Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après une recherche complexe. Et utilisez le nuage de corrélats !!!!.....
Lire la suite >>
Nuage de corrélats
: pour l'activer, cochez seulement catégorie et tag dans la recherche avancée à gauche.
Résultat(s): 94991
Temps de recherche: 0.1134s
sexuation
Comme chez Plotin, chez Scot [Erigène] le thème métaphysique est présenté en des termes moraux, il est rapporté à la "chute" (on a déjà vu à quoi correspond, métaphysiquement parlant, ce concept : à la situation ontologico-dynamique de la phase descendante ou d’émanation). Aussi bien Scot enseigne-t-il que "si le premier homme n’avait pas péché, sa nature n’aurait pas subi la différenciation sexuelle", celle-ci n’étant apparue qu’après la chute [De divisionibus naturae, II, 6]. D’où la contrepartie eschatologique : "La réunification de l’être humain sexuellement divisé dans son unité originelle, où il n’y avait ni homme ni femme, mais simplement un être humain, sera suivie par la réunification du monde terrestre avec le paradis lors de la consommation des temps" [De divisionibus naturae, II, 4].
Auteur:
Evola Julius
Années: 1898 - 1974
Epoque – Courant religieux: industriel
Sexe: H
Profession et précisions: philosophe, penseur de droite
Continent – Pays: Europe - Italie
Info:
Métaphysique du sexe, traduit de l’italien par Philippe Baillet, éditions L'âge d'homme, Lausanne, 2005, page 186
[
signification
]
métadonnées
Internet n’est pas assez développé pour former l’IA, mais une solution existe : les fausses données
Une nouvelle vague de start-up anticipe la crise existentielle à laquelle est confrontée l’industrie de l’intelligence artificielle (IA) : que se passera-t-il lorsqu’on sera à court de données ?
En 2011, Marc Andreessen, dont la société de capital-risque Andreessen Horowitz a depuis investi dans certaines des plus grandes start-up de l’IA, a écrit que " la technologie est en train de manger le monde ". Plus d’une décennie plus tard, c’est exactement ce qui est en train de se produire.
L’IA, et plus particulièrement les grands modèles de langage qui l’alimentent, est un consommateur vorace de données. Cependant, ces données sont limitées et s’épuisent. Les entreprises ont tout exploité dans leurs efforts pour former des IA toujours plus puissantes : transcriptions et sous-titres de vidéos YouTube, messages publics sur Facebook et Instagram, livres et articles de presse protégés par le droit d’auteur (parfois sans autorisation, parfois avec des accords de licence). ChatGPT d’OpenAI, le chatbot qui a contribué à la généralisation de l’IA, a déjà été entraîné sur l’ensemble de l’Internet public, soit environ 300 milliards de mots, y compris l’intégralité de Wikipédia et de Reddit. À un moment donné, il ne restera plus rien.
C’est ce que les chercheurs appellent " heurter le mur des données ". Selon eux, cela risque de se produire dès 2026. La création de données d’entraînement pour l’IA est donc une question à plusieurs milliards de dollars, à laquelle une cohorte émergente de start-up cherche une solution.
Une possibilité : créer des données artificielles
C’est l’approche adoptée par Gretel pour résoudre le problème des données de l’IA. La start-up crée ce que l’on appelle des " données synthétiques ", c’est-à-dire des données générées par l’IA qui imitent fidèlement des informations factuelles, mais qui ne sont pas réelles. Pendant des années, la start-up, aujourd’hui évaluée à 350 millions de dollars, a fourni des données synthétiques à des entreprises travaillant avec des informations personnelles identifiables qui doivent être protégées pour des raisons de confidentialité (les données des patients, par exemple). Cependant, aujourd’hui, son PDG Ali Golshan voit une opportunité de fournir aux entreprises d’IA en manque de données de fausses données fabriquées à partir de zéro, qu’elles peuvent utiliser pour entraîner leurs modèles d’IA.
" Les données synthétiques étaient tout à fait adaptées ", a déclaré Ali Golshan, ancien analyste de renseignements, à propos de la question du mur de données. " Elles résolvaient les deux faces d’une même pièce. Il était possible d’obtenir des données de haute qualité et de les rendre sûres. "
Cette approche " l’IA alimente l’IA " a déjà été adoptée par Anthropic, Meta, Microsoft et Google, qui ont tous utilisé des données synthétiques d’une manière ou d’une autre pour entraîner leurs modèles. Le mois dernier, la start-up Gretel a annoncé qu’elle mettrait ses données synthétiques à la disposition des clients utilisant Databricks, une plateforme d’analyse de données, pour construire des modèles d’IA.
Les limites des données synthétiques
Cependant, les données synthétiques ont leurs limites. Elles peuvent exagérer les biais d’un ensemble de données original et ne pas inclure les valeurs aberrantes, de rares exceptions que l’on ne verrait qu’avec des données réelles. Cela pourrait aggraver la tendance de l’IA à halluciner. Ou encore, les modèles formés sur de fausses données pourraient tout simplement ne rien produire de nouveau. Ali Golshan appelle ça une " spirale de la mort ", mais ce phénomène est plus connu sous le nom d’" effondrement du modèle ". Pour éviter cela, il demande à ses nouveaux clients de fournir à Gretel un morceau de données réelles et de haute qualité. "Des données inutiles et sûres restent des données inutiles ", a déclaré Ali Golshan à Forbes.
Un autre moyen de contourner le mur des données : les gens. Certaines start-up embauchent des armées de personnes pour nettoyer et étiqueter les données existantes afin de les rendre plus utiles pour l’IA ou de créer davantage de nouvelles données.
Le poids lourd de l’étiquetage des données est le mastodonte Scale AI, valorisé à 14 milliards de dollars, qui fournit des données annotées par des humains à des start-up d’IA de premier plan telles qu’OpenAI, Cohere et Character AI. L’entreprise a des activités gigantesques, employant quelque 200 000 travailleurs dans le monde entier par l’intermédiaire d’une filiale appelée Remotasks. Ces travailleurs réalisent plusieurs tâches, comme dessiner des boîtes autour d’objets dans une image, ou comparer différentes réponses à une question et évaluer laquelle est la plus précise.
À une échelle encore plus grande, Toloka, une société basée à Amsterdam, a rassemblé neuf millions d’étiqueteurs humains ou " tuteurs d’IA " à des fins similaires. Surnommés " Tolokers ", ces travailleurs du monde entier annotent également des données, par exemple en étiquetant des informations personnellement identifiables dans un ensemble de données destiné à être utilisé dans un projet communautaire d’IA mené par Hugging Face et ServiceNow. Néanmoins, ils créent également des données à partir de zéro : ils traduisent des informations dans de nouvelles langues, les résument et les transcrivent.
Toloka travaille également avec des experts tels que des docteurs en physique, des scientifiques, des juristes et des ingénieurs en logiciel afin de créer des données originales spécifiques à un domaine pour les modèles qui ciblent des tâches de niche. La start-up engage par exemple des juristes germanophones pour créer du contenu pouvant être intégré dans des modèles d’IA juridiques. Cependant, c’est un travail considérable que de mobiliser des personnes dans 200 pays, de vérifier que leur travail est précis, authentique et impartial, et de traduire tout jargon académique dans un langage accessible et digeste pour les modèles d’IA.
" Personne n’aime s’occuper des opérations humaines ", a déclaré Olga Megorskaya, PDG de Toloka, à Forbes. " Tout le monde aime construire des modèles d’IA et des entreprises. Mais traiter avec de vrais humains n’est pas une compétence très répandue dans l’industrie de l’IA. "
Ce type de travail pose des problèmes de main-d’œuvre à l’échelle de l’industrie. L’année dernière, les travailleurs de Scale ont fait part à Forbes de leur faible rémunération. Les travailleurs de Toloka contactés dans le cadre de cet article ont formulé des plaintes similaires. La PDG de Toloka, Olga Megorskaya, a déclaré à Forbes qu’elle estimait que la rémunération était juste, et Scale AI a déclaré de la même manière qu’elle s’engageait à payer aux travailleurs un " salaire décent ".
Utiliser moins de données
La solution la plus évidente au problème de la pénurie de données est peut-être la plus évidente : utiliser moins de données pour commencer.
Bien qu’il y ait un besoin urgent de données d’entraînement à l’IA pour alimenter des modèles massifs, certains chercheurs estiment qu’un jour, l’IA avancée pourrait ne plus avoir besoin d’autant de données. Nestor Maslej, chercheur au Human-Centered Artificial Intelligence de l’université de Stanford, pense que l’un des vrais problèmes n’est pas la quantité, mais l’efficacité.
« Il n’est pas nécessaire de prendre une fusée pour se rendre à l’épicerie. »
Alex Ratner, PDG et cofondateur de Snorkel AI
" Si l’on y réfléchit, ces grands modèles de langage, aussi impressionnants soient-ils, voient des millions de fois plus de données qu’un seul être humain n’en verrait dans toute sa vie. Pourtant, les humains peuvent faire certaines choses que ces modèles ne peuvent pas faire ", a déclaré Nestor Maslej. " D’un certain point de vue, il est clair que le cerveau humain fonctionne à un niveau d’efficacité qui n’est pas nécessairement pris en compte par ces modèles. "
Cette percée technique n’a pas encore eu lieu, mais l’industrie de l’IA commence déjà à s’éloigner des modèles massifs. Plutôt que d’essayer de construire de grands modèles de langage capables de rivaliser avec OpenAI ou Anthropic, de nombreuses start-up spécialisées dans l’IA construisent des modèles plus petits et plus spécifiques qui nécessitent moins de données. Mistral AI, par exemple, a récemment lancé Mathstral, une IA conçue pour exceller dans les problèmes mathématiques. Même OpenAI se lance dans le jeu des mini-modèles avec le lancement de GPT-4o mini.
" Nous assistons à une course au volume et les grands fournisseurs de modèles généralistes s’emparent de plus en plus de données et essaient des schémas pour générer de nouvelles données ", a déclaré Alex Ratner, PDG de la société d’étiquetage de données Snorkel AI. " La clé pour qu’un modèle fonctionne vraiment bien pour une tâche donnée est la qualité et la spécificité des données, et non le volume. "
Par conséquent, l’approche de Snorkel AI consiste à aider les entreprises à tirer parti des données dont elles disposent déjà et à les convertir en or pour l’entraînement à l’IA. La start-up, qui a été créée par le laboratoire d’IA de Stanford et qui est maintenant évaluée à un milliard de dollars, fournit un logiciel qui permet au personnel d’une entreprise d’étiqueter plus facilement et rapidement les données.
De cette manière, les modèles d’une entreprise sont conçus pour répondre à ses besoins réels. " Il n’est pas nécessaire de prendre une fusée pour se rendre à l’épicerie ", a déclaré Alex Ratner.
Auteur:
Internet
Années: 1985 -
Epoque – Courant religieux: Récent et libéralisme économique
Sexe: R
Profession et précisions: tous
Continent – Pays: Tous
Info:
https://www.forbes.fr/, 29 juillet 2024, Rashi Shrivastava pour Forbes US – traduit par Flora Lucas
[
LLMs
]
[
force brute
]
[
rationalisation impossible
]
[
homme-machine
]
[
superflu
]
[
gaspillage
]
empathie
Le milieu social est une bulle, constituée d'apanages variés, qui façonnent et manipulent notre conception de la réalité. Mais on peut au moins l'évoquer, le reconnaître, le comprendre, voire l'expier par une action transformatrice. En nous comparant avec celui des autres, nous pouvons être en mesure de modifier à la fois notre monde et les mondes extérieurs - si l'on a la volonté de le faire. La souffrance ne fonctionne pas ainsi. La souffrance relie directement avec l'individu qui souffre - elle ne peut être médiatisée par un terme comme " privilège ".
Auteur:
Smith Zadie
Années: 1975 - 20??
Epoque – Courant religieux: Récent et Libéralisme économique
Sexe: F
Profession et précisions: écrivaine
Continent – Pays: Angleterre - Jamaïque
Info:
Intimations
[
condition humaine
]
[
distanciation
]
[
imprégnation
]
écriture
J'en ai tiré deux enseignements précieux. Se parler à soi-même peut être utile. Et écrire signifie être entendu.
Auteur:
Smith Zadie
Années: 1975 - 20??
Epoque – Courant religieux: Récent et Libéralisme économique
Sexe: F
Profession et précisions: écrivaine
Continent – Pays: Angleterre - Jamaïque
Info:
Intimations : Six Essays
[
soliloque
]
[
communication
]
[
télépahtie
]
rencontre
Mais parfois, c'est comme si on fait connaissance avec quelqu'un et qu'on sait qu'il y a une totale connexion, et cette personne se retrouve à être, disons, comme notre frère - ou notre sœur. Même si elle ne le reconnaît pas, ça se sent. Et à bien des égards, peu importe qu'elle le reconnaisse ou non, tout ce que tu peux faire, c'est exprimer ce sentiment. C'est ton devoir. Ensuite, il suffit d'attendre et de voir ce qui te revient. Voilà ce qu'il faut faire.
Auteur:
Smith Zadie
Années: 1975 - 20??
Epoque – Courant religieux: Récent et Libéralisme économique
Sexe: F
Profession et précisions: écrivaine
Continent – Pays: Angleterre - Jamaïque
Info:
[
affinité
]
couple
Elle ? Oh, il l'aime, tout comme les Anglais aimaient l'Inde, l'Afrique et l'Irlande ; c'est l'amour qui est le problème, les gens traitent mal leurs amants. Peut-être est-ce simplement le décor, ou le contexte, qui est mauvais. Il se peut que rien de ce qui se passe sur un terrain volé ne puisse connaître une fin heureuse.
Auteur:
Smith Zadie
Années: 1975 - 20??
Epoque – Courant religieux: Récent et Libéralisme économique
Sexe: F
Profession et précisions: écrivaine
Continent – Pays: Angleterre - Jamaïque
Info:
White Teeth
[
déséquilibré
]
[
colonisation
]
écriture
Nous ne pouvons pas être tous les écrivains tout le temps. Nous ne pouvons être que ce que nous sommes. Ce qui m’amène à mon deuxième point : les écrivains n’écrivent pas ce qu’ils veulent, ils écrivent ce qu’ils peuvent.
Auteur:
Smith Zadie
Années: 1975 - 20??
Epoque – Courant religieux: Récent et Libéralisme économique
Sexe: F
Profession et précisions: écrivaine
Continent – Pays: Angleterre - Jamaïque
Info:
[
limites
]
laisser-aller
La nostalgie est un luxe.
Auteur:
Smith Zadie
Années: 1975 - 20??
Epoque – Courant religieux: Récent et Libéralisme économique
Sexe: F
Profession et précisions: écrivaine
Continent – Pays: Angleterre - Jamaïque
Info:
Swing Time
forme-matière
Ce qui maintient ensemble les parties d’un corps, ce qui fait sa compacité et sa consistance, sa solidité, n’est pas corporel ; c’est une unité-forme de nature psychique, immanente à la réalité corporelle, et dont celle-ci n’est absolument pas séparable. Le corporel est donc comme une cristallisation d’une substance psychique transspatiale, le terme d’un processus d’extériorisation, le mode terminal du psychique¸ c’est-à-dire la manière dont le psychique (entendu en un sens non spécifiquement humain) arrête ou termine son propre mouvement de manifestation vers l’extériorité. […] Si donc on envisage le monde corporel (ou modalité corporelle de la réalité créée) en lui-même, il apparaît, à tous les points de vue, comme le monde de la limite, ou comme monde-limite. Cela signifie qu’il impose, à tous les êtres en qui lui se manifestent, des formes limites d’existence, c’est-à-dire telles qu’en deçà de ses formes l’existence disparaît.
Auteur:
Borella Jean
Années: 1930 -
Epoque – Courant religieux: Récent et Libéralisme économique
Sexe: H
Profession et précisions: philosophe, théologien catholique
Continent – Pays: Europe - France
Info:
Amour et vérité, L’Harmattan, 2011, Paris, page 79
[
états multiples de l'Être
]
[
finitude
]
[
physique
]
philosophie moderne
L’existence des évidences naturelles implique donc un champ culturel de type essentialiste qui exige la croyance à la réalité d’un monde archétypal. Mais, tout le mouvement de la civilisation moderne, dans tous les domaines, depuis le XVIIe siècle, consiste en une immense et permanente dénaturation ou désessentialisation. Ce mouvement, qui est celui du rationalisme, s’effectue par la réduction de toute compréhension à la raison. Or, comprendre, pour la raison, c’est construire le donné qu’elle doit saisir, ce qui implique, en premier lieu, qu’elle nie sa qualité même de donné. Ce qui est incompréhensible pour la raison, c’est qu’il y ait un donné objectif. Le cartésianisme, dans la mesure où il se présente comme une construction rationnelle du monde, le kantisme qui répute le donné pur comme radicalement inconnaissable et qui lui substitue l’ "objectivité" des structures a priori de la connaissance humaine, l’axiomatisme mathématique qui rejette les évidences mathématiques premières, les principes, et qui les remplace par des conventions construites décisoirement, ne laissent aucun doute à cet égard.
Auteur:
Borella Jean
Années: 1930 -
Epoque – Courant religieux: Récent et Libéralisme économique
Sexe: H
Profession et précisions: philosophe, théologien catholique
Continent – Pays: Europe - France
Info:
Amour et vérité, L’Harmattan, 2011, Paris, page 61
[
critique
]
[
anti-réalisme
]