu’ont fait Hide et Magee dans leur article de juillet, confirmant l’existence de surfaces sur lesquelles les mathématiciens s’interrogeaient depuis des décennies. La conjecture qu’ils ont prouvée et l’histoire qui l’entoure s’inspirent d’un tout autre domaine des mathématiques : la théorie des graphes.

Le maximum possible

Pour les mathématiciens, les graphiques sont des réseaux constitués de points ou de nœuds reliés par des lignes ou des arêtes. Dès 1967, des mathématiciens comme Andrey Kolmogorov étudiaient des réseaux qui imposaient un coût à la connexion de deux nœuds. Cela a conduit à un exemple de ce que l’on appellera plus tard un graphe d’expansion : un graphe qui maintient le nombre d’arêtes à un faible niveau, tout en maintenant une connectivité élevée entre les nœuds.

Les graphiques expanseurs sont depuis devenus des outils cruciaux en mathématiques et en informatique, y compris dans des domaines pratiques comme la cryptographie. À l’instar d’un système routier bien conçu, ces graphiques facilitent le déplacement d’un nœud à un autre sans couvrir l’intégralité du graphique avec des arêtes. Les mathématiciens aiment limiter le nombre d’arêtes en stipulant que chaque nœud ne peut avoir, disons, que trois arêtes en émanant – tout comme vous ne voudriez peut-être pas plus de quelques autoroutes sillonnant votre ville.

Si un ordinateur choisit au hasard où mènent les trois arêtes de chaque nœud, vous constaterez que, surtout lorsque le graphique est très grand, la plupart de ces graphiques aléatoires sont d'excellents expanseurs. Mais bien que l’univers soit rempli de graphiques d’expansion, les êtres humains ont échoué à maintes reprises à les produire à la main.

"Si vous voulez en construire un, vous ne devriez pas les dessiner vous-même", a déclaré Shai Evra , mathématicien à l'Université hébraïque de Jérusalem. "Notre imagination ne comprend pas ce qu'est un expanseur."

L’idée d’expansion, ou de connectivité, peut être mesurée de plusieurs manières. La première consiste à couper un graphique en deux gros morceaux en coupant les bords un par un. Si votre graphique est constitué de deux groupes de nœuds, les groupes étant reliés par une seule arête, il vous suffit de couper une seule arête pour la diviser en deux. Plus le graphique est connecté, plus vous devrez découper d'arêtes.

Une autre façon d’accéder à la connectivité consiste à parcourir le graphique de nœud en nœud, en choisissant à chaque étape une arête sur laquelle marcher au hasard. Combien de temps faudra-t-il pour visiter tous les quartiers du graphique ? Dans l'exemple avec les deux amas, vous serez confiné à l'une des bulles à moins que vous ne traversiez la seule connexion avec l'autre moitié. Mais s’il existe de nombreuses façons de voyager entre les différentes zones du graphique, vous parcourrez l’ensemble en peu de temps.

Ces mesures de connectivité peuvent être quantifiées par un nombre appelé écart spectral. L'écart spectral est nul lorsque le graphe est complètement déconnecté, par exemple s'il est composé de deux groupes de nœuds qui ne sont pas du tout attachés l'un à l'autre. À mesure qu’un graphe devient plus connecté, son écart spectral aura tendance à s’élargir.

Mais l’écart spectral ne peut aller que jusqu’à un certain point. En effet, les deux caractéristiques déterminantes des graphes d’expansion – peu d’arêtes et une connectivité élevée – sont apparemment en contradiction l’une avec l’autre. Mais en 1988, Gregory Margulis et, indépendamment, Sarnak et deux co-auteurs ont décrit des " expanseurs optimaux " – des graphiques dont l’écart spectral est aussi élevé que le maximum théorique. " C'est choquant qu'ils existent ", a déclaré Sarnak.

Plus tard, les mathématiciens prouveront que la plupart des grands graphes sont proches de ce maximum. Mais le travail avec les expanseurs optimaux et les graphiques aléatoires ne consistait pas simplement à trouver les bons endroits pour placer les arêtes. Cela nécessitait le recours à des techniques étranges et sophistiquées empruntées à la théorie des nombres et des probabilités.

Auteur: Internet

Info: https://www.quantamagazine.org/ - Leila Sloman, 2 juin 2022

[ . ]

 
Commentaires: 1
Ajouté à la BD par miguel

dissection

J’ai fait autrefois tuer une vache, que je savais avoir conçu peu de temps auparavant, exprès afin d’en voir le fruit. Et ayant appris, par après, que les bouchers de ce pays en tuent souvent qui se rencontrent pleines, j’ai fait qu’ils m’ont apporté plus d’une douzaine de ventres dans lesquels il y avait de petits veaux, les uns grands comme des souris, les autres comme des rats, et les autres comme de petits chiens, où j’ai pu observer beaucoup plus de choses qu’en des poulets, à cause que les organes y sont plus grands et plus visibles.

Auteur: Descartes René

Info: Lettre à Mersenne, 2 novembre 1646

[ homme-animal ]

 

Commentaires: 0

Ajouté à la BD par Coli Masson

religion

La foi ne s’accorde pas par l’évidence de l’objet, mais par le commandement de la volonté.

Auteur: Saint Thomas d'Aquin

Info: Commentaire des Sentences, III, 23, q.2

[ christianisme ] [ vouloir-croire ] [ conversion ]

 

Commentaires: 0

Ajouté à la BD par Coli Masson

christianisme

Le mystère de l’Incarnation fait partie des enseignements de la religion. Cet enseignement est en lui-même une grâce, qui nous dispose à croire ce qui nous est révélé – qui nous y oblige aussi. Mais ici, que veut dire "croire" ? ce n’est pas nécessairement avoir l’esprit tout empli de ce qui est cru. Ce croire est à titre essentiel un vouloir-croire et un penser-croire, un tenir-pour-vrai (Fürwahrhalten), mais jamais, sauf sans doute grâce particulière, une persuasion aussi absolue que celle qui procède directement de la lumière naturelle. 

[…] Faut-il tenir ce mode du croire pour définitivement inauthentique, moyennant quoi l’on devrait conclure que Descartes, quoique s’étant déclaré chrétien, n’a proprement rien cru de la matière de la révélation ?

Ce serait aller trop vite. Il existe une modalité faible et traditionnelle du croire, qui n’est pas rien. […]

1) Une fois tracées, comme Descartes s’y est efforcé, des limites précises entre le domaine de la raison et celui de la foi, ce qui est de la foi pourra toujours paraître incroyable à la raison, ou même ne pourra manquer de paraître tel ; mais ce ne sera pas une raison pour que la raison ne se soumette pas.

2) La croyance au sens faible coïncide avec une soumission pratique – celle de la parole et de l’action à une certaine règle. C’est […] une attitude propositionnelle, ou la décision de respecter cette règle ou proposition par toutes les voies observables.

3) Dans aucun de ses écrits, Descartes ne juge de la religion : il ne juge que de la théologie. Sur la religion du peuple, il n’a pas un mot […]. La superstition n’est pas son objet. Quant à la théologie ordinaire, elle est mauvaise parce qu’elle transgresse incessamment les limites de l’usage légitime de la raison ou de l’autorité, ce que ne font ni la bonne et orthodoxe théologie (par exemple celle d’Arnauld), ni la bonne et vraie philosophie, qui s’attache au contraire tout entière à ces démarcations.

Auteur: Kambouchner Denis

Info: La question Descartes, éditions Gallimard, 2023, pages 251 à 253

[ lien ] [ doute ]

 

Commentaires: 0

Ajouté à la BD par Coli Masson

philosophie

Si l’on veut saisir l’opération cartésienne, il faudra bien, sur un certain mode, méditer avec Descartes ; et, en méditant avec lui, cerner la réalité des objets de sa méditation, entrer autant que possible dans son regard. Et l’on rencontre ici la nécessité absolue de l’existence d’un Dieu infini – non pas seulement parfait, ni seulement "suprêmement parfait", summe perfectus, mais infini, y compris et d’abord dans sa puissance (dite en latin immensa).

Il ne saurait être question de soutenir qu’aux yeux mêmes de Descartes, ce Dieu infini […] soit une fiction. Sous ce rapport, l’imagination d’un athéisme cartésien – au sens moderne du mot, comme négation pure et simple de l’existence de Dieu – est sans objet. Sans Dieu, toute la métaphysique cartésienne le montre, il n’y a pas de science possible.

Auteur: Kambouchner Denis

Info: La question Descartes, éditions Gallimard, 2023, page 245

[ christianisme ] [ foi ]

 

Commentaires: 0

Ajouté à la BD par Coli Masson

microbiologie

Comment le microbiome* influence notre santé 

Nous ne sommes jamais seuls. En plus des 30 000 milliards de cellules humaines, notre corps abrite quelque 39 000 milliards de microbes – bactéries, champignons et protozoaires qui vivent dans nos intestins, nos poumons, notre bouche, notre nez, notre peau et ailleurs dans tout le corps. Les ensembles d’organismes présents dans et sur notre corps, le " microbiote ", font partie d’habitats microbiens plus larges, ou " microbiomes ", qui englobent tous les génomes viraux et cellulaires, les protéines codées et d’autres molécules dans leur environnement local. (Cependant,  il existe une certaine ambiguïté  dans les définitions, de sorte que l'utilisation des termes varie souvent.)

Bien que le microbiome soit récemment devenu un sujet brûlant en raison de son importance potentielle pour notre santé, ce n'est pas un concept nouveau. Certains font remonter ses origines au XVIIe siècle, lorsque le microbiologiste néerlandais Antonie van Leeuwenhoek a décrit pour la première fois de minuscules organismes qu'il avait prélevés dans sa bouche et observés sous un microscope artisanal. Tout au long des années 1900 et au début des années 2000, un certain nombre de découvertes ont attiré l'attention des gens sur les microbes vivant à l'intérieur de nous, mais ce domaine a reçu une attention accrue en 2007 lorsque les National Institutes of Health ont lancé le projet sur le microbiome humain. Depuis lors, les scientifiques ont catalogué de manière de plus en plus détaillée la biodiversité microbienne du corps humain. Ils ont découvert que les microbiomes sont distincts dans tout le corps : la composition microbienne de l’intestin, par exemple, est très différente de celle de la bouche. Ils en sont également venus à reconnaître qu’il n’existe pas de microbiome " ​​normal ". Au contraire, comme pour les empreintes digitales, chacun abrite une sélection unique d’espèces et de souches microbiennes.

Ces microbes jouent de nombreux rôles, depuis la protection contre les agents pathogènes et le réglage de nos réponses immunitaires jusqu'à la digestion des aliments et la synthèse des nutriments. Pour cette raison, lorsqu’un microbiome est désorganisé – par exemple à cause d’une mauvaise alimentation, de maladies infectieuses, de médicaments ou de facteurs environnementaux – cela peut avoir un effet d’entraînement sur notre santé. Des microbiomes malsains ont été associés au cancer, aux maladies cardiaques et pulmonaires, à l’inflammation et aux maladies inflammatoires de l’intestin. On pense même que les microbes régulent l’axe intestin-cerveau, une autoroute de communication qui relie le cerveau au système nerveux entérique, qui contrôle les intestins. Aujourd’hui, la médecine cible de plus en plus les microbiomes pour traiter diverses maladies. Par exemple, les greffes fécales contenant un microbiote sain sont parfois utilisées pour traiter des infections bactériennes graves du côlon.


Malgré une accélération de la recherche sur le microbiome au cours des dernières décennies, qui a donné naissance à de nouvelles technologies génomiques puissantes, de nombreuses questions fondamentales restent sans réponse complète. Comment acquérons-nous le microbiote et comment la communauté évolue-t-elle tout au long de notre vie ? Quel est l’impact des différents environnements et modes de vie sur le microbiome ? Comment le microbiome peut-il provoquer ou être utilisé pour traiter des maladies ? Ces questions et bien d’autres alimentent la recherche biologique et nous aident à mieux comprendre qui et ce qui fait de nous ce que nous sommes.

Quoi de neuf et remarquable

D’où vient notre microbiome ? Plusieurs études réalisées au cours de la dernière année ont donné des indications. Les bébés acquièrent la plupart de leurs microbes de leur mère à la naissance et dans les mois qui suivent. Mais il s’avère que les mères ne partagent pas seulement des organismes microbiens avec leurs bébés, elles partagent également des gènes microbiens. Dans une étude de 2022 publiée dans Cell , des scientifiques ont révélé que de courtes séquences d'ADN appelées éléments mobiles peuvent passer des bactéries de la mère aux bactéries du bébé, même des mois après la naissance. Comme je l'ai déjà signalé dans  Quanta , il est probable que ces gènes pourraient aider à développer un microbiome intestinal plus performant chez le bébé, ce qui pourrait à son tour développer davantage son système immunitaire.

La transmission ne se produit pas seulement à la naissance. En fait, les microbiomes sont incroyablement dynamiques et peuvent changer radicalement au cours de la vie d’une personne. Dans un article de Quanta publié l’année dernière, j’ai rendu compte de l’analyse mondiale la plus complète de la transmission du microbiome à ce jour. À l’aide de nouveaux outils génomiques, une équipe de biologistes italiens a retracé plus de 800 000 souches de microbes entre familles, colocataires, voisins et villages dans 20 pays. Ils ont découvert que les microbes sautent beaucoup entre les personnes, en particulier entre les conjoints et les colocataires, qui passent beaucoup de temps ensemble. Ces résultats suggèrent que certaines maladies qui ne sont pas considérées comme contagieuses pourraient avoir un aspect contagieux si elles impliquent le microbiome. Cependant, cette idée est spéculative et sera sûrement débattue et étudiée dans les années à venir.

Les connaissances sur la manière dont nous acquérons le microbiome et son impact sur notre corps ne proviennent pas uniquement d’études réalisées sur des humains. D’autres animaux possèdent également des microbiomes essentiels à leur santé et à leur développement – ​​et plusieurs études récentes ont établi des liens entre les microbes intestinaux et le cerveau. En 2019, Quanta a signalé que le comportement de peur diffère entre les souris ayant des microbiomes différents, et en 2022, nous avons rendu compte de la manière dont les microbiomes influencent les compétences sociales et la structure cérébrale du poisson zèbre.




Auteur: Internet

Info: https://www.quantamagazine.org/ - 11 03 2024 - Yasemin Saplakogku. *Pour préciser : Le terme microbiote est suivi du nom de l'environnement dans lequel il se trouve. Par exemple, le « microbiote intestinal » fait référence au microbiote présent dans les voies intestinales. Le microbiome fait référence à l'ensemble des gènes hébergés par des micro-organismes, ce que l'on appelle le théâtre d'activité.

[ orchestre invisible du corps ] [ Des bactéries aux organes ]

 

Commentaires: 0

Ajouté à la BD par miguel

anticipation

Cette anticipation démentie de notre auteur conduit à s'interroger sur la dimension prospective de la Science-Fiction, et sur la persistance de son intérêt même lorsque la vision est démentie par le déroulement de l'histoire. C'est une vieille question posée dès les premiers romans de Wells et ses essais prospectifs. Elle a été profondément renouvelée par les romans “réalistes” de John Brunner, l'Orbite déchiquetée, Tous à Zanzibar, Sur l'onde de choc et Le troupeau aveugle .

En plus d'un sens, le public y a répondu en continuant à lire avec enthousiasme des œuvres qui avaient, apparemment, perdu leur actualité. Le Vingt mille lieues sous les mers de Jules Verne a toujours des lecteurs, tout comme les Premiers hommes dans la Lune de Wells. Sous certaines conditions de présentation, une intrigue spéculative demeure passionnante comme si son lecteur pouvait se remettre dans les conditions d'ignorance qui rendaient possible l'énigme originelle. Peut-être s'agit-il même là d'un des traits importants de la Science-Fiction. Elle ne serait pas spéculation à partir d'un savoir, un au-delà du savoir positif en somme, comme affectent de s'en indigner certains scientifiques à propos de ses facilités, ou une ébauche de métaphysique comme s'en félicitent quelques philosophes. Mais elle serait un problème soulevé dans un cadre à peu près consistant et à laquelle l'auteur donne une ou plusieurs réponses à peu près logiques dans ce cadre. Sa vraisemblance est plus interne que contextuelle. Si le lecteur admet le problème, il va s'intéresser à la démarche de l'auteur dans l'exposition de ses propositions de réponse, allant jusqu'à faire abstraction de ses connaissances antérieures et admettant ce qui, en temps normal, lui aurait paru absolument inadmissible. Dans le cas d'un problème simple comme celui du voyage interstellaire, la question n'est donc pas de savoir si la solution proposée par l'auteur respecte ou non les limitations relativistes ni comment il les tourne ; elle n'est pas non plus tellement d'accepter que le voyage interstellaire soit possible sans trop s'inquiéter de ses moyens et d'explorer quelles en seraient les conséquences, ce qui est la définition la plus souvent donnée de la Science-Fiction ; mais elle est de voir quelle dramaturgie, quel style, l'auteur va adopter pour faire accepter sa solution.

Auteur: Klein Gérard

Info: In Préface d'Eon de Greg Bear

[ futur-ancien ] [ littérature ] [ être bon public ] [ lecteur docile ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

paliers bayésiens

Une nouvelle preuve montre que les graphiques "expanseurs" se synchronisent.

La preuve établit de nouvelles conditions qui provoquent une synchronisation synchronisée des oscillateurs connectés.

Il y a six ans, Afonso Bandeira et Shuyang Ling tentaient de trouver une meilleure façon de discerner les clusters dans d'énormes ensembles de données lorsqu'ils sont tombés sur un monde surréaliste. Ling s'est rendu compte que les équations qu'ils avaient proposées correspondaient, de manière inattendue, parfaitement à un modèle mathématique de synchronisation spontanée. La synchronisation spontanée est un phénomène dans lequel des oscillateurs, qui peuvent prendre la forme de pendules, de ressorts, de cellules cardiaques humaines ou de lucioles, finissent par se déplacer de manière synchronisée sans aucun mécanisme de coordination central.

Bandeira, mathématicien à l' École polytechnique fédérale de Zurich , et Ling, data scientist à l'Université de New York , se sont plongés dans la recherche sur la synchronisation, obtenant une série de résultats remarquables sur la force et la structure que doivent avoir les connexions entre oscillateurs pour forcer les oscillateurs. à synchroniseur. Ce travail a abouti à un article d'octobre dans lequel Bandeira a prouvé (avec cinq co-auteurs) que la synchronisation est inévitable dans des types spéciaux de réseaux appelés graphiques d'expansion, qui sont clairsemés mais également bien connectés.

Les expanseurs graphiques s'avèrent avoir de nombreuses applications non seulement en mathématiques, mais également en informatique et en physique. Ils peuvent être utilisés pour créer des codes correcteurs d'erreurs et pour déterminer quand les simulations basées sur des nombres aléatoires convergents vers la réalité qu'elles tentent de simuler. Les neurones peuvent être modélisés dans un graphique qui, selon certains chercheurs, forme un expanseur, en raison de l'espace limité pour les connexions à l'intérieur du cerveau. Les graphiques sont également utiles aux géomètres qui tentent de comprendre comment parcourir des surfaces compliquées, entre autres problèmes.

Le nouveau résultat « donne vraiment un aperçu considérable des types de structures graphiques qui vont garantir la synchronisation », a déclaré Lee DeVille , un mathématicien de l'Université de l'Illinois qui n'a pas participé aux travaux. 

Synchronisation douce-amère         

"La synchronisation est vraiment l'un des phénomènes fondamentaux de la nature", a déclaré Victor Souza , un mathématicien de l'Université de Cambridge qui a travaillé avec Bandeira sur l'article. Pensez aux cellules stimulantes cardiaques de votre cœur, qui synchronisent leurs pulsations via des signaux électriques. Lors d'expériences en laboratoire, "vous pouvez faire vibrer des centaines ou des milliers de cellules embryonnaires de stimulateur cardiaque à l'unisson", a déclaré Steven Strogatz , mathématicien à l'Université Cornell et autre co-auteur. " C'est un peu effrayant parce que ce n'est pas un cœur entier ; c'est juste au niveau des cellules. "

En 1975, le médecin japonais Yoshiki Kuramoto a introduit un modèle mathématique décrivant ce type de système. Son modèle fonctionne sur un réseau appelé graphique, où les nœuds sont reliés par des lignes appelées arêtes. Les nœuds sont appelés voisins s'ils sont liés par une arête. Chaque arête peut se voir attribuer un numéro appelé poids qui code la force de la connexion entre les nœuds qu'elle connecte.

Dans le modèle de synchronisation de Kuramoto, chaque nœud contient un oscillateur, représenté par un point tournant autour d'un cercle. Ce point montre, par exemple, où se trouve une cellule cardiaque dans son cycle de pulsation. Chaque oscillateur tourne à sa propre vitesse préférée. Mais les oscillateurs veulent également correspondre à leurs voisins, qui peuvent tourner à une fréquence différente ou à un moment différent de leur cycle. (Le poids du bord dépendant de deux oscillateurs mesure la force du couplage entre eux.) S'écarter de ces préférences contribue à l'énergie dépensée par un oscillateur. Le système tente d'équilibrer tous les désirs concurrents en minimisant son énergie totale. La contribution de Kuramoto a été de simplifier suffisamment ces contraintes mathématiques pour que les mathématiciens puissent progresser dans l'étude du système. Dans la plupart des cas, de tels systèmes d'équations différentielles couplées sont pratiquement impossibles à résoudre.

Malgré sa simplicité, le modèle Kuramoto s'est révélé utile pour modéliser la synchronisation des réseaux, du cerveau aux réseaux électriques, a déclaré Ginestra Bianconi , mathématicienne appliquée à l'Université Queen Mary de Londres. "Dans le cerveau, ce n'est pas particulièrement précis, mais on sait que c'est très efficace", at-elle déclaré.

"Il y a ici une danse très fine entre les mathématiques et la physique, car un modèle qui capture un phénomène mais qui est très difficile à analyser n'est pas très utile", a déclaré Souza.

Dans son article de 1975, Kuramoto supposait que chaque nœud était connecté à tous les autres nœuds dans ce qu'on appelle un graphe complet. À partir de là, il a montré que pour un nombre infini d'oscillateurs, si le couplage entre eux était suffisamment fort, il pouvait comprendre leur comportement à long terme. Faisant l'hypothèse supplémentaire que tous les oscillateurs avaient la même fréquence (ce qui en feraient ce qu'on appelle un modèle homogène), il a trouvé une solution dans laquelle tous les oscillateurs finiraient par tourner simultanément, chacun arrondissant le même point de son cercle exactement au même endroit. en même temps. Même si la plupart des graphiques du monde réel sont loin d'être complets, le succès de Kuramoto a conduit les mathématiciens à se demander ce qui se passerait s'ils assouplissaient ses exigences.  

Mélodie et silence

Au début des années 1990, avec son élève Shinya Watanabe , Strogatz a montré que la solution de Kuramoto était non seulement possible, mais presque inévitable, même pour un nombre fini d'oscillateurs. En 2011, Richard Taylor, de l'Organisation australienne des sciences et technologies de la défense, a renoncé à l'exigence de Kuramoto selon laquelle le graphique devait être complet. Il a prouvé que les graphiques homogènes où chaque nœud est connecté à au moins 94 % des autres sont assurés de se synchroniser globalement. Le résultat de Taylor avait l'avantage de s'appliquer à des graphes avec des structures de connectivité arbitraires, à condition que chaque nœud ait un grand nombre de voisins.

En 2018, Bandeira, Ling et Ruitu Xu , un étudiant diplômé de l'Université de Yale, ont abaissé à 79,3 % l'exigence de Taylor selon laquelle chaque nœud doit être connecté à 94 % des autres. En 2020, un groupe concurrent a atteint 78,89 % ; en 2021, Strogatz, Alex Townsend et Martin Kassabov ont établi le record actuel en démontrant que 75 % suffisaient.

Pendant ce temps, les chercheurs ont également attaqué le problème dans la direction opposée, en suggérant de trouver des graphiques hautement connectés mais non synchronisés globalement. Dans une série d'articles de 2006 à 2022 , ils ont découvert graphique après graphique qui pourrait éviter la synchronisation globale, même si chaque nœud était lié plus de 68 % des autres. Beaucoup de ces graphiques ressemblent à un cercle de personnes se tenant la main, où chaque personne tend la main à 10, voire 100 voisins proches. Ces graphiques, appelés graphiques en anneaux, peuvent s'installer dans un état dans lequel chaque oscillateur est légèrement décalé par rapport au suivant.

De toute évidence, la structure du graphique influence fortement la synchronisation. Ling, Xu et Bandeira sont donc devenus curieux des propriétés de synchronisation des graphiques générées aléatoirement. Pour rendre leur travail précis, ils ont utilisé deux méthodes courantes pour construire un graphique de manière aléatoire.

Le premier porte le nom de Paul Erdős et Alfréd Rényi, deux éminents théoriciens des graphes qui ont réalisé des travaux fondateurs sur le modèle. Pour construire un graphique à l'aide du modèle Erdős-Rényi, vous démarrez avec un groupe de nœuds non connectés. Ensuite, pour chaque paire de nœuds, vous les reliez au hasard avec une certaine probabilité  p  . Si  p  vaut 1 %, vous liez les bords 1 % du temps ; si c'est 50 %, chaque nœud se connectera en moyenne à la moitié des autres.

Si  p  est légèrement supérieur à un seuil qui dépend du nombre de nœuds dans le graphique, le graphique ancien, avec une très grande probabilité, un réseau interconnecté (au lieu de comprendre les clusters qui ne sont pas reliés). À mesure que la taille du graphique augmente, ce devient seuil minuscule, de sorte que pour des graphiques suffisamment grands, même si  p  est petit, ce qui rend le nombre total d'arêtes également petit, les graphiques d'Erdős-Rényi seront connectés .

Le deuxième type de graphe qu'ils ont considéré est appelé graphe  d  -régulier. Dans de tels graphes, chaque nœud a le même nombre d'arêtes,  d  . (Ainsi, dans un graphe 3-régulier, chaque nœud est connecté à 3 autres nœuds, dans un graphe 7-régulier, chaque nœud est connecté à 7 autres, et ainsi de suite.)

(Photo avec schéma)

Les graphiques bien connectés bien qu'ils soient clairsemés (n'ayant qu'un petit nombre d'arêtes) sont appelés graphiques d'expansion. Celles-ci sont importantes dans de nombreux domaines des mathématiques, de la physique et de l'informatique, mais si vous souhaitez construire un graphe d'expansion avec un ensemble particulier de propriétés, vous constaterez qu'il s'agit d'un " problème étonnamment non trivial", selon l'éminent mathématicien. Terry Tao. Les graphes d'Erdős-Rényi, bien qu'ils ne soient pas toujours extensibles, partagent bon nombre de leurs caractéristiques importantes. Et il s'avère que si vous construisez cependant un graphe  d'  ajustement et connectez les arêtes de manière aléatoire, vous obtiendrez un graphe d'expansion.

Joindre les deux bouts

En 2018, Ling, Xu et Bandeira ont deviné que le seuil de connectivité pourrait également mesurer l'émergence d'une synchronisation globale : si vous générerez un graphique d'Erdős-Rényi avec  p juste un peu plus grand que le seuil, le graphique devrait se synchroniser globalement. Ils ont fait des progrès partiels sur cette conjecture, et Strogatz, Kassabov et Townsend ont ensuite amélioré leur résultat. Mais il subsiste un écart important entre leur nombre et le seuil de connectivité.

En mars 2022, Townsend a rendu visite à Bandeira à Zurich. Ils ont réalisé qu'ils avaient une chance d'atteindre le seuil de connectivité et ont fait appel à Pedro Abdalla , un étudiant diplômé de Bandeira, qui à son tour a enrôlé son ami Victor Souza. Abdalla et Souza ont commencé à peaufiner les détails, mais ils se sont rapidement heurtés à des obstacles.

Il semblait que le hasard accompagnait des problèmes inévitables. À moins que  p  ne soit significativement plus grand que le seuil de connectivité, il y aurait probablement des fluctuations sauvages dans le nombre d'arêtes de chaque nœud. L'un peut être attaché à 100 arêtes ; un autre pourrait être attaché à aucun. "Comme pour tout bon problème, il riposte", a déclaré Souza. Abdalla et Souza ont réalisé qu'aborder le problème du point de vue des graphiques aléatoires ne fonctionnerait pas. Au lieu de cela, ils utiliseraient le fait que la plupart des graphiques d'Erdős-Rényi sont des expanseurs. "Après ce changement apparemment innocent, de nombreuses pièces du puzzle ont commencé à se mettre en place", a déclaré Souza. "En fin de compte, nous obtenons un résultat bien meilleur que ce à quoi nous nous attendons." Les graphiques sont accompagnés d'un nombre appelé expansion qui mesure la difficulté de les couper en deux, normalisé à la taille du graphique. Plus ce nombre est grand, plus il est difficile de le diviser en deux en supprimant des nœuds.

Au cours des mois suivants, l'équipe a complété le reste de l'argumentation en publiant son article en ligne en octobre. Leur preuve montre qu'avec suffisamment de temps, si le graphique a suffisamment d'expansion, le modèle homogène de Kuramoto se synchronisera toujours globalement.

Sur la seule route

L'un des plus grands mystères restants de l'étude mathématique de la synchronisation ne nécessite qu'une petite modification du modèle présenté dans le nouvel article : que se passe-t-il si certaines paires d'oscillateurs se synchronisent , mais que d'autres s'en écartent ? Dans cette situation, « presque tous nos outils disparaissent immédiatement », a déclaré Souza. Si les chercheurs parviennent à progresser sur cette version du problème, ces techniques aideront probablement Bandeira à résoudre les problèmes de regroupement de données qu'il avait entrepris de résoudre avant de se tourner vers la synchronisation.

Au-delà de cela, il existe des classes de graphiques outre les extensions, des modèles plus complexes que la synchronisation globale et des modèles de synchronisation qui ne supposent pas que chaque nœud et chaque arête soient identiques. En 2018, Saber Jafarpour et Francesco Bullo de l'Université de Californie à Santa Barbara ont proposé un test de synchronisation globale qui fonctionne lorsque les rotateurs n'ont pas de poids ni de fréquences préférées identiques. L'équipe de Bianconi et d'autres ont travaillé avec des réseaux dont les liens impliquent trois, quatre nœuds ou plus, plutôt que de simples paires.

Bandeira et Abdalla tentent déjà d'aller au-delà des modèles Erdős-Rényi et  d  -regular vers d'autres modèles de graphiques aléatoires plus réalistes. En août dernier, ils ont partagé un article, co-écrit avec Clara Invernizzi, sur la synchronisation dans les graphiques géométriques aléatoires. Dans les graphes géométriques aléatoires, conçus en 1961, les nœuds sont dispersés de manière aléatoire dans l'espace, peut-être sur une surface comme une sphère ou un plan. Les arêtes sont placées entre des paires de nœuds s'ils se trouvent à une certaine distance les uns des autres. Leur inventeur, Edgar Gilbert, espérait modéliser des réseaux de communication dans lesquels les messages ne peuvent parcourir que de courtes distances, ou la propagation d'agents pathogènes infectieux qui exigeaient un contact étroit pour se transmettre. Des modèles géométriques aléatoires permettront également de mieux capturer les liens entre les lucioles d'un essaim, qui se synchronisent en observant leurs voisines, a déclaré Bandeira.

Bien entendu, relier les résultats mathématiques au monde réel est un défi. "Je pense qu'il serait un peu mensonger de prétendre que cela est imposé par les applications", a déclaré Strogatz, qui a également noté que le modèle homogène de Kuramoto ne peut jamais capturer la variation inhérente aux systèmes biologiques. Souza a ajouté : " Il y a de nombreuses questions fondamentales que nous ne savons toujours pas comment résoudre. C'est plutôt comme explorer la jungle. " 



 

Auteur: Internet

Info: https://www.quantamagazine.org - Leïla Sloman, 24 juillet 2023

[ évolution ] [ radiations adaptatives ] [ pressions de sélection ] [ palier évolutif ] [ équilibres ponctués ] [ syntonisations ]

 

Commentaires: 0

Ajouté à la BD par miguel

réjouissance

Les grandes joies sont ordinairement mornes et sérieuses.

Auteur: Descartes René

Info: Lettre à Elisabeth, 6 octobre 1645

[ définition ] [ paradoxal ]

 
Commentaires: 2
Ajouté à la BD par Coli Masson