Les équations physiques semblent suivre un mystérieux modèle mathématique basé sur la linguistique
Cela pourrait révéler des mécanismes permettant le fonctionnement de l'Univers, voire de notre cerveau.
Une étude récente révèle que les équations mathématiques imposent les lois de la physique suivent étrangement un schéma précis en accord avec la loi de Zipf, décrivant la fréquence des mots dans les textes. En clair, les éléments constitutifs de ces équations sont systématiquement agencés de manière similaire, quel que soit le phénomène étudié. Ce constat pourrait éclairer non seulement le fonctionnement de l'Univers, mais aussi celui du cerveau humain, voire les deux simultanément.
Énoncée en 1949 par le linguiste et philologue américain George Kingsley Zipf, cette loi éponyme régit la distribution des fréquences des mots dans les textes ou les langues naturelles. Selon ce principe, le mot le plus courant dans une langue apparaît deux fois plus fréquemment que le second, trois fois plus que le troisième et ainsi de suite. Dans un texte en anglais, par exemple, le mot " le " représente 7 % du texte entier, alors que " le " en occupe 3,5 %.
Cette loi trouve également des applications dans d'autres domaines, tels que la répartition des tailles de villes en fonction de leur population, où la plus grande ville est plus peuplée que la deuxième et la troisième, selon une proportion universelle à travers le temps et l'espace. Les analystes l'utilisent également pour d'autres paramètres sociodémographiques, comme la répartition des revenus par habitant et la prévalence des métiers selon la population.
(Image : fréquence des mots en fonction du rang dans la version originale du roman " Ulysse " (en anglais) de James Joyce, selon la loi de Zipf. "
Des chercheurs de l'Université d'Oxford postulent que ce principe peut également s 'appliquer aux équations mathématiques décrivant les lois physiques, et ce, malgré leurs différences apparentes. " Au-delà de leurs principes fondamentaux, il est légitime de se demander si les formules physiques ne cachent pas des motifs plus subtils ", expliquent les auteurs dans leur étude, publiée sur la plateforme arXiv . « Nous confirmons cette hypothèse en examinant la distribution statistique des opérateurs dans trois corpus de formules », ajoute-ils
Un miroir du fonctionnement de l'Univers et de notre esprit ?
En physique, les mathématiques servent à décrire des phénomènes divers et variés tels que la loi de la gravité de Newton (F = GmM/r²), la relativité générale d'Einstein (E = mc²) et la formule de Hawking–Bekenstein pour l 'entropie d'un trou noir (S = kBAc³/4Gℏ). La partie droite de ces équations évoque en quelque sorte un texte, où les mots correspondraient aux opérateurs et aux opérandes. Par ailleurs, toutes les équations comportent des variables représentées par des lettres (G, m, c, etc.), ainsi que des facteurs numériques qui, bien que jouant un rôle moindre, restent importants.
L'équipe de recherche d'Oxford a émis l'hypothèse que ces composants pourraient être modélisés selon la loi de Zipf. Pour tester cette dernière, ils ont analysé un vaste ensemble d'équations physiques provenant de trois sources : les Conférences de Feynman sur la physique, des équations nommées d'après des experts sur Wikipédia, et celles décrivant l'inflation de l'univers primitif. . Chaque symbole et opérateur a ensuite été classé selon sa fréquence d'apparition.
On aurait pu s'attendre à ce que cette distribution varie considérablement, compte tenu des différences entre les équations et les lois physiques qu'elles déterminent. Pourtant, les analyses montrent que ces équations conservent une configuration constante. Certains symboles et opérateurs se répètent plus fréquemment que d'autres, quel que soit le sous-ensemble examiné.
(Image : Distribution de la complexité de l'expression dans les trois corpus, qui correspondent approximativement au nombre d'opérateurs apparaissant dans l'équation)
Cependant, cette configuration de Zipf disparaît lorsqu'on applique l'analyse à des équations apparaît aléatoirement. Cela suggère l'existence d'une cohérence particulière dans les motifs des équations étudiées, même pour les symboles rarement récurrents, tels que le logarithme (log) et l'exponentiel (exp), souligne l'étude.
Étant donné que ces équations servent à décrire les phénomènes physiques structurant notre univers, cette cohérence pourrait révéler la manière dont celui-ci fonctionne dans sa globalité. " Comprendre les raisons sous-tendant ce modèle statistique pourrait éclairer le modus operandi de la nature ou mettre en évidence des schémas récurrents dans les tentatives des médecins de formaliser les lois naturelles ", avancent les chercheurs.
D'autre part, ces résultats pourraient également refléter notre tendance à choisir la voie la plus simple pour résoudre un problème. Selon la loi linguistique de Zipf, nous cherchons à transmettre le maximum d'informations avec le moins de mots et le plus rapidement possible. Les chercheurs montrent que les équations physiques semblent suivre cette même logique, ce qui pourrait illustrer le mode de fonctionnement de notre esprit, notamment une tendance à écarter les explications complexes. Il se pourrait aussi que ces deux interprétations soient correctes.
Quelle que soit l'interprétation de ces résultats, les chercheurs estiment qu'ils pourraient influencer les recherches futures en physique. " En pionniers dans l'étude des régularités statistiques des équations de la physique, nos résultats ouvrent la voie à une méta-loi de la nature, une loi (probabiliste) à laquelle toutes les lois physiques se conforment ", concluent-ils. Ces travaux pourraient également être exploités pour développer des modèles d'apprentissage automatique et améliorer leur capacité à prédire de nouvelles lois physiques.